UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QP Physiology
Main Author :Al Luqman Abdul Halim
Title :Synthesis, characterisation and application of biopolymer films incorporated with natural additives for food preservation
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2018
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This  research  investigated  the  potential  of  biopolymer-additive  films  for  food preservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) were  used in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), clove  essential oil (CL), turmeric extract (TU) and chamomile extract (CH) were used as natural additive.  This research is divided into five main studies, namely synthesis, characterisation, antimicrobial  activity, food preservation and biodegradation. The main scientific instruments used in this study  were Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), universal  testing machine, water vapour permeability (WVP) analyser, oxygen permeability (OP) analyser,  ultraviolet-visible (UV-Vis) spectrophotometer and thermogravimetric analyser (TGA). The bacteria  used for antimicrobial activity were Staphylococcus aureus (Gram-positive) and Escherichia coli  (Gram-negative). The preservation of food samples was conducted for 7 and 14 days at two different  surrounding temperatures, namely 23-25˚C and 27-30 ˚C. Cherry tomatoes (Solanum lycopersicum var.  cerasiforme) and grapes (Vitis vinifera) were used as food samples in preservation studies.  Research findings found that several natural additives have successfully decreased the WVP value of GL-TA (1.73-1.28 g m-1 day-1 atm-1), CS- TU (1.44 -1.20 g  m-1 day-1 atm-1) and MC-TA (1.27-1.18 g m-1 day-1 atm-1). With exception of incorporation of TA  with GL, the addition of natural additives reduced the tensile strength (TS) of biopolymer films. Meanwhile, a contrast effect was obtained for  elongation at break (EAB). Based on antimicrobial activity studies, the inhibition zone for CS  against E. coli was increased from 10 to 25 mm following addition of TU, while the inhibition for  CS against S. aureus was increased from 15 to 20 mm with BA treatment. All biopolymer films  incorporated with natural additives were able to reduce the percentage of weight loss and browning  index of fruit samples. In conclusion, the addition of natural additives changed the  physicochemical characteristics of CS, GL, and MC films which favour to prolong the shelf-life of  foods. In implication, the application of biopolymer-natural additive films as alternatives to  petroleum-based films for food preservation could create a green and sustainable environment.  

References

Abdulmumeen, H. a, Risikat, A. N., & Sururah, A. R. (2012). Food: Its preservatives,

additives and applications. International Journal of Clinical and Biological Sciences, 1, 36–47.

 

Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico- mechanical and 

antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with 

essential oils. Food Hydrocolloids, 28(1), 189– 199.

 

Ahmed, S., & Ikram, S. (2015). Silver Nanoparticles: One Pot Green Synthesis Using

Terminalia arjuna Extract for Biological Application. Journal of Nanomedicine

& Nanotechnology, 6(4), 1-6.

 

Ahmed, S., & Ikram, S. (2016). Journal of Photochemistry & Photobiology , B : Biology Chitosan and 

gelatin based biodegradable packaging fi lms with UV- light protection. Journal of Photochemistry & 

Photobiology , B : Biology, 163, 115–124.

 

Adinew, B. (2013). GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark 

growing in South-west of Ethiopia. International Journal of Herbal Medicine, 1(6), 22-31.

 

 

Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2010).

Antioxidative activity and emulsifying properties of cuttlefish skin gelatin– tannic acid complex 

as influenced by types of interaction. Innovative Food Science and Emerging Technologies, 11, 

712–720.

 

 

Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martinez-Bustos, F., González- Nuñez, R., & 

Grosso, C. R. F. (2012). Functional properties of gelatin-based films containing Yucca schidigera 

extract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journal 

of Food Engineering, 113, 33–40.

 

Anvari, M., & Chung, D. (2016). Dynamic rheological and structural characterization of fish 

gelatin-gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60, 516-524.

 

Aider, M. (2010). Chitosan application for active bio-based films production and potential in the 

food industry. Food Science and Technology, 43(6), 837–842.

 

Alparslan, Y., Baygar, Tuba, Baygar, Taçnur, Hasanhocaoglu, H., & Metin, C. (2014). Effects of 

gelatin-based edible films enriched with laurel essential oil on

the quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated

storage. Food Technology and Biotechnology, 52(3), 325-333.

 

Altiok,  D.,  Altiok,  E.,  &  Tihminlioglu,  F.  (2010).  Physical,  antibacterial  and

antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing 

applications. Journal of Materials Science: Materials in Medicine, 21, 2227–2236.

 

Aljawish, A., Muniglia, L., Klouj, A, Jasniewski, J., Scher, J., & Desobry, S. (2016).

Characterization of films based on enzymatically modified chitosan derivatives with phenol 

compounds. Food Hydrocolloids, 60, 551-558.

