UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
This research investigated the potential of biopolymer-additive films for food
preservation. Three biopolymers, namely chitosan (CS), gelatin (GL) and methylcellulose (MC) were
used in this research. Ascorbic acid (AA), tannic acid (TA), banana leaf essential oil (BA), clove
essential oil (CL), turmeric extract (TU) and chamomile extract (CH) were used as natural additive.
This research is divided into five main studies, namely synthesis, characterisation, antimicrobial
activity, food preservation and biodegradation. The main scientific instruments used in this study
were Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM), universal
testing machine, water vapour permeability (WVP) analyser, oxygen permeability (OP) analyser,
ultraviolet-visible (UV-Vis) spectrophotometer and thermogravimetric analyser (TGA). The bacteria
used for antimicrobial activity were Staphylococcus aureus (Gram-positive) and Escherichia coli
(Gram-negative). The preservation of food samples was conducted for 7 and 14 days at two different
surrounding temperatures, namely 23-25˚C and 27-30 ˚C. Cherry tomatoes (Solanum lycopersicum var.
cerasiforme) and grapes (Vitis vinifera) were used as food samples in preservation studies.
Research findings found that several natural additives have
successfully decreased the WVP value of GL-TA (1.73-1.28 g m-1 day-1 atm-1), CS- TU (1.44 -1.20 g
m-1 day-1 atm-1) and MC-TA (1.27-1.18 g m-1 day-1 atm-1). With exception of incorporation of TA
with GL, the addition of natural additives reduced
the tensile strength (TS) of biopolymer films. Meanwhile, a contrast effect was obtained for
elongation at break (EAB). Based on antimicrobial activity studies, the inhibition zone for CS
against E. coli was increased from 10 to 25 mm following addition of TU, while the inhibition for
CS against S. aureus was increased from 15 to 20 mm with BA treatment. All biopolymer films
incorporated with natural additives were able to reduce the percentage of weight loss and browning
index of fruit samples. In conclusion, the addition of natural additives changed the
physicochemical characteristics of CS, GL, and MC films which favour to prolong the shelf-life of
foods. In implication, the application of biopolymer-natural additive films as alternatives to
petroleum-based films for food preservation could create a green and
sustainable environment.
|
References |
Abdulmumeen, H. a, Risikat, A. N., & Sururah, A. R. (2012). Food: Its preservatives, additives and applications. International Journal of Clinical and Biological Sciences, 1, 36–47.
Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico- mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189– 199.
Ahmed, S., & Ikram, S. (2015). Silver Nanoparticles: One Pot Green Synthesis Using Terminalia arjuna Extract for Biological Application. Journal of Nanomedicine & Nanotechnology, 6(4), 1-6.
Ahmed, S., & Ikram, S. (2016). Journal of Photochemistry & Photobiology , B : Biology Chitosan and gelatin based biodegradable packaging fi lms with UV- light protection. Journal of Photochemistry & Photobiology , B : Biology, 163, 115–124.
Adinew, B. (2013). GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia. International Journal of Herbal Medicine, 1(6), 22-31.
Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. (2010). Antioxidative activity and emulsifying properties of cuttlefish skin gelatin– tannic acid complex as influenced by types of interaction. Innovative Food Science and Emerging Technologies, 11, 712–720.
Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martinez-Bustos, F., González- Nuñez, R., & Grosso, C. R. F. (2012). Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journal of Food Engineering, 113, 33–40.
Anvari, M., & Chung, D. (2016). Dynamic rheological and structural characterization of fish gelatin-gum arabic coacervate gels cross-linked by tannic acid. Food Hydrocolloids, 60, 516-524.
Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. Food Science and Technology, 43(6), 837–842.
Alparslan, Y., Baygar, Tuba, Baygar, Taçnur, Hasanhocaoglu, H., & Metin, C. (2014). Effects of gelatin-based edible films enriched with laurel essential oil on the quality of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. Food Technology and Biotechnology, 52(3), 325-333.
Altiok, D., Altiok, E., & Tihminlioglu, F. (2010). Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. Journal of Materials Science: Materials in Medicine, 21, 2227–2236.
Aljawish, A., Muniglia, L., Klouj, A, Jasniewski, J., Scher, J., & Desobry, S. (2016). Characterization of films based on enzymatically modified chitosan derivatives with phenol compounds. Food Hydrocolloids, 60, 551-558.
