UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :RC Internal medicine
Main Author :Mohammed Hamada Jasim
Title :Exploring the impacts of listening to binaural beats music on non-medical depression disorders by using EEG signals
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2019
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
Lately, the research on human emotion has attracted the interest of several disciplines, including computer science, cognitive science, and psychology. As such, the aim of study was to examine the effects of binaural beats music on depression disorders. This study was conducted based on an experimental design in which electroencephalography (EEG) was utilized to capture brain signals. The EEGlab toolbox of Matlab was used to extract the relevant features of the brain signals. For feature filtering, brain signals were filtered by using ‘Butterworth 5th order’. EEG signals were then converted from the time to the frequency domain by utilizing Fast Fourier Transform (FFT). A sample of 90 depressive participants was exposed to binaural beats music. One-way ANOVA was used to compare the differences in the effects based on three different time intervals, which were labelled as before listening, during listening, and after listening phases. Descriptive and statistical analysis were utilized to analyse the effects of binaural beat music on the subjects’ depression level and to examine whether there were significant differences among the intervals. The findings showed that 63.2% of the subjects exhibited positive responses based on either an increasing relaxation level or a decreasing depression level or both, with the remaining subjects exhibiting negative responses. In addition, the most conductive electrodes were found to be the “F3, F7” electrodes, which effectively captured alpha and beta bands from the frontal lobe area of the brain. Furthermore, the one-way ANOVA results indicated that there were no significant differences in the effects among the intervals [F (2, 87) =1, 86, p = 0.161]. Overall, this study highlights the benefits of the use of binaural beats music in the level of depression and to improve the relaxation state of those suffering from depression disorders. For future research, examining the effects of binaural beat music on other aspects of human emotions is recommended.

References

Adamos,   D.   A.,   Dimitriadis,   S.   I.,   &   Laskaris,   N.   A.   (2016).   Towards   the   

bio-

personalization of music recommendation systems: A single-sensor EEG biomarker of    subjective    

music    preference.    Information    Sciences,    343–344,    94–108. 

https://doi.org/10.1016/j.ins.2016.01.005

 

Akdemir Akar, S., Kara, S., Agambayev, S., & Bilgi??, V. (2015). Nonlinear analysis of EEGs of 

patients with major depression during different emotional states. Computers in                 

Biology                 and                 Medicine,                 67,                 49–60. 

https://doi.org/10.1016/j.compbiomed.2015.09.019

 

Al-Galal, S. A. Y., Alshaikhli, I. F. T., Rahman, A. W. B. A., & Dzulkifli, M. A. (2016). EEG-based 

Emotion Recognition while Listening to Quran Recitation Compared with Relaxing Music Using 

Valence-Arousal Model. Proceedings - 2015 4th International Conference on Advanced Computer Science 

Applications and Technologies, ACSAT 2015, 245–250. https://doi.org/10.1109/ACSAT.2015.10

 

Bajaj, V., & Pachori, R. B. (2014). Human Emotion Classification from EEG Signals Using 

Multiwavelet  Transform.  2014  International  Conference  on  Medical  Biometrics, (Md), 125–130. 

https://doi.org/10.1109/ICMB.2014.29

 

Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., … Ghose, P. 

(2016). Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals. Physica A: 

Statistical Mechanics and Its Applications, 444, 110–120. 

https://doi.org/10.1016/j.physa.2015.10.030

 

Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: 

Emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60(1), 

34–43. https://doi.org/10.1016/j.ijpsycho.2005.04.007

 

Bhardwaj, A., Gupta, A., Jain, P., Rani, A., & Yadav, J. (2015). Classification of human emotions 

from EEG signals using SVM and LDA Classifiers. 2015 2nd International Conference   on   Signal   

Processing   and   Integrated   Networks   (SPIN),   180–185. 

https://doi.org/10.1109/SPIN.2015.7095376

 

Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysis 

in response  to audio music using brain signals.  Computers in Human Behavior, 65, 267–275. 

https://doi.org/10.1016/j.chb.2016.08.029

 

Chanel,  G.,  Kierkels,  J.  J.  M.,  Soleymani,  M.,  &  Pun,  T.  (2009).  Short-term  emotion 

assessment in a recall paradigm. International Journal of Human Computer Studies, 67(8), 607–627. 

https://doi.org/10.1016/j.ijhcs.2009.03.005

 

Chang,  Y.-H.,  Lee,  Y.-Y.,  Liang,  K.-C.,  Chen,  I.-P.,  Tsai,  C.-G.,  &  Hsieh,  S.  (2015).