 

Arancibia, M. Y., Alemán, A., Calvo, M. M., López-caballero, M. E., Montero, P., & Gómez-guillén, 

M. C. (2014). Food Hydrocolloids Antimicrobial and antioxidant chitosan solutions enriched with 

active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710–717.

 

Ariaii, P., Tavakolipour, H., Rezai, M., & Rad, A. H. E. (2014). Properties and antimicrobial 

activity of edible methylcellulose based film incorporated with Pimpinella affinis oil. European 

Journal of Experimental Biology, 4(1), 670- 676.

 

Ashwin Kumar, A., Karthick. K, & Arumugam, K. P. (2011). Properties of biodegradable polymers and 

degradation for sustainable development. International Journal of Chemical Engineering and 

Applications, 2(3), 164- 167.

 

ASTM. (1995), Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and 

Sheeting Using a Modulated Infrared Sensor, American Society for Testing and Materials, 

Philadelphia, Pa.

 

ASTM.  (1980).  Standard  test  method  for  water  vapor  transmission  of  materials.

ASTM Book of Standards, E96-80. American Society for Testing and Materials, Philadelphia, PA.

 

Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings 

for active food packaging. Trends in Food Science & Technology, 48, 51-62.

 

Avila-sosa, R., Palou, E., & López-malo, A. (2016). Chapter 15- Essential Oils Added to Edible 

Films. In Essential Oils in Food Preservation, Flavor and Safety, Academic Press, 149–154.

 

Badii, F., & Howell, N. K. (2006). Fish gelatin: Structure, gelling properties and interaction with 

egg albumen proteins. Food Hydrocolloids, 20, 630–640.

 

Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S. M., & Abdollahi, M. (2013). Whey protein 

concentrate edible film activated with cinnamon essential

oil. Journal of Food Processing and Preservation, 38(3), 1251–1258.

 

Barbin, D. F., Valous, N., A., Dias, A. P., Camisa, J., Hirooka, E. Y., & Yamashita, F.

(2015). VIS–NIR spectroscopy as a process analytical technology for compositional characterization 

of film biopolymers and correlation with their mechanical properties. Materials Science and 

Engineering: C, 56, 274–279.

 

Barone, J. R., Schmidt, W. F. (2006). Nonfood application of proteinaceous renewable materials. 

Journal of Chemical Education, 83, 1003-1009.

 

Bastos, D. da S., Araújo, K. G. de L., & Leão, M. H. M. da R. (2009). Ascorbic acid retaining using 

a new calcium alginate-Capsul based edible film. Journal of Microencapsulation, 26(2), 97–103.

 

Ben-Jonathan, N., Hugo, E. R., & Brandebourg, T. D. (2009). Molecular and Cellular Endocrinology 

Effects of bisphenol A on adipokine release from human adipose tissue : Implications for the 

metabolic syndrome. Molecular and Cellular Endocrinology. 304, 49–54.

 

Benbettaïeb, N., Karbowiak, T., Brachais, C., & Debeaufort, F. (2015). Coupling tyrosol , quercetin 

or ferulic acid and electron beam irradiation to cross-link chitosan – gelatin films : A structure 

– function approach, European Polymer Journal, 67, 113–127.

 

Bilbao-sainz, C., Bras, J., Williams, T., Sénechal, T., & Orts, W. (2011). HPMC reinforced with 

different cellulose nano-particles. Carbohydrate Polymers, 86(4), 1549–1557.

 

Blanco-Fernandez, B., Rial-Hermida, M. I., Alvarez-Lorenzo, C., & Concheiro, A. (2013). Edible 

chitosan/acetylated monoglyceride films for prolonged release of vitamin e and antioxidant 

activity. Journal of Applied Polymer Science, 129(2), 626-635.

 

Bott, J., Stӧrmer, A., Franz, R. (2014). A model study into the migration potential of 

nanoparticles from plastics nanocomposites for food contact. Food Packaging and Shelf Life, 2, 

73–80.

Brody,  A.  L.,  Bugusu,  B.,  Han,  J.  H.,  Sand,  C.  K.,  &  McHugh,  T.  H.  (2008).

Innovative Food Packaging Solutions. Journal of Food Science, 73, 107–116.

 

Broek, L. A. M. Van Den, Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015).

Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237–242.

 

Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor 

barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729– 735.

 

Castro-Mayorga, J. L., Martínez-Abad, A., Fabra, M. F., Lagarón, J. M., Ocio, M. J.,

& Sánchez, G. (2016). Chapter 32- Silver-Based Antibacterial and Virucide Biopolymers: Usage and 

Potential in Antimicrobial Packaging. In J. Barros-

Velázquez (Ed.), Antimicrobial Food Packaging. Academic Press, 407-416.

