UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Lately, the research on human emotion has attracted the interest of several disciplines,
including computer science, cognitive science, and psychology. As such, the aim of study
was to examine the effects of binaural beats music on depression disorders. This study was
conducted based on an experimental design in which electroencephalography (EEG) was
utilized to capture brain signals. The EEGlab toolbox of Matlab was used to extract the
relevant features of the brain signals. For feature filtering, brain signals were filtered by
using ‘Butterworth 5th order’. EEG signals were then converted from the time to the
frequency domain by utilizing Fast Fourier Transform (FFT). A sample of 90 depressive
participants was exposed to binaural beats music. One-way ANOVA was used to compare
the differences in the effects based on three different time intervals, which were labelled as
before listening, during listening, and after listening phases. Descriptive and