Experiencing    affective    music    in    eyes-closed    and    eyes-open    states:    an

electroencephalography  study.  Frontiers  in  Psychology,  6(August),  1160–1168.

https://doi.org/10.3389/fpsyg.2015.01160

 

Chavan, D. R., Kumbhar, M. S., & Chavan, R. R. (2016). The human stress recognition of brain, using 

music therapy. 2016 International Conference on Computation of Power, Energy,     Information      

and     Communication,     ICCPEIC     2016,     200–203. 

https://doi.org/10.1109/ICCPEIC.2016.7557197

 

Chen, L. L., Wang, B., & Zoul, J. Z. (n.d.). Effect Evaluation of Relaxation Training Based on 

Nonlinear Parameters of, 2–5.

 

Daimi, S. N., & Saha, G. (2014). Classification of emotions induced by music videos and correlation 

with participants’ rating. Expert Systems with Applications, 41(13), 6057– 6065. 

https://doi.org/10.1016/j.eswa.2014.03.050

 

Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., … Nasuto, S. J. (2014). Neural  

correlates  of  emotional  responses  to  music:  An  EEG  study.  Neuroscience Letters, 573, 

52–57. https://doi.org/10.1016/j.neulet.2014.05.003

 

Daly, I., Malik, A., Weaver, J., Hwang, F., Nasuto, S. J., Williams, D., … Miranda, E. (2015).  

Identifying  music-induced  emotions  from  EEG  for  use  in  brain-computer music  interfacing.  

2015  International  Conference  on  Affective  Computing  and Intelligent             Interaction, 

            ACII             2015,             22,             923–929. 

https://doi.org/10.1109/ACII.2015.7344685

 

Daly,  I., Williams, D., Hallowell, J., Hwang, F., Kirke, A., Malik, A., … Nasuto, S. J. (2015). 

Music-induced emotions can be predicted from a combination of brain activity and        acoustic    

    features.        Brain        and        Cognition,        101,        1–11. 

https://doi.org/10.1016/j.bandc.2015.08.003

 

Daly, I., Williams, D., Kirke, A., Weaver, J., Malik, A., Hwang, F., … Nasuto, S. J. (2016). 

Affective brain–computer music interfacing. Journal of Neural Engineering, 13(4), 46022. 

https://doi.org/10.1088/1741-2560/13/4/046022

 

Erkkilä, J., Gold, C., Fachner, J., Ala-Ruona, E., Punkanen, M., & Vanhala, M. (2008). The effect 

of improvisational music therapy on the treatment of depression: protocol for a randomised 

controlled trial. BMC Psychiatry, 8(1), 50. https://doi.org/10.1186/1471- 244X-8-50

 

Farzaneh,  P.,  Afsaneh,  M.,  Reza,  R.,  &  Masood,  N.  (2010).  Source  localization  of  the 

effects of  Persian  classical music forms on the  brain waves by QEEG.  Procedia - Social          

   and             Behavioral             Sciences,             5(2),             770–773. 

https://doi.org/10.1016/j.sbspro.2010.07.182

 

Fikejz,  F.   (2011).   Influence  of  Music  on  Human  Electroenc   ephalogram.   Applied 

Electronics, 1–4.

 

Fikejz,    F.    (2012).    Influence    of    Compressed    Music    Bit    Rate    on    Human 

oencephalogram, 1–4.

 

Flores-Gutiérrez, E. O., Díaz, J. L., Barrios, F. A., Favila-Humara, R., Guevara, M. Á., del

Río-Portilla, Y., & Corsi-Cabrera, M. (2007). Metabolic and electric brain patterns during   

pleasant   and   unpleasant   emotions   induced   by   music   masterpieces. International         

 Journal          of          Psychophysiology,          65(1),          69–84. 

https://doi.org/10.1016/j.ijpsycho.2007.03.004

 

Gawali, B. W., Rao, S., Abhang, P., Rokade, P., & Mehrotra, S. C. (2012). Classification of    Eeg  