 

Castilho,    L.R.,    Mitchell,    D.A.,    Freire,    D.M.G.,    2009.    Production    of

polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state 

fermentation. Bioresource Technology, 100, 5996– 6009.

 

Chen, G., Zhang, B., Zhao, J., & Chen, H. (2014). Food Hydrocolloids Development and 

characterization of food packaging fi lm from cellulose sulfate. Food Hydrocolloids, 35, 476–483.

 

Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2016). 

Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. 

Food Hydrocolloids, 61, 662-671

 

Cian, R. E., Salgado, P. R., Drago, S. R., González, R. J., & Mauri, A. N. (2014).

Development of naturally activated edible films with antioxidant properties prepared from red 

seaweed Porphyra columbina biopolymers. Food Chemistry, 146, 6–14.

 

Cha, D. S., & Chinnan, M. S., (2004). Biopolymer-based antimicrobial packaging: a review. Critical 

Reviews in Food Science and Nutrition, 44, 223–237.

 

Chinnam, P. R., Mantravadia, R., Jimeneza, J. C., Dikin, D. A., Wunder, S. L. (2015).

Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene     glycol, 

POSS-PEG. Carbohydrate Polymers, 136, 19–29.

 

Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., Kerry, J. P. (2016).

Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of 

their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.

 

Corcoran, P. L., Norris, T., Ceccanese, T., Walzak, M. J., Helm, P. A., & Marvin, C.

H. (2015). Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment 

record. Environmental Pollution, 204, 17–25.

 

Debeaufort.,  F.,  &  Voilley,  A.  (2009).  Lipid-based  edible  films  and  coatings.

Embuscado ME Huber KC eds. Edible Films and Coatings for Food. Springer Science Business Media, 

LLC, New York, NY.

 

De’Nobili, M. D., Soria, M., Martinefski, M. R., Tripodi, V. P., Fissore, E. N., & Rojas, A. M. 

(2016). Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for 

antioxidant food preservation. Journal of Food Engineering, 175, 1–7.

 

Desobry, S., & Arab-Tehrany, E. (2014). Diffusion Barrier Layers for Edible Food Packaging. 

Comprehensive Materials Processing, 4, 499-518.

 

Dicastillo, C. L. De, Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidant

films based on cross-linked methyl cellulose and native Chilean berry for food

packaging applications. Carbohydrate Polymers, 136, 1052–1060.

 

Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives  for

chitosan  based  antimicrobial  films  in  food  applications.  Food  Chemistry, 114(4), 1173–1182.

 

Elsabee, M. Z. & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials 

Science and Engineering: C, 33, 1819–1841.

 

El-Hefian,  E.  A.,  Elagannoudi,  E.  S.,  Mainal,  A.,  &  Yahaya,  A.  H.  (2010).

Characterization of chitosan in acetic acid: Rheological and thermal studies.

Turkish Journal of Chemistry, 34,47-56.

 

El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric properties 

of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, 406, 4068–4076.

 

Espitia, P. J. P., Avena-Bustillos, R. J, Du, W-X., Teofilo, R. F., Soares, N. F. F., McHugh, T. H. 

(2014). Optimal antimicrobial formulation and physical– mechanical properties of edible films based 

on acaı´ and pectin for food preservation. Food packaging and shelf life, 2, 38–49.

 

European Commission, DG Environment (2011). Plastic waste in the environment – Final Report.

 

FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World Health 

Organisation.

 

Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic 

acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food 

Hydrocolloids, 25(6), 1441–1447.

 

Fabra, M. F., Lagarón, J. M., Ocio, M. J., & Sánchez, G. (2016). Silver-Based Antibacterial and 

Virucide Biopolymers : Usage and Potential in Antimicrobial Packaging, 407–416.

 

Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packaging 

applications. Smart Polymers and their Applications, 476-509.

 

FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World Health 

Organisation.

 

Franeker, J. A. V., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., Hansen, P-L., 

Heubeck, M., Jensen, J-K., Guillou, G. L., Olsen, B., Olsen K-O., Pedersen, J., Stienen, E. W. M., 

Turner, D. M. (2011). Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the 

North Sea. Environmental Pollution. 159, 2609-2615.

 

Eça,  K.  L.,  Sartori,  T.,  &  Menegalli,  F.  C.  (2014).  Films  and  edible  coatings

containing antioxidants – a review. Brazilian Journal Food Technology, 17, 98-

112.

 

Galloway, T., Cipelli, R., Guralnik, J., Ferrucci, L., Bandinelli, S., & Corsi, A. M.

(2010). Results from the InCHIANTI Adult Population Study. Environmental Health Perspectives. 