Arancibia, M. Y., Alemán, A., Calvo, M. M., López-caballero, M. E., Montero, P., & Gómez-guillén, M. C. (2014). Food Hydrocolloids Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710–717.
Ariaii, P., Tavakolipour, H., Rezai, M., & Rad, A. H. E. (2014). Properties and antimicrobial activity of edible methylcellulose based film incorporated with Pimpinella affinis oil. European Journal of Experimental Biology, 4(1), 670- 676.
Ashwin Kumar, A., Karthick. K, & Arumugam, K. P. (2011). Properties of biodegradable polymers and degradation for sustainable development. International Journal of Chemical Engineering and Applications, 2(3), 164- 167.
ASTM. (1995), Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor, American Society for Testing and Materials, Philadelphia, Pa.
ASTM. (1980). Standard test method for water vapor transmission of materials. ASTM Book of Standards, E96-80. American Society for Testing and Materials, Philadelphia, PA.
Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62.
Avila-sosa, R., Palou, E., & López-malo, A. (2016). Chapter 15- Essential Oils Added to Edible Films. In Essential Oils in Food Preservation, Flavor and Safety, Academic Press, 149–154.
Badii, F., & Howell, N. K. (2006). Fish gelatin: Structure, gelling properties and interaction with egg albumen proteins. Food Hydrocolloids, 20, 630–640.
Bahram, S., Rezaei, M., Soltani, M., Kamali, A., Ojagh, S. M., & Abdollahi, M. (2013). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation, 38(3), 1251–1258.
Barbin, D. F., Valous, N., A., Dias, A. P., Camisa, J., Hirooka, E. Y., & Yamashita, F. (2015). VIS–NIR spectroscopy as a process analytical technology for compositional characterization of film biopolymers and correlation with their mechanical properties. Materials Science and Engineering: C, 56, 274–279.
Barone, J. R., Schmidt, W. F. (2006). Nonfood application of proteinaceous renewable materials. Journal of Chemical Education, 83, 1003-1009.
Bastos, D. da S., Araújo, K. G. de L., & Leão, M. H. M. da R. (2009). Ascorbic acid retaining using a new calcium alginate-Capsul based edible film. Journal of Microencapsulation, 26(2), 97–103.
Ben-Jonathan, N., Hugo, E. R., & Brandebourg, T. D. (2009). Molecular and Cellular Endocrinology Effects of bisphenol A on adipokine release from human adipose tissue : Implications for the metabolic syndrome. Molecular and Cellular Endocrinology. 304, 49–54.
Benbettaïeb, N., Karbowiak, T., Brachais, C., & Debeaufort, F. (2015). Coupling tyrosol , quercetin or ferulic acid and electron beam irradiation to cross-link chitosan – gelatin films : A structure – function approach, European Polymer Journal, 67, 113–127.
Bilbao-sainz, C., Bras, J., Williams, T., Sénechal, T., & Orts, W. (2011). HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 86(4), 1549–1557.
Blanco-Fernandez, B., Rial-Hermida, M. I., Alvarez-Lorenzo, C., & Concheiro, A. (2013). Edible chitosan/acetylated monoglyceride films for prolonged release of vitamin e and antioxidant activity. Journal of Applied Polymer Science, 129(2), 626-635.
Bott, J., Stӧrmer, A., Franz, R. (2014). A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact. Food Packaging and Shelf Life, 2, 73–80. Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & McHugh, T. H. (2008). Innovative Food Packaging Solutions. Journal of Food Science, 73, 107–116.
Broek, L. A. M. Van Den, Knoop, R. J. I., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237–242.
Cao, N., Yang, X., & Fu, Y. (2009). Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids, 23(3), 729– 735.
Castro-Mayorga, J. L., Martínez-Abad, A., Fabra, M. F., Lagarón, J. M., Ocio, M. J., & Sánchez, G. (2016). Chapter 32- Silver-Based Antibacterial and Virucide Biopolymers: Usage and Potential in Antimicrobial Packaging. In J. Barros- Velázquez (Ed.), Antimicrobial Food Packaging. Academic Press, 407-416.
Castilho, L.R., Mitchell, D.A., Freire, D.M.G., 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology, 100, 5996– 6009.
Chen, G., Zhang, B., Zhao, J., & Chen, H. (2014). Food Hydrocolloids Development and characterization of food packaging fi lm from cellulose sulfate. Food Hydrocolloids, 35, 476–483.