  Signals    for    Different    Emotional.    Communication    and    Computing (ARTCom2012),    

Fourth    International    Conference    on    Advances    in    Recent Technologies in, 177–181. 

https://doi.org/10.1049/cp.2012.2521

 

Gupta,  R.,  ur  Rehman  Laghari,  K.,  &  Falk,  T.  H.  (2016).  Relevance  vector  classifier 

decision  fusion  and  EEG  graph-theoretic  features  for  automatic  affective  state 

characterization.                    Neurocomputing,                    174,                    

875–884. https://doi.org/10.1016/j.neucom.2015.09.085

 

Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2012). Toward an EEG-based recognition of  music  

liking  using  time-frequency  analysis.  IEEE  Transactions  on  Biomedical Engineering, 59(12), 

3498–3510. https://doi.org/10.1109/TBME.2012.2217495

 

Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2013). EEG-Based classification of music appraisal 

 responses  using  time-frequency  analysis  and  familiarity  ratings.  IEEE Transactions  on  

Affective  Computing,  4(2),  161–172.  https://doi.org/10.1109/T- AFFC.2013.6

 

Hasminda-Hassan,  Murat,  Z.  H.,  Ross,  V.,  Mohd-Zain,  Z.,  &  Buniyamin,  N.  (2011). 

Enhancing learning using music to achieve a balanced brain. 2011 3rd International Congress  on  

Engineering  Education:  Rethinking  Engineering  Education,  The  Way Forward, ICEED 2011, 66–70. 

https://doi.org/10.1109/ICEED.2011.6235362

 

Hassan, H., Murat, Z. H., Ross, V., & Buniyamin, N. (2012). A Preliminary Study on the Effects of 

Music on Human Brainwaves. 2012 International Conference on Control, Automation          and        

  Information          Sciences          (ICCAIS),          176–180. 

https://doi.org/10.1109/ICCAIS.2012.6466581

 

Hatamikia, S., & Nasrabadi, A. M. (2011). Recognition of emotional states  induced by music videos 

based on nonlinear feature extraction and SOM classification. 2014 21st Iranian  Conference  on  

Biomedical  Engineering,  ICBME  2014,  (Icbme),  333–337. 

https://doi.org/10.1109/ICBME.2014.7043946

 

Hoseingholizade, S., Golpaygani, M. R. H., & Monfared, A. S. (2012). Studying emotion through  

nonlinear  processing of  EEG.  Procedia  -  Social  and  Behavioral  Sciences, 32(2010), 163–169. 

https://doi.org/10.1016/j.sbspro.2012.01.026

 

Hsu, J.-L.,  Zhen, Y.-L.,  Lin, T.-C., & Chiu, Y.-S. (2014). Personalized Music Emotion Recognition 

  Using   Electroencephalography   (EEG).   2014   IEEE   International

Symposium on Multimedia, 277–278. https://doi.org/10.1109/ISM.2014.19

 

Islam, M., Ahmad, M., & Yusuf, M. S. U. (2016). An approach to estimate cognitive state

with the impact of listening music on brain activity. 2nd International Conference on Electrical 

Information and Communication Technologies, EICT 2015, (Eict), 152– 157. 

https://doi.org/10.1109/EICT.2015.7391938

 

Ito, S.  I., Mitsukura, Y., Fukumi, M., & Cao, J. (2007). Method for detecting music to match the 

user’s mood in prefrontal cortex electroencephalogram activity based on individual characteristics. 

Conference Proceedings - IEEE International Conference on             Systems,             Man      

       and             Cybernetics,             2640–2644. 

https://doi.org/10.1109/ICSMC.2007.4413830

 

Ito,  S.  I.,  Mitsukura,  Y.,  Sato,  K.,  Fujisawa,  S.,  &  Fukumi,  M.  (2009).  A  study  on 

relationship  between  personal  feature  of  EEG  and  human’s  characteristic  for  BCI based  on 

 mental  state.  IECON  Proceedings  (Industrial  Electronics  Conference), 4229–4232. 

https://doi.org/10.1109/IECON.2009.5415062

 

Jäncke, L., & Alahmadi, N. (2016). Detection of independent functional networks during music  

listening  using  electroencephalogram  and  {sLORETA-ICA.}.  Neuroreport, 27(6), 455–461. 