118(11), 1603–1609.

 

Garrigos, M.C., Marin, M.L, Canto, A. & Sanchez, A. (2004) Determination of residual styrene 

monomer in polystyrene granules by gas chromatography-mass spectrometry. Journal of Chromatography 

A 1061:211-216.

 

Genskowsky, E., Puentea, L. A., Perez-Alvarez, J.A., Fernandez-Lopez, J., Mun   oz, L. A., & 

Viuda-Martos, M. (2015). Assessment of antibacterial and  antioxidant properties of chitosan edible 

films incorporated with maqui berry  (Aristotelia chilensis). LWT- Food Science and Technology, 64, 

1057-1062.

 

Gómez-Estaca,  J.,  Gimenez,  B.,  Montero,  P.,  &  Gomez-Guillen,  M.  C.  (2009).

Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a 

commercial fish gelatin. Journal of Food Engineering, 92(1), 78-85.

 

Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & 

Montero, P. (2009). Fish gelatin: A renewable material for developing active biodegradable films. 

Trends in Food Science and Technology, 20, 3–16.

 

González-Rivera, J., Duce, C., Falconier, D., Ferrari, C., Ghezzi, L., Piras, A., & Tine,

M. R. (2015). Coaxial microwave assisted hydrodistillation of essential oils from five different 

herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal 

analysis. Innovative Food Science and Emerging Technologies, 33, 308-318.

 

Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of 

chitosan and its quaternized derivative on E. Coli and

S. aureus growth. Brazilian Journal of Pharmacognosy, 26(1), 122–127.

 

Grasel, F. S., Ferrão, M. F., & Wolf, C. R. (2016). Development of methodology for identification 

the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 94–101.

 

Günlü, A., & Koyun, E. (2013). Effects of Vacuum Packaging and Wrapping with Chitosan Based Edible 

Film on the Extension of the Shelf Life of Sea Bass (Dicentrarchus labrax) Fillets in Cold Storage 

(4°C). Food Bioprocess Technology, 6, 1713–1719.

 

Ha, T. T., Padua, G. W. (2001). Effect of extrusion processing on properties of zein- fatty acids 

sheets. American Society of Agricultural Engineers, 44(5), 1223–

1228.

 

 

Han,  J.  H.,  &  Floros,  J.  D.  (1997).  Casting  Antimicrobial  Packaging  Films  and

Measuring Their Physical Properties and Antimicrobial Activity.  Journal of Plastic Film and 

Sheeting, 13, 287-298.

 

Harris, D., & Taylor, N. (2004). The Beginner’s Guide to Preserving. Bellingham: Homestead Harvest.

 

Hauck, B. W., & Huber, G. R. (1989). Single screw versus twin screw extrusion.

Cereal Food World, 24, 930-939.

 

Hernandez-Izquierdo, V.M, Krochta, J.M. (2008). Thermoplastic processing of proteins for film 

formation-A review. Journal of Food Science, 73, 30-39.

 

Higueras, L., López-Carballo, G, Cerisuelo, J. P., Gavara, R., Hernández-Munoz, P. (2013). 

Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption 

capacity for carvacrol. Carbohydrate Polymers, 97, 262– 268.

 

Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish (Sepia 

pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food 

Hydrocolloids, 25(5), 1085–1097.

 

Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial 

properties of chitosan. International Journal of Biological Macromolecules, 85, 467-475.

 

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible 

films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413.

 

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of 

bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food 

Hydrocolloids, 44, 172-182.

 

Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties 

of fish gelatin-chitosan blend edible films. Food Chemistry, 136(3– 4), 1490–1495.

 

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish 

gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194, 

1266–1274.

 

Hu, B. (2014). Chapter 13- Biopolymer-based lightweight materials for packaging applications. In 

Yang et al., Lightweight materials from biopolymers and biofibers. ACS Symposium Series. 239-255

 

Iturriaga, L., Olabarrieta, I., & Marañón, I. M. De. (2012). International Journal of

Food Microbiology Antimicrobial assays of natural extracts and their inhibitory

effect against Listeria innocua and fi sh spoilage bacteria , after incorporation

into biopolymer edible fi lms. International Journal of Food Microbiology, 158(1), 58–64.

 

Janjarasskul, T., & Krochta, J-M. (2010). Edible Packaging Materials. Annual Review of Food Science 

and Technology, 1, 415-448.

 

Jeya Shakila, R., Jeevithan, E., Varatharajakumar, A., Jeyasekaran, G., & Sukumar,

D. (2012). Comparison of the properties of multi-composite fish gelatin films with that of 

mammalian gelatin films. Food Chemistry, 135(4), 2260–2267.