Chen, H., Hu, X., Chen, E., Wu, S., McClements, D. J., Liu, S., Li, B., & Li, Y. (2016). Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids, 61, 662-671
Cian, R. E., Salgado, P. R., Drago, S. R., González, R. J., & Mauri, A. N. (2014). Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chemistry, 146, 6–14.
Cha, D. S., & Chinnan, M. S., (2004). Biopolymer-based antimicrobial packaging: a review. Critical Reviews in Food Science and Nutrition, 44, 223–237.
Chinnam, P. R., Mantravadia, R., Jimeneza, J. C., Dikin, D. A., Wunder, S. L. (2015). Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. Carbohydrate Polymers, 136, 19–29.
Clarke, D., Molinaro, S., Tyuftin, A., Bolton, D., Fanning, S., Kerry, J. P. (2016). Incorporation of commercially-derived antimicrobials into gelatin-based films and assessment of their antimicrobial activity and impact on physical film properties. Food Control, 64, 202-211.
Corcoran, P. L., Norris, T., Ceccanese, T., Walzak, M. J., Helm, P. A., & Marvin, C. H. (2015). Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record. Environmental Pollution, 204, 17–25.
Debeaufort., F., & Voilley, A. (2009). Lipid-based edible films and coatings. Embuscado ME Huber KC eds. Edible Films and Coatings for Food. Springer Science Business Media, LLC, New York, NY.
De’Nobili, M. D., Soria, M., Martinefski, M. R., Tripodi, V. P., Fissore, E. N., & Rojas, A. M. (2016). Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. Journal of Food Engineering, 175, 1–7.
Desobry, S., & Arab-Tehrany, E. (2014). Diffusion Barrier Layers for Edible Food Packaging. Comprehensive Materials Processing, 4, 499-518.
Dicastillo, C. L. De, Rodríguez, F., Guarda, A., & Galotto, M. J. (2016). Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers, 136, 1052–1060.
Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182.
Elsabee, M. Z. & Abdou, E. S. (2013). Chitosan based edible films and coatings: A review. Materials Science and Engineering: C, 33, 1819–1841.
El-Hefian, E. A., Elagannoudi, E. S., Mainal, A., & Yahaya, A. H. (2010). Characterization of chitosan in acetic acid: Rheological and thermal studies. Turkish Journal of Chemistry, 34,47-56.
El-Sayed, S., Mahmoud, K. H., Fatah, A. A., & Hassen, A. (2011). DSC, TGA and dielectric properties of carboxymethyl cellulose/polyvinyl alcohol blends. Physica B, 406, 4068–4076.
Espitia, P. J. P., Avena-Bustillos, R. J, Du, W-X., Teofilo, R. F., Soares, N. F. F., McHugh, T. H. (2014). Optimal antimicrobial formulation and physical– mechanical properties of edible films based on acaı´ and pectin for food preservation. Food packaging and shelf life, 2, 38–49.
European Commission, DG Environment (2011). Plastic waste in the environment – Final Report.
FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World Health Organisation.
Fabra, M. J., Hambleton, A., Talens, P., Debeaufort, F., & Chiralt, A. (2011). Effect of ferulic acid and α-tocopherol antioxidants on properties of sodium caseinate edible films. Food Hydrocolloids, 25(6), 1441–1447.
Fabra, M. F., Lagarón, J. M., Ocio, M. J., & Sánchez, G. (2016). Silver-Based Antibacterial and Virucide Biopolymers : Usage and Potential in Antimicrobial Packaging, 407–416.
Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packaging applications. Smart Polymers and their Applications, 476-509.
FAO & WHO. (2002). Global forum of food safety regulators. Marrakech, Morocco: World Health Organisation.
Franeker, J. A. V., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., Hansen, P-L., Heubeck, M., Jensen, J-K., Guillou, G. L., Olsen, B., Olsen K-O., Pedersen, J., Stienen, E. W. M., Turner, D. M. (2011). Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environmental Pollution. 159, 2609-2615.
Eça, K. L., Sartori, T., & Menegalli, F. C. (2014). Films and edible coatings containing antioxidants – a review. Brazilian Journal Food Technology, 17, 98- 112.
Galloway, T., Cipelli, R., Guralnik, J., Ferrucci, L., Bandinelli, S., & Corsi, A. M. (2010). Results from the InCHIANTI Adult Population Study. Environmental Health Perspectives. 118(11), 1603–1609.