https://doi.org/10.1097/WNR.0000000000000563

 

Jang, D., Park, Y. J., Shin, S., Lee, J., Jang, S. J., & Lim, T. B. (2015). Research about relation 

of music preference and brain-wave. International Conference on Information Networking, 2015–Janua, 

466–467. https://doi.org/10.1109/ICOIN.2015.7057948

 

Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2013). Real-time EEG-based happiness detection       

  system.         The         Scientific         World         Journal,         2013.

https://doi.org/10.1155/2013/618649

 

Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2015). Subject-Dependent and Subject- Independent 

Emotion Classification Using Unimodal and Multimodal Physiological Signals.  Journal  of  Medical  

Imaging  and  Health  Informatics,  5(5),  1020–1027. https://doi.org/10.1166/jmihi.2015.1490

 

Jaušovec, N., Jaušovec, K., & Gerli?, I. (2006). The influence of Mozart’s music on brain activity 

in the process of learning.  Clinical Neurophysiology, 117(12), 2703–2714. 

https://doi.org/10.1016/j.clinph.2006.08.010

 

Jia-wei,  S.,  &  Wen,  C.  S.  (n.d.).  A  Study  on  Non-Invasive  Brainwave  Optimization. 

https://doi.org/10.1049/cp.2014.1530

 

Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to 40-Hz binaural beat and e  ff  ects 

 on  emotion  and  memory.  International  Journal  of  Psychophysiology, 120(June), 96–107. 

https://doi.org/10.1016/j.ijpsycho.2017.07.010

 

Kadir M. H.;Murat, Z. H.;Taib, M. N.;Rahman, H. A.;Aris, S. A. M., R. S. S. A. ;Ghazal. (2010). The 

Preliminary Study On The Effect OfNasyid Music And Rock Music On Brainwave   Signal   Using   EEG.  

 Engineering   Education   (ICEED),   2010   2nd

International Congress on, 58–63. https://doi.org/10.1109/iceed.2010.5940764

 

Kemalasari, & Purnomo, M. H. (2009). Analysis the dominant location of brain activity in

frontal  lobe  using  K-means  method.  International  Conference  on  Instrumentation, 

Communication, Information Technology, and Biomedical Engineering 2009, ICICI- BME 2009, 8–10. 

https://doi.org/10.1109/ICICI-BME.2009.5417266

 

Khosrowabadi, R., Wahab, A., & Ang, K. K. (2009). From Musical and Vocal Stimuli.

Heart, 1590–1594.

 

Kroupi, E., Vesin, J. M., & Ebrahimi, T. (2013). Phase-amplitude coupling between EEG and  EDA  

while  experiencing  multimedia  content.  Proceedings  -  2013  Humaine Association  Conference  

on  Affective  Computing  and  Intelligent  Interaction,  ACII 2013, 865–870. 

https://doi.org/10.1109/ACII.2013.162

 

Kumar, N., Khaund, K., & Hazarika, S. M. (2016). Bispectral Analysis of EEG for Emotion 

Recognition.           Procedia           Computer           Science,           84,           

31–35. https://doi.org/10.1016/j.procs.2016.04.062

 

Kwon, M., Gang, M., & Oh, K. (2013). Effect of the group music therapy on brain wave, behavior, and 

cognitive function among patients with chronic schizophrenia. Asian Nursing Research, 7(4), 

168–174. https://doi.org/10.1016/j.anr.2013.09.005

 

Lee, Y. Y., See, A. R., Chen, S. C., & Liang, C. K. (2013). Effect of Music Listening on Frontal   

EEG   Asymmetry.   Applied   Mechanics   and   Materials,   311,   502–506. 

https://doi.org/10.4028/www.scientific.net/AMM.311.502

 

Lense, M. D., Gordon, R. L., Key, A. P. F., & Dykens, E. M. (2014). Neural correlates of 

cross-modal affective priming by music in williams syndrome. Social Cognitive and Affective 

Neuroscience, 9(4), 529–537. https://doi.org/10.1093/scan/nst017

 

Li, Q., Yang, Z., Liu, S., Dai, Z., & Liu, Y. (2015). The Study of Emotion Recognition from 

Physiological Signals. Seventh International Conference on Advanced Computer Intelligence (ICACI), 

378–382. https://doi.org/10.1109/ICACI.2015.7184734

 

Lin, L. C., Chiang, C. T., Lee, M. W., Mok, H. K., Yang, Y. H., Wu, H. C., … Yang, R. C.