 

Kadam, S. U., Pankaj, S. K., Tiwari, B. K., Cullen, P. J., & Donnell, C. P. O. (2015).

Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum 

nodosum extract. Food Packaging and Shelf Life, 6, 68– 74.

 

Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2017). Preserving Apple (Malus 

domestica var. Anna) Fruit Bioactive Substances Using Olive Wastes Extract-Chitosan Film Coating. 

Information Processing in Agriculture, 4, 90- 99.

 

Kim, K. W., Min, B. J., Kim, Y. T., Kimmel, R. M., Cooksey, K., & Park, S. I. (2011). Antimicrobial 

activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. 

LWT-Food Science and Technology, 44, 565–569.

 

Kim, Y. J. I. N., Lee, H. M. O. K., & Park, O. K. (1995). Processabilities and Mechanical 

Properties of Surlyn-Treated Starch / LDPE Blends, Polymer Engineering and Science, 35(20), 

1652-1657.

 

Kowalczyk, D. (2016). Biopolymer/candelilla wax emulsion films as carriers of ascorbic acid─ A 

comparative study. Food Hydrocolloids, 52, 543–553.

 

Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties of 

biopolymer emulsion films e a comparative study. Food Hydrocolloids, 41, 195–209.

 

Kowalczyk, D., & Biendl, M. (2016). Physicochemical and antioxidant properties of biopolymer / 

candelilla wax emulsion films containing hop extract − A comparative study. Food Hydrocolloids, 60, 

384–392.

 

Krishna, M., Nindo, C. I., & Min, S. C. (2012). Development of fish gelatin edible films using 

extrusion and compression molding. Journal of Food Engineering, 108(2), 337–344.

 

Kwon, S-J, Chang, Y., & Han, J. (2017). Oregano essential oil-based natural antimicrobial packaging 

film to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherry 

tomatoes. Food Microbiology, 65,114-

121.

 

Lacroix,   M.,   2009.   Mechanical   and   permeability   properties   of   edible   films

andcoatings for food and pharmaceutical applications. In: Milda, E.E., Kerry, C.H.(Eds.), Edible 

Films and Coatings for Food Applications. Springer Science

+ Business Media, New York, pp. 347–366.

 

Lagos, M. J. B. (2013). Development of bioactive edible films and coatings with antioxidant and 

antimicrobial properties for food use (doctoral dissertation). Universitat Politècnica De València, 

Valencia, Spain.

 

Lang, I. A., Galloway, T. S., Scarlett, A., Henley, W. E., Depledge, M., & Wallace, R.

B. (2008). Association of Urinary Bisphenol A Concentration With Medical Disorders and Laboratory 

Abnormalities in Adults. Journal of the American Medical Association. 300(11), 1303–1310.

 

Lim, T. P., Chye, F. Y., Sulaiman, M. R., Suki, N. M., & Lee, J. S. (2016). A structural modeling 

on food safety knowledge, attitude, and behaviour among Bum Bum Island community of Semporna, 

Sabah. Food Control, 60, 241–246.

 

Lin, S. (2012). Development of Edible Packaging for Selected Food Processing Applications. The Ohio 

State University.

 

Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying 

temperature on physicochemical and thermomechanical properties of gelatin films. Food 

Hydrocolloids, 45, 140–149.

 

Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Scientia Horticulturae Combined effects of 

ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia 

Horticulturae, 176, 45–53.

 

Liu, L. (2006). Bioplastics in food packaging: innovative technologies for biodegradable packaging. 

San Jose State University.

 

Liu, W., Misra, M., Askeland, P., Drzal, L.T., Mohanty, A.K. (2005). ‘Green’ Composites from Soy 

Based Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation. Polymer, 46, 

2710–2721.

 

López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández- Munóz, P. (2012). 

Active antioxidant packaging films: development and effect on lipid stability of brined sardines. 

Food Chemistry, 131(4), 1376–1384.

 

López-mata, M. A., Ruiz-cruz, S., Silva-beltrán, N. P., Ornelas-paz, J. D. J., Zamudio- flores, P. 

B., & Burruel-ibarra, S. E. (2013). Physicochemical, Antimicrobial and Antioxidant Properties of 

Chitosan Films Incorporated with Carvacrol. Molecules, 18(11), 13735–13753.

 

Luo, Y., Pan, X., Ling, Y., Wang, X., & Sun, R. (2014). Facile fabrication of chitosan

active film with xylan via direct immersion. Cellulose, 21(3), 1873-1883.

 

Maobe, M. A.G., & Nyarango, Robert M. (2013). Fourier Transformer Infra-Red

Spectrophotometer Analysis of Warburgia ugandensis Medicinal Herb Used for the Treatment of 

Diabetes, Malaria and Pneumonia in Kisii Region, Southwest Kenya. Global Journal of Pharmacology, 

7, 61-68.