Garrigos, M.C., Marin, M.L, Canto, A. & Sanchez, A. (2004) Determination of residual styrene monomer in polystyrene granules by gas chromatography-mass spectrometry. Journal of Chromatography A 1061:211-216.
Genskowsky, E., Puentea, L. A., Perez-Alvarez, J.A., Fernandez-Lopez, J., Mun oz, L. A., & Viuda-Martos, M. (2015). Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT- Food Science and Technology, 64, 1057-1062.
Gómez-Estaca, J., Gimenez, B., Montero, P., & Gomez-Guillen, M. C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering, 92(1), 78-85.
Gómez-Guillén, M. C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: A renewable material for developing active biodegradable films. Trends in Food Science and Technology, 20, 3–16.
González-Rivera, J., Duce, C., Falconier, D., Ferrari, C., Ghezzi, L., Piras, A., & Tine, M. R. (2015). Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innovative Food Science and Emerging Technologies, 33, 308-318.
Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Brazilian Journal of Pharmacognosy, 26(1), 122–127.
Grasel, F. S., Ferrão, M. F., & Wolf, C. R. (2016). Development of methodology for identification the nature of the polyphenolic extracts by FTIR associated with multivariate analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 94–101.
Günlü, A., & Koyun, E. (2013). Effects of Vacuum Packaging and Wrapping with Chitosan Based Edible Film on the Extension of the Shelf Life of Sea Bass (Dicentrarchus labrax) Fillets in Cold Storage (4°C). Food Bioprocess Technology, 6, 1713–1719.
Ha, T. T., Padua, G. W. (2001). Effect of extrusion processing on properties of zein- fatty acids sheets. American Society of Agricultural Engineers, 44(5), 1223– 1228.
Han, J. H., & Floros, J. D. (1997). Casting Antimicrobial Packaging Films and Measuring Their Physical Properties and Antimicrobial Activity. Journal of Plastic Film and Sheeting, 13, 287-298.
Harris, D., & Taylor, N. (2004). The Beginner’s Guide to Preserving. Bellingham: Homestead Harvest.
Hauck, B. W., & Huber, G. R. (1989). Single screw versus twin screw extrusion. Cereal Food World, 24, 930-939.
Hernandez-Izquierdo, V.M, Krochta, J.M. (2008). Thermoplastic processing of proteins for film formation-A review. Journal of Food Science, 73, 30-39.
Higueras, L., López-Carballo, G, Cerisuelo, J. P., Gavara, R., Hernández-Munoz, P. (2013). Preparation and characterization of chitosan/HP-β-cyclodextrins composites with high sorption capacity for carvacrol. Carbohydrate Polymers, 97, 262– 268.
Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids, 25(5), 1085–1097.
Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467-475.
Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Bio-based composite edible films containing Origanum vulgare L. essential oil. Industrial Crops and Products, 67, 403-413.
Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2015). Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocolloids, 44, 172-182.
Hosseini, S., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chemistry, 136(3– 4), 1490–1495.
Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194, 1266–1274.
Hu, B. (2014). Chapter 13- Biopolymer-based lightweight materials for packaging applications. In Yang et al., Lightweight materials from biopolymers and biofibers. ACS Symposium Series. 239-255
Iturriaga, L., Olabarrieta, I., & Marañón, I. M. De. (2012). International Journal of Food Microbiology Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fi sh spoilage bacteria , after incorporation into biopolymer edible fi lms. International Journal of Food Microbiology, 158(1), 58–64.
Janjarasskul, T., & Krochta, J-M. (2010). Edible Packaging Materials. Annual Review of Food Science and Technology, 1, 415-448.
Jeya Shakila, R., Jeevithan, E., Varatharajakumar, A., Jeyasekaran, G., & Sukumar, D. (2012). Comparison of the properties of multi-composite fish gelatin films with that of mammalian gelatin films. Food Chemistry, 135(4), 2260–2267.
Kadam, S. U., Pankaj, S. K., Tiwari, B. K., Cullen, P. J., & Donnell, C. P. O. (2015). Development of biopolymer-based gelatin and casein films incorporating brown seaweed Ascophyllum nodosum extract. Food Packaging and Shelf Life, 6, 68– 74.
Khalifa, I., Barakat, H., El-Mansy, H. A., & Soliman, S. A. (2017). Preserving Apple (Malus domestica var. Anna) Fruit Bioactive Substances Using Olive Wastes Extract-Chitosan Film Coating. Information Processing in Agriculture, 4, 90- 99.