(2013).  Parasympathetic  activation  is  involved  in  reducing epileptiform  discharges when  

listening  to  Mozart  music.  Clinical  Neurophysiology,  124(8),  1528–1535. 

https://doi.org/10.1016/j.clinph.2013.02.021

 

Lin, L. C., Lee, W. Te, Wu, H. C., Tsai, C. L., Wei, R. C., Mok, H. K., … Yang, R. C.

(2011).  The  long-term  effect  of  listening  to  Mozart  K.448  decreases  epileptiform 

discharges  in  children  with  epilepsy.  Epilepsy  and  Behavior,  21(4),  420–424. 

https://doi.org/10.1016/j.yebeh.2011.05.015

 

Lin,  Y.,  Duann,  J.,  Feng,  W.,  Chen,  J.,  &  Jung,  T.  (2014).  Revealing  spatio-spectral 

electroencephalographic   dynamics   of   musical   mode   and   tempo   perception   by 

independent component analysis. Journal of NeuroEngineering and Rehabilitation,

11, 1–11. https://doi.org/10.1186/1743-0003-11-18

 

Lin, Y., & Jung, T.-P. (2014). Exploring Day-to-Day Variability in EEG-based Emotion

Classification.  IEEE  International  Conference  on  Systems,  Man,  and  Cybernetics, 2226–2229. 

https://doi.org/10.1109/SMC.2014.6974255

 

Lin,  Y.  P.,  Duann,  J.  R.,  Chen,  J.  H.,  &  Jung,  T.  P.  (2010).  Electroencephalographic 

dynamics   of   musical   emotion   perception   revealed   by   independent   spectral components. 

                      Neuroreport,                       21(6),                        410–415. 

https://doi.org/10.1097/WNR.0b013e32833774de

 

Lin, Y. P., Jung, T. P., & Chen, J. H. (2009). EEG dynamics during music appreciation. Proceedings 

of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society: Engineering the Future of Biomedicine, EMBC 2009, 5316–5319. 

https://doi.org/10.1109/IEMBS.2009.5333524

 

Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., & Chen, J. H.

(2010).  EEG-based  emotion  recognition  in  music  listening.  IEEE  Transactions  on Biomedical  

                     Engineering,                       57(7),                       1798–1806. 

https://doi.org/10.1109/TBME.2010.2048568

 

Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2007). Multilayer perceptron for 

EEG signal classification during listening to emotional music. IEEE Region 10 Annual                

International                Conference,                Proceedings/TENCON. 

https://doi.org/10.1109/TENCON.2007.4428831

 

Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2008). Support vector machine   for 

  EEG   signal   classification   during   listening   to   emotional   music. Proceedings  of  the 

 2008  IEEE  10th  Workshop  on  Multimedia  Signal  Processing, MMSP 2008, 127–130. 

https://doi.org/10.1109/MMSP.2008.4665061

 

Lin, Y. P., Yang, Y. H., & Jung, T. P. (2014). Fusion of electroencephalographic dynamics and 

musical contents for estimating emotional responses in music listening. Frontiers in Neuroscience, 

8(8 MAY), 1–14. https://doi.org/10.3389/fnins.2014.00094

 

Ma, X., & Yang, F. (2015). An Empirical Study on Interest Point Ranking and Valence- Arousal  Tags  

of  EEG  Data.  2015  8th  International  Symposium  on  Computational Intelligence and Design 

(ISCID), 499–502. https://doi.org/10.1109/ISCID.2015.57

 

Maity, A. K., Pratihar, R., Agrawal, V., Mitra, A., & Dey, S. (2015). Multifractal Detrended 

Fluctuation Analysis of the Music Induced EEG Signals, 252–257.

 

Marsella, P., Scorpecci, A., Vecchiato, G., Maglione, A. G., Colosimo, A., & Babiloni, F. (2014). 