 

Makarios-Laham, I., & Lee, T-C. (1995). Biodegradability of chitin- and chitosan- containing films 

in soil environment. Journal of Enviromnental Polymer Degradation, 3(1), 31-36.

 

Makwana, S., Choudhary, R., Haddock, J., & Kohli, P. (2015). In-vitro antibacterial activity of 

plant based phenolic compounds for food safety and preservation. LWT - Food Science and Technology, 

62, 935-939.

 

Marcilla, A., Garia, S., Garcia-Queseda, J.C. (2004) Study of the migration of PVC plasticizers. 

Journal of Analytical and Applied Pyrolysis. 71, 457-463.

 

Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of a-tocopherol on 

physicochemical properties of chitosan-based films, Food Hydrocolloids, 27, 220–227.

 

McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic Edible Films: Modified 

Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food 

Science, 58(4), 899-903.

 

Meeker, J. D., Sathyanarayana, S., & Swan, S. H. (2009). Phthalates and other additives in 

plastics : human exposure and associated health outcomes, 2097– 2113.

 

Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: a 

review. Trends in Food Science and Technology, 81, 228-237.

 

Moura, M. R. D., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso,

L. H. C. (2008). Properties of novel hydroxypropyl methylcellulose films containing chitosan 

nanoparticles. Journal of Food Science, 73(7). 31-37.

 

Moradi, M., Tajik, H., Razavi Rohani, S.M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & 

Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria 

multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 

477–484.

 

Muratore, G. Del Nobile M A. Buanocore, G.G., Lanza, C.M., Asmundo, C.N. (2005). The Influence of 

Using Biodegradable Packaging films on The Quality Decay Kinetic of Plum Tomato. Journal of Food 

Engineering, 67, 393–399.

 

Noronha, C. M., De Carvalho, S. M., Lino, R. C., & Barreto, P. L. M. (2014).

Characterization  of  antioxidant  methylcellulose  film  incorporated  with α-

tocopherol nanocapsules. Food Chemistry, 159, 529–535.

 

Noshirvani, N., Ghanbarzadeh, B., Gardrat, Rezaei, M. R., Hashemi, M., Coz, C. L.,

& Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and 

mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70. 36-45.

 

Nur Hazirah, M.A.S.P., Isa, M.I.N., & Sarbon, N.M. (2016). Effect of xanthan gum on the physical 

and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf 

Life, 9, 55–63.

 

Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of 

a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward 

water. Food Chemistry, 122(1), 161-166.

 

Oehlmann, J., Schulte-oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kresten, O. K., 

Wollenberger, L., Santos, E. M., Paull, G. C., Look, K. J. W. V.,  Tyler, C.

R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife A critical 

analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions The 

Royal Society, 364, 2047–2062.

 

Pantoja-Castroa, M. A., & González-Rodrígueza, H. (2011). Study by infrared spectroscopy and 

thermogravimetric analysis of tannins and tannic acid. Revista Latinoamericana de Química, 39(3), 

107-112.

 

Pastor, C., Sánchez-gonzález, L., Chiralt, A., Cháfer, M., & González-martínez, C. (2013). Physical 

and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food 

Hydrocolloids, 30, 272–280.

 

Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils  on physical, mechanical 

and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293.

 

Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011). 

Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food 

Hydrocolloids, 25, 1372–1381.

 

Pérez, C. D., DeʼNobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M., & Rojas, A. M. 

(2013). High methoxyl pectin-methyl cellulose films with antioxidant activity at a functional food 

interface. Journal of Food Engineering, 116(1), 162-169.

 

Priya, S., D., Suriyaprabha, R., Yuvakkumar, R., & Rajendran, V. (2014). Chitosan- incorporated 

different nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research, 

16(2248), 1-16.

 

Pushpadass, H. A., Marx, D. B, Wehling, R. L., & Hanna, M. A. (2009). Cereal Chemistry, 86, 44–51.

 

Rahman S. M. (2007). Handbook of food preservation, 2nd  edn. CRC Press: New

York.

 

Raj,  B.,  Matche,  R.  S.,  &  Jagadish,  R.  S.  (2011).  “Incorporation  of  Chemical

Antimicrobial   Agents   into   Polymeric   Films   for   Food   Packaging,”   in

Multifunctional and Nanoreinforced Polymers for Food Packaging, edited by J-

M. Lagarón, Woodhead Publishing, Cambridge, 368–420.

 

Ramírez, C., Gallegos, I, Ihl, M., & Bifani, V. (2012). Study of contact angle, wettability and 

water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae 

Turcz) extract. Journal of Food Engineering, 109, 424–429.