Kim, K. W., Min, B. J., Kim, Y. T., Kimmel, R. M., Cooksey, K., & Park, S. I. (2011). Antimicrobial activity against foodborne pathogens of chitosan biopolymer films of different molecular weights. LWT-Food Science and Technology, 44, 565–569.
Kim, Y. J. I. N., Lee, H. M. O. K., & Park, O. K. (1995). Processabilities and Mechanical Properties of Surlyn-Treated Starch / LDPE Blends, Polymer Engineering and Science, 35(20), 1652-1657.
Kowalczyk, D. (2016). Biopolymer/candelilla wax emulsion films as carriers of ascorbic acid─ A comparative study. Food Hydrocolloids, 52, 543–553.
Kowalczyk, D., & Baraniak, B. (2014). Effect of candelilla wax on functional properties of biopolymer emulsion films e a comparative study. Food Hydrocolloids, 41, 195–209.
Kowalczyk, D., & Biendl, M. (2016). Physicochemical and antioxidant properties of biopolymer / candelilla wax emulsion films containing hop extract − A comparative study. Food Hydrocolloids, 60, 384–392.
Krishna, M., Nindo, C. I., & Min, S. C. (2012). Development of fish gelatin edible films using extrusion and compression molding. Journal of Food Engineering, 108(2), 337–344.
Kwon, S-J, Chang, Y., & Han, J. (2017). Oregano essential oil-based natural antimicrobial packaging film to inactivate Salmonella enterica and yeasts/molds in the atmosphere surrounding cherry tomatoes. Food Microbiology, 65,114- 121.
Lacroix, M., 2009. Mechanical and permeability properties of edible films andcoatings for food and pharmaceutical applications. In: Milda, E.E., Kerry, C.H.(Eds.), Edible Films and Coatings for Food Applications. Springer Science + Business Media, New York, pp. 347–366.
Lagos, M. J. B. (2013). Development of bioactive edible films and coatings with antioxidant and antimicrobial properties for food use (doctoral dissertation). Universitat Politècnica De València, Valencia, Spain.
Lang, I. A., Galloway, T. S., Scarlett, A., Henley, W. E., Depledge, M., & Wallace, R. B. (2008). Association of Urinary Bisphenol A Concentration With Medical Disorders and Laboratory Abnormalities in Adults. Journal of the American Medical Association. 300(11), 1303–1310.
Lim, T. P., Chye, F. Y., Sulaiman, M. R., Suki, N. M., & Lee, J. S. (2016). A structural modeling on food safety knowledge, attitude, and behaviour among Bum Bum Island community of Semporna, Sabah. Food Control, 60, 241–246.
Lin, S. (2012). Development of Edible Packaging for Selected Food Processing Applications. The Ohio State University.
Liu, F., Antoniou, J., Li, Y., Ma, J., & Zhong, F. (2015). Effect of sodium acetate and drying temperature on physicochemical and thermomechanical properties of gelatin films. Food Hydrocolloids, 45, 140–149.
Liu, K., Yuan, C., Chen, Y., Li, H., & Liu, J. (2014). Scientia Horticulturae Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53.
Liu, L. (2006). Bioplastics in food packaging: innovative technologies for biodegradable packaging. San Jose State University.
Liu, W., Misra, M., Askeland, P., Drzal, L.T., Mohanty, A.K. (2005). ‘Green’ Composites from Soy Based Plastic and Pineapple Leaf Fiber: Fabrication and Properties Evaluation. Polymer, 46, 2710–2721.
López-de-Dicastillo, C., Gómez-Estaca, J., Catalá, R., Gavara, R., & Hernández- Munóz, P. (2012). Active antioxidant packaging films: development and effect on lipid stability of brined sardines. Food Chemistry, 131(4), 1376–1384.
López-mata, M. A., Ruiz-cruz, S., Silva-beltrán, N. P., Ornelas-paz, J. D. J., Zamudio- flores, P. B., & Burruel-ibarra, S. E. (2013). Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules, 18(11), 13735–13753.
Luo, Y., Pan, X., Ling, Y., Wang, X., & Sun, R. (2014). Facile fabrication of chitosan active film with xylan via direct immersion. Cellulose, 21(3), 1873-1883.
Maobe, M. A.G., & Nyarango, Robert M. (2013). Fourier Transformer Infra-Red Spectrophotometer Analysis of Warburgia ugandensis Medicinal Herb Used for the Treatment of Diabetes, Malaria and Pneumonia in Kisii Region, Southwest Kenya. Global Journal of Pharmacology, 7, 61-68.