Neuroelectrical imaging investigation of cortical activity during listening to music in 

prelingually deaf children with cochlear implants. International Journal of Pediatric               

      Otorhinolaryngology,                     78(5),                     737–743. 

https://doi.org/10.1016/j.ijporl.2014.01.030

 

Mikutta, C., Altorfer, A., Strik, W., & Koenig, T. (2012). Emotions, arousal, and frontal

alpha  rhythm  asymmetry  during  beethoven’s  5th  symphony.  Brain  Topography,

25(4), 423–430. https://doi.org/10.1007/s10548-012-0227-0

 

Mohd  Aris,  S.  A.,  Sulaiman,  N.,  Abdul  Hamid,  N.  H.,  &  Taib,  M.  N.  (2010).  Initial

investigation on alpha asymmetry during listening to therapy music. Proceedings - CSPA  2010:  2010 

 6th  International  Colloquium  on  Signal  Processing  and  Its Applications, 255–258. 

https://doi.org/10.1109/CSPA.2010.5545285

 

Morita, Y., Huang, H. H., & Kawagoe, K. (2013). Towards Music Information Retrieval driven by EEG 

signals: Architecture and preliminary experiments. 2013 IEEE/ACIS 12th International Conference on 

Computer and  Information Science, ICIS 2013  - Proceedings, 213–217. 

https://doi.org/10.1109/ICIS.2013.6607843

 

Murugappan, M. (2011). Human emotion classification using wavelet transform and KNN,

1(June), 148–153. https://doi.org/10.1109/ICPAIR.2011.5976886

 

Murugappan, M., & Murugappan, S. (2013). Human emotion recognition through short time 

Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). Signal Processing and Its 

Applications (CSPA), 2013 IEEE 9th International Colloquium on, 289–294. 

https://doi.org/10.1109/CSPA.2013.6530058

 

Naji, M., Firoozabadi, M., & Azadfallah, P. (2015). Emotion classification during music listening 

from forehead biosignals. Signal, Image and Video Processing, 9(6), 1365– 1375. 

https://doi.org/10.1007/s11760-013-0591-6

 

Nakamura, S., Sadato, N., Oohashi, T., Nishina, E., Fuwamoto, Y., & Yonekura, Y. (1999). Analysis  

of  music-brain  interaction  with  simultaneous  measurement  of  regional cerebral  blood  flow  

and  electroencephalogram  beta  rhythm  in  human  subjects. Neuroscience       Letters,       

275(3),       222–226.       https://doi.org/10.1016/S0304-

3940(99)00766-1

 

Naraballobh, J., & Thanapatay, D. (2015). EEG-Based Analysis of Auditory Stimulus in a 

Brain-Computer  Interface.  2015  6th  International  Conference  of  Information  and 

Communication  Technology  for  Embedded  Systems  (IC-ICTES)  EEG-Based,  6–9. 

https://doi.org/10.1109/ICTEmSys.2015.7110835

 

Naraballobh,  J.,  Thanapatay,  D.,  Chinrungrueng,  J.,  &  Nishihara,  A.  (2015).  Effect  of 

auditory stimulus in EEG signal using a Brain-Computer Interface. ECTI-CON 2015

-   2015   12th   International   Conference   on   Electrical   Engineering/Electronics, Computer, 

         Telecommunications          and          Information          Technology. 

https://doi.org/10.1109/ECTICon.2015.7206944

 

Navea, R. F., & Dadios, E. (2016). Classification of tone stimulated EEG signals using independent 

components and power spectrum vectors. 8th International Conference on   Humanoid,   

Nanotechnology,   Information   Technology,   Communication   and Control,     Environment     and  

   Management,     HNICEM     2015,     (December). https://doi.org/10.1109/HNICEM.2015.7393163

 

Nawasalkar, R. K. (2015). EEG based Stress Recognition System based on Indian Classical

Music.

 

O’Kelly, J., James, L., Palaniappan, R., Taborin, J., Fachner, J., & Magee, W. L. L. (2013).

Neurophysiological  and  behavioral  responses  to  music  therapy  in  vegetative  and minimally 

conscious States.  Frontiers in Human Neuroscience, 7(December), 884. 

https://doi.org/10.3389/fnhum.2013.00884

 

Ogawa, T., Ito, S., Mitsukura, Y., Fukumi, M., & Akamatsua, N. (2004). Feature extraction from     

eeg     patterns     in     music     listening.     Ieee     Ispacs     2004.,     17–21. 

https://doi.org/10.1109/ISPACS.2004.1439007

 

Ogawa, T., Karungarul, S., Mitsukura, Y., Fukumil, M., & Akamatsul, N. (2006). Feature Extraction 

in Listen â€TM ng to Mus ;’ C Using Statistical Analystis of the EEG, (D), 5120–5123.