 

Redl, A.,Morel, M. H., Bonicel, J., Vergnes, B., & Guilbert, S. (1999). Extrusion of wheat gluten 

plasticized with glycerol: influence of process conditions on flow behavior, rheological 

properties, and molecular size distribution. Cereal Chemistry, 76(3), 361–370.

 

Rhim, J. W., & Kim, Y. T. (2014). Biopolymer-Based Composite Packaging Materials with 

Nanoparticles. Elsevier, 17, 413-442.

 

Rhim, J.-W., Park, H.-M., Ha, C.-S., 2013. Bio-Nanocomposites for Food Packaging Applications. 

Progress in Polymer Science, 38, 1629–1652.

 

Riaz, M. N. (2002). Extruder in Food Applications. CRC Press, Boca Raton, USA.

 

Riyajan, S., Intharit, I., & Tangboriboonrat, P. (2013). Physical properties of themaleated sulphur 

prevulcanized natural rubber latex-g-cellulose fiber, Journal of Polymer Materials, 30, 159–174.

 

Rossman, J. M. 2009. Edible films and coatings for food applications. In: Embuscado ME, Huber KC. 

Edible films and coatings for food applications. Springer Science Business Media, New York, 

367-390.

 

Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A., & Fernández- López, J. (2013). 

In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with 

Thymusmoroderi or Thymus piperella essential oils. Food Control, 30, 386-392.

 

Saiful, Saleha S., & Salman, (2013). Preparation and characterization edible film packaging from 

carrageenan. Proceedings of The 3rd Annual International Conference Syiah Kuala University (AIC 

Unsyiah) 2013 In conjunction with The 2nd International Conference on Multidisciplinary Research 

(ICMR) 2013, 3(3), 44-50.

 

Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. 

(2013). Sunflower protein films incorporated with clove essential oil have potential application 

for the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84.

 

Saggiorato, A.G., Gaio, I., Treichel, H., De Oliveira, D., Cichoski, A.J., & Cansian,

R.L. (2012). Antifungal activity of basil essential oil (Ocimum basilicum L.):

evaluation in vitro and on an Italian-type sausage surface. Food and Bioprocess Technology, 5, 

378–384.

 

Science for Environment Policy. (2011). Plastic waste: ecological and human health impacts.

 

Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. 

Trends in Food Science & Technology, 10 (2), 37–51.

 

Shariatinia, Z., & Fazli, M. (2015). Mechanical properties and antibacterial activities of novel 

nanobiocomposite films of chitosan and starch. Food Hydrocolloids, 46, 112–124.

 

Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles and 

preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 130, 

353–363.

 

Singh, R. K., & Khatri, O. P. (2012). A scanning electron microscope based new method for 

determining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy, 

246(1), 43–52.

 

Shekarabi, A. S., Oromiehie, A. R., Vaziri, A., Ardjmand, M., & Safekordi, A. A. (2014). 

Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films, 

Food Science & Nutrition, 821–827.

 

 

Siracusa, V. (2016). Packaging Material in the Food Industry, 95–106.

 

Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillēn, M. C., & Bifani, V. (2013).

Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. 

Food Eng Rev, 5, 200–216.

 

Siti Hajar, O. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of 

Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2, 296–303.

 

Skotti, E., Kountouri, S., Bouchagier, P., Tsitsigiannis, D. I., Polissiou, M., & Tarantilis, P. A. 

(2014). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy FTIR spectroscopic 

evaluation of changes in the cellular biochemical composition of the phytopathogenic fungus 

Alternaria alternata induced by extracts of some Greek medicinal and aromatic plants. 

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 463-472.

 

Sobral,  P.  J.  A.,  Menegalli,  F.  C.,  Hubinger,  M.  D.,  &  Roques,  M.  A.  (2001).

Mechanical, water vapor barrier and thermal properties of gelatin based edible

films. Food Hydrocolloids, 15, 423-32.

 

Socrates, G. (2001) Infrared and Raman Characteristics Group Frequencies, Tables

and Chart. 3a. ed., John Wiley & Sons, Inc., USA pp: 125-142.

 

Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Postharvest Biology and Technology Aloe vera and 

ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. 

Postharvest Biology and Technology, 114, 29–35.

 

Song, X., & Cheng, L. (2014). Chitosan/kudzu starch/ascorbic acid films: Rheological, wetting, 

release, and antibacterial properties. African Journal of Agricultural Research, 9(52), 3816-3824.

 

Suppakul, P., Boonlert, R., Buaphet, W., Sonkaew, P., & Luckanatinvong, V. (2016).

Efficacy of superior antioxidant Indian gooseberry extract-incorporated edible Indian gooseberry 

puree/methylcellulose composite films on enhancing the shelf life of roasted cashew nut. Food 

Control, 69, 51-60.