Makarios-Laham, I., & Lee, T-C. (1995). Biodegradability of chitin- and chitosan- containing films in soil environment. Journal of Enviromnental Polymer Degradation, 3(1), 31-36.
Makwana, S., Choudhary, R., Haddock, J., & Kohli, P. (2015). In-vitro antibacterial activity of plant based phenolic compounds for food safety and preservation. LWT - Food Science and Technology, 62, 935-939.
Marcilla, A., Garia, S., Garcia-Queseda, J.C. (2004) Study of the migration of PVC plasticizers. Journal of Analytical and Applied Pyrolysis. 71, 457-463.
Martins, J. T., Cerqueira, M. A., & Vicente, A. A. (2012). Influence of a-tocopherol on physicochemical properties of chitosan-based films, Food Hydrocolloids, 27, 220–227.
McHugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903.
Meeker, J. D., Sathyanarayana, S., & Swan, S. H. (2009). Phthalates and other additives in plastics : human exposure and associated health outcomes, 2097– 2113.
Miller, K. S., & Krochta, J. M. (1997). Oxygen and aroma barrier properties of edible films: a review. Trends in Food Science and Technology, 81, 228-237.
Moura, M. R. D., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. C. (2008). Properties of novel hydroxypropyl methylcellulose films containing chitosan nanoparticles. Journal of Food Science, 73(7). 31-37.
Moradi, M., Tajik, H., Razavi Rohani, S.M., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477–484.
Muratore, G. Del Nobile M A. Buanocore, G.G., Lanza, C.M., Asmundo, C.N. (2005). The Influence of Using Biodegradable Packaging films on The Quality Decay Kinetic of Plum Tomato. Journal of Food Engineering, 67, 393–399.
Noronha, C. M., De Carvalho, S. M., Lino, R. C., & Barreto, P. L. M. (2014). Characterization of antioxidant methylcellulose film incorporated with α- tocopherol nanocapsules. Food Chemistry, 159, 529–535.
Noshirvani, N., Ghanbarzadeh, B., Gardrat, Rezaei, M. R., Hashemi, M., Coz, C. L., & Coma, V. (2017). Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids, 70. 36-45.
Nur Hazirah, M.A.S.P., Isa, M.I.N., & Sarbon, N.M. (2016). Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends. Food Packaging and Shelf Life, 9, 55–63.
Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
Oehlmann, J., Schulte-oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kresten, O. K., Wollenberger, L., Santos, E. M., Paull, G. C., Look, K. J. W. V., Tyler, C. R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions The Royal Society, 364, 2047–2062.
Pantoja-Castroa, M. A., & González-Rodrígueza, H. (2011). Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid. Revista Latinoamericana de Química, 39(3), 107-112.
Pastor, C., Sánchez-gonzález, L., Chiralt, A., Cháfer, M., & González-martínez, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30, 272–280.
Peng, Y., & Li, Y. (2014). Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids, 36, 287-293.
Pereda, M., Ponce, A. G., Marcovich, N. E., Ruseckaite, R. A., & Martucci, J. F. (2011). Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocolloids, 25, 1372–1381.
Pérez, C. D., DeʼNobili, M. D., Rizzo, S. A., Gerschenson, L. N., Descalzo, A. M., & Rojas, A. M. (2013). High methoxyl pectin-methyl cellulose films with antioxidant activity at a functional food interface. Journal of Food Engineering, 116(1), 162-169.
Priya, S., D., Suriyaprabha, R., Yuvakkumar, R., & Rajendran, V. (2014). Chitosan- incorporated different nanocomposite HPMC films for food preservation. Journal of Nanoparticle Research, 16(2248), 1-16.
Pushpadass, H. A., Marx, D. B, Wehling, R. L., & Hanna, M. A. (2009). Cereal Chemistry, 86, 44–51.
Rahman S. M. (2007). Handbook of food preservation, 2nd edn. CRC Press: New York.
Raj, B., Matche, R. S., & Jagadish, R. S. (2011). “Incorporation of Chemical Antimicrobial Agents into Polymeric Films for Food Packaging,” in Multifunctional and Nanoreinforced Polymers for Food Packaging, edited by J- M. Lagarón, Woodhead Publishing, Cambridge, 368–420.