 

Poikonen,  H.,  Alluri,  V.,  Brattico,  E.,  Lartillot,  O.,  Tervaniemi,  M.,  &  Huotilainen,  

M. (2016).  Event-related  brain  responses  while  listening  to  entire  pieces  of  music. 

Neuroscience, 312, 58–73. https://doi.org/10.1016/j.neuroscience.2015.10.061

 

Poikonen,  H.,  Toiviainen,  P.,  &  Tervaniemi,  M.  (2016).  Early  auditory  processing  in 

musicians and dancers during a contemporary dance piece. Nature Publishing Group, 35(September), 

1–11. https://doi.org/10.1038/srep33056

 

Rahnuma,  K.  S.,  Wahab,  A.,  Kamaruddin,  N.,  &  Majid,  H.  (2011).  EEG  analysis  for 

understanding  stress  based  on  affective  model  basis  function.  Proceedings  of  the 

International      Symposium      on      Consumer      Electronics,      ISCE,      592–597. 

https://doi.org/10.1109/ISCE.2011.5973899

 

Ramirez,  R.,  Palencia-Lefler,  M.,  Giraldo,  S.,  &  Vamvakousis,  Z.  (2015).  Musical 

neurofeedback for treating depression in elderly people. Frontiers in Neuroscience, 9(OCT), 1–10. 

https://doi.org/10.3389/fnins.2015.00354

 

Rigoulot, S., Pell, M. D., & Armony, J. L. (2015). Time course of the influence of musical 

expertise on the processing of vocal and musical sounds. Neuroscience, 290, 175–184. 

https://doi.org/10.1016/j.neuroscience.2015.01.033

 

Rogenmoser, L., Zollinger, N., Elmer, S., & J??ncke, L. (2016). Independent component processes 

underlying emotions during natural music listening. Social Cognitive and Affective Neuroscience, 

11(9), 1428–1439. https://doi.org/10.1093/scan/nsw048

 

Sammler,  D.,  Grigutsch,  M.,  Fritz,  T.,  &  Koelsch,  S.  (2007).  Music  and  emotion: 

Electrophysiological correlates of the processing of pleasant and unpleasant music. 

Psychophysiology,           44(2),           293–304.           https://doi.org/10.1111/j.1469- 

8986.2007.00497.x

 

Sandler, H., Tamm, S., Fendel, U., Rose, M., Klapp, B. F., & B??sel, R. (2016). Positive Emotional  

 Experience:   Induced   by   Vibroacoustic   Stimulation   Using   a   Body

Monochord in Patients with Psychosomatic Disorders: Is Associated with an Increase

in EEG-Theta and a Decrease in EEG-Alpha Power. Brain Topography, 29(4), 524–

538. https://doi.org/10.1007/s10548-016-0480-8

 

Sanyal, S., Banerjee, A., Pratihar, R., Maity, A. K., Dey, S., Agrawal, V., … Ghosh, D. (2016). 

Detrended Fluctuation and Power Spectral Analysis of alpha and delta EEG brain  rhythms  to  study  

music  elicited  emotion.  Proceedings  of  2015  International Conference on Signal Processing, 

Computing and Control, ISPCC 2015, 205–210. https://doi.org/10.1109/ISPCC.2015.7375026

 

Shahabi,  H.,  &  Moghimi,  S.  (2016).  Toward  automatic  detection  of  brain  responses  to 

emotional  music  through  analysis  of  EEG  effective  connectivity.  Computers  in Human 

Behavior, 58, 231–239. https://doi.org/10.1016/j.chb.2016.01.005

 

Sourina, O., Liu, Y., & Nguyen, M. K. (2012). Real-time EEG-based emotion recognition for   music   

therapy.   Journal   on   Multimodal   User   Interfaces,   5(1–2),   27–35. 

https://doi.org/10.1007/s12193-011-0080-6

 

Sreedevi, M., Ajesh,  a., Ajithnath, R., & Binu, L. S. (2009). A Study of Effect of Music Pitch  

Variation  in  EEG  Using  Factor  Analysis  and  Neural  Networks.  2009  2nd International   

Conference   on   Biomedical   Engineering   and   Informatics,   9–11. 

https://doi.org/10.1109/BMEI.2009.5305592

 

Tan, L. F., Dienes, Z., Jansari, A., & Goh, S. Y. (2014). Effect of mindfulness meditation on 

brain-computer interface performance. Consciousness and Cognition, 23(1), 12– 21. 

https://doi.org/10.1016/j.concog.2013.10.010

 

Thammasan,  N.  (2016).  Application  of  Deep  Belief  Networks  in  EEG-based  Dynamic 

Music-emotion Recognition, 881–888.

 

Tseng, K. C., Lin, B. S., Han, C. M., & Wang, P. S. (2013). Emotion recognition of EEG underlying 

favourite music by support vector machine. ICOT 2013 - 1st International Conference                

on                Orange                Technologies,                155–158. 

https://doi.org/10.1109/ICOT.2013.6521181

 

Uma, M., & Sridhar, S. S. (2013). A feasibility study for developing an emotional control system 

through brain computer interface. 2013 International Conference on Human Computer       

Interactions       (ICHCI),       1–6.       https://doi.org/10.1109/ICHCI- IEEE.2013.6887801

 

Unehara, M., Yamada, K., & Shimada, T. (2014). Subjective evaluation of music with brain wave 

analysis for interactive music composition by IEC. 2014 Joint 7th International Conference on Soft 

Computing and Intelligent Systems (SCIS) and 15th International Symposium        on        Advanced 

       Intelligent        Systems        (ISIS),        66–70. 

https://doi.org/10.1109/SCIS-ISIS.2014.7044758

 

Uzun, S. S., Yildirim, S., & Yildirim, E. (2012). Emotion primitives estimation from EEG signals  

using  Hilbert  Huang  Transform.  Proceedings  -  IEEE-EMBS  International

Conference  on  Biomedical  and  Health  Informatics:  Global  Grand  Challenge  of

Health             Informatics,             BHI             2012,             1(Bhi),             

224–227.

https://doi.org/10.1109/BHI.2012.6211551

 

Vijayalakshmi, K., Sridhar, S., & Khanwani, P. (2010). Estimation of effects of alpha music on EEG 

components by time and frequency domain analysis. Paper presented at the Computer and Communication 

Engineering (ICCCE), 2010 International Conference

 

Verrusio, W., Ettorre, E., Vicenzini, E., Vanacore, N., Cacciafesta, M., & Mecarelli, O. (2015). 

The Mozart Effect: A quantitative EEG study. Consciousness and Cognition, 35, 150–155. 

https://doi.org/10.1016/j.concog.2015.05.005

 

Wang, S., Zhu, Y., Yue, L., & Ji, Q. (2015). Emotion recognition with the help of privileged 

information. IEEE Transactions on Autonomous Mental Development, 7(3), 189–200. 

https://doi.org/10.1109/TAMD.2015.2463113

 

Wu,  J.,  Zhang,  J.,  Ding,  X.,  Li,  R.,  &  Zhou,  C.  (2013).  The  effects  of  music  on  

brain functional     networks:     A     network     analysis.     Neuroscience,     250,     

49–59. https://doi.org/10.1016/j.neuroscience.2013.06.021

 

Yu, G., & Chan, K. C. C. (2015). What Strikes the Strings of Your Heart?–Multi-Label Dimensionality 

 Reduction  for  Music  Emotion  Analysis  via  Brain  Imaging.  IEEE Transactions      on      

Autonomous      Mental      Development,      7(3),      176–188. 

https://doi.org/10.1109/TAMD.2015.2429580

 

Zhang, F., Meng, H., & Li, M. (2016). Emotion extraction and recognition from music. 2016  12th  

International  Conference  on  Natural  Computation,  Fuzzy  Systems  and Knowledge             

Discovery,             ICNC-FSKD             2016,             1728–1733. 

https://doi.org/10.1109/FSKD.2016.7603438

 

Zhang, Y., Ji, X., & Zhang, S. (2016). An approach to EEG-based emotion recognition using  combined 

 feature  extraction  method.  Neuroscience  Letters,  633,  152–157.

https://doi.org/10.1016/j.neulet.2016.09.037

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.