 

Tajkarimi, M. M., Ibrahima, S. A., & Cliver, D. O. (2010). Review: antimicrobial herb and spice 

compounds in food. Food Control, 21(9), 1199–1218.

 

Tajkarimi, M., & Ibrahim, S. A. (2011). Antimicrobial activity of ascorbic acid alone or in 

combination with lactic acid on Escherichia coli O157 : H7 in laboratory medium and carrot juice. 

Food Control, 22(6), 801–804.

 

Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., Saal, F. S. (2009).

Components of plastic: experimental studies in animals and relevance for human health. 

Philosophical Transactions of the Royal Society B, 364, 2079-2096.

 

Tӑnase, E. E., Popa, V. I., Popa, M. E., Rӑpӑ, M., & Popa, O. (2016). Biodegradation study of some 

food packaging biopolymers based on PVA. Bulletin UASVM Animal Science and Biotechnologies, 73(1), 

1-5.

 

Tian, S-P., Li, B-Q & Xu, Y. (2005). Effects of O2 and CO2 concentrations on physiology and quality 

of litchi fruit in storage. Food Chemistry, 91, 659-663.

 

Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future. 

Trends in Food Science & Technology, 14, 71–78.

 

Tulamandi, S., Rangarajan, V., Rizvi, S. S. H., Singhal, R. S., Chattopadhyay, S. K.,

& Saha, N. C. (2016). A biodegradable and edible packaging film based on papaya puree, gelatin, and 

defatted soy protein. Food Packaging and Shelf Life, 10, 60–71.

 

Tunç¸ S., Duman, O., Polat, T. G. (2016). Effects of montmorillonite on properties of 

methylcellulose/carvacrol based active antimicrobial nanocomposites. Carbohydrate Polymers, 150, 

259-268.

 

Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant

activity of fish skin gelatin film incorporated with citrus essential oils. Food

Chemistry, 134, 1571–1579.

 

Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016).

Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and 

basil essential oil with different surfactants. Food Hydrocolloids, 56, 93-107.

 

United Nations, Department of Economic and Social Affairs, Population Division (2015). World 

Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. 

ESA/P/WP.241.

 

Uranga, J., Leceta, I., Etxabide, A., Guerrero, P., & De La Caba, K. (2016). Cross- linking of fish 

gelatins to develop sustainable films with enhanced properties. European Polymer Journal, 78, 

82–90.

 

Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., Abd ElRazik, K.A., Omer, E.A., 

Pérez-Álvarez, J.A. et al. (2011). In vitro antioxidant and antibacterial activities of essential 

oils obtained from Egyptian aromatic plants. Food Control, 22, 1715–1722.

 

Wallace,   M.   (2005).   Getting   Started   in   Food   Preservation   Leader’s   Guide.

Washington, DC: Washington State University Extension.

 

Wang, H., Hu, D., Ma, Q., & Wang, L. (2016). Physical and antioxidant properties of fl exible soy 

protein isolate fi lms by incorporating chestnut ( Castanea mollissima ) bur extracts. LWT - Food 

Science and Technology, 71, 33-39.

 

Wang, S., Marcone, M. F., Barbut, S., & Lim, L. (2012). Fortification of dietary biopolymers-based 

packaging material with bioactive plant extracts. Food Research International, 49(1), 80–91.

 

Wu, Y., Luo, X., Li, W., Song, R., Li, J., Li, Y., … Liu, S. (2016). Green and biodegradable 

composite films with novel antimicrobial performance based on cellulose. Food Chemistry, 197, 

250–256.

 

Xiaolin, T., Dafeng, T., Zhongyan, W., & Fengkui, M. (2009). Synthesis and Evaluation of 

Chitosan-Vitamin C Complexes, Journal of Applied Polymer Science, 114, 2986–2991.

 

Xie, Y-L., Zhou, H-M., & Qian, H-F. (2006). Effect of addition of peach gum on physicochemical 

properties of gelatin-based microcapsule. Journal of Food Biochemistry, 30(3), 302-312.

 

Yanwong, S., & Threepopnatku, P. (2015). Effect of peppermint and citronella essential oils on 

properties of fish skin gelatin edible films. IOP Conference

Series: Materials Science and Engineering, 87.

 

Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essential

oils: The antioxidant and antimicrobial activity, and application in food systems.

Food Research International, 89, 117-128.

 

Zhong, Q-P., & Xia, W-S. (2008). Physicochemical properties of edible and preservative films from 

chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technology Biotechnology, 46, 

262-269.

 

Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu 

starch–chitosan composite films as a function of acid solvent

types. Carbohydrate Polymers, 84, 335–342.

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.