Ramírez, C., Gallegos, I, Ihl, M., & Bifani, V. (2012). Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. Journal of Food Engineering, 109, 424–429.
Redl, A.,Morel, M. H., Bonicel, J., Vergnes, B., & Guilbert, S. (1999). Extrusion of wheat gluten plasticized with glycerol: influence of process conditions on flow behavior, rheological properties, and molecular size distribution. Cereal Chemistry, 76(3), 361–370.
Rhim, J. W., & Kim, Y. T. (2014). Biopolymer-Based Composite Packaging Materials with Nanoparticles. Elsevier, 17, 413-442.
Rhim, J.-W., Park, H.-M., Ha, C.-S., 2013. Bio-Nanocomposites for Food Packaging Applications. Progress in Polymer Science, 38, 1629–1652.
Riaz, M. N. (2002). Extruder in Food Applications. CRC Press, Boca Raton, USA.
Riyajan, S., Intharit, I., & Tangboriboonrat, P. (2013). Physical properties of themaleated sulphur prevulcanized natural rubber latex-g-cellulose fiber, Journal of Polymer Materials, 30, 159–174.
Rossman, J. M. 2009. Edible films and coatings for food applications. In: Embuscado ME, Huber KC. Edible films and coatings for food applications. Springer Science Business Media, New York, 367-390.
Ruiz-Navajas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J.A., & Fernández- López, J. (2013). In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymusmoroderi or Thymus piperella essential oils. Food Control, 30, 386-392.
Saiful, Saleha S., & Salman, (2013). Preparation and characterization edible film packaging from carrageenan. Proceedings of The 3rd Annual International Conference Syiah Kuala University (AIC Unsyiah) 2013 In conjunction with The 2nd International Conference on Multidisciplinary Research (ICMR) 2013, 3(3), 44-50.
Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N., & Montero, M. P. (2013). Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocolloids, 33(1), 74-84.
Saggiorato, A.G., Gaio, I., Treichel, H., De Oliveira, D., Cichoski, A.J., & Cansian, R.L. (2012). Antifungal activity of basil essential oil (Ocimum basilicum L.): evaluation in vitro and on an Italian-type sausage surface. Food and Bioprocess Technology, 5, 378–384.
Science for Environment Policy. (2011). Plastic waste: ecological and human health impacts.
Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in Food Science & Technology, 10 (2), 37–51.
Shariatinia, Z., & Fazli, M. (2015). Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocolloids, 46, 112–124.
Shankar, S., & Rhim, J.-W. (2015). Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydrate Polymers, 130, 353–363.
Singh, R. K., & Khatri, O. P. (2012). A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. Journal of Microscopy, 246(1), 43–52.
Shekarabi, A. S., Oromiehie, A. R., Vaziri, A., Ardjmand, M., & Safekordi, A. A. (2014). Investigation of the effect of nanoclay on the properties of quince seed mucilage edible films, Food Science & Nutrition, 821–827.
Siracusa, V. (2016). Packaging Material in the Food Industry, 95–106.
Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillēn, M. C., & Bifani, V. (2013). Natural Additives in Bioactive Edible Films and Coatings: Functionality and Applications in Foods. Food Eng Rev, 5, 200–216.
Siti Hajar, O. (2014). Bio-nanocomposite Materials for Food Packaging Applications: Types of Biopolymer and Nano-sized Filler. Agriculture and Agricultural Science Procedia, 2, 296–303.
Skotti, E., Kountouri, S., Bouchagier, P., Tsitsigiannis, D. I., Polissiou, M., & Tarantilis, P. A. (2014). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy FTIR spectroscopic evaluation of changes in the cellular biochemical composition of the phytopathogenic fungus Alternaria alternata induced by extracts of some Greek medicinal and aromatic plants. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 463-472.
Sobral, P. J. A., Menegalli, F. C., Hubinger, M. D., & Roques, M. A. (2001). Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 15, 423-32.
Socrates, G. (2001) Infrared and Raman Characteristics Group Frequencies, Tables and Chart. 3a. ed., John Wiley & Sons, Inc., USA pp: 125-142.
Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Postharvest Biology and Technology Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35.
Song, X., & Cheng, L. (2014). Chitosan/kudzu starch/ascorbic acid films: Rheological, wetting, release, and antibacterial properties. African Journal of Agricultural Research, 9(52), 3816-3824.
Suppakul, P., Boonlert, R., Buaphet, W., Sonkaew, P., & Luckanatinvong, V. (2016). Efficacy of superior antioxidant Indian gooseberry extract-incorporated edible Indian gooseberry puree/methylcellulose composite films on enhancing the shelf life of roasted cashew nut. Food Control, 69, 51-60.
Tajkarimi, M. M., Ibrahima, S. A., & Cliver, D. O. (2010). Review: antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218.
Tajkarimi, M., & Ibrahim, S. A. (2011). Antimicrobial activity of ascorbic acid alone or in combination with lactic acid on Escherichia coli O157 : H7 in laboratory medium and carrot juice. Food Control, 22(6), 801–804.
Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., Saal, F. S. (2009). Components of plastic: experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society B, 364, 2079-2096.
Tӑnase, E. E., Popa, V. I., Popa, M. E., Rӑpӑ, M., & Popa, O. (2016). Biodegradation study of some food packaging biopolymers based on PVA. Bulletin UASVM Animal Science and Biotechnologies, 73(1), 1-5.
Tian, S-P., Li, B-Q & Xu, Y. (2005). Effects of O2 and CO2 concentrations on physiology and quality of litchi fruit in storage. Food Chemistry, 91, 659-663.
Tharanathan, R.N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14, 71–78.
Tulamandi, S., Rangarajan, V., Rizvi, S. S. H., Singhal, R. S., Chattopadhyay, S. K., & Saha, N. C. (2016). A biodegradable and edible packaging film based on papaya puree, gelatin, and defatted soy protein. Food Packaging and Shelf Life, 10, 60–71.
Tunç¸ S., Duman, O., Polat, T. G. (2016). Effects of montmorillonite on properties of methylcellulose/carvacrol based active antimicrobial nanocomposites. Carbohydrate Polymers, 150, 259-268.
Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134, 1571–1579.
Tongnuanchan, P., Benjakul, S., Prodpran, T., Pisuchpen, S., & Osako, K. (2016). Mechanical, thermal and heat sealing properties of fish skin gelatin film containing palm oil and basil essential oil with different surfactants. Food Hydrocolloids, 56, 93-107.
United Nations, Department of Economic and Social Affairs, Population Division (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.
Uranga, J., Leceta, I., Etxabide, A., Guerrero, P., & De La Caba, K. (2016). Cross- linking of fish gelatins to develop sustainable films with enhanced properties. European Polymer Journal, 78, 82–90.
Viuda-Martos, M., Mohamady, M.A., Fernández-López, J., Abd ElRazik, K.A., Omer, E.A., Pérez-Álvarez, J.A. et al. (2011). In vitro antioxidant and antibacterial activities of essential oils obtained from Egyptian aromatic plants. Food Control, 22, 1715–1722.
Wallace, M. (2005). Getting Started in Food Preservation Leader’s Guide. Washington, DC: Washington State University Extension.
Wang, H., Hu, D., Ma, Q., & Wang, L. (2016). Physical and antioxidant properties of fl exible soy protein isolate fi lms by incorporating chestnut ( Castanea mollissima ) bur extracts. LWT - Food Science and Technology, 71, 33-39.
Wang, S., Marcone, M. F., Barbut, S., & Lim, L. (2012). Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Research International, 49(1), 80–91.
Wu, Y., Luo, X., Li, W., Song, R., Li, J., Li, Y., … Liu, S. (2016). Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chemistry, 197, 250–256.
Xiaolin, T., Dafeng, T., Zhongyan, W., & Fengkui, M. (2009). Synthesis and Evaluation of Chitosan-Vitamin C Complexes, Journal of Applied Polymer Science, 114, 2986–2991.
Xie, Y-L., Zhou, H-M., & Qian, H-F. (2006). Effect of addition of peach gum on physicochemical properties of gelatin-based microcapsule. Journal of Food Biochemistry, 30(3), 302-312.
Yanwong, S., & Threepopnatku, P. (2015). Effect of peppermint and citronella essential oils on properties of fish skin gelatin edible films. IOP Conference Series: Materials Science and Engineering, 87.
Yuan, G., Chen, X., & Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International, 89, 117-128.
Zhong, Q-P., & Xia, W-S. (2008). Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technology Biotechnology, 46, 262-269.
Zhong, Y., Song, X., & Li, Y. (2011). Antimicrobial, physical and mechanical properties of kudzu starch–chitosan composite films as a function of acid solvent types. Carbohydrate Polymers, 84, 335–342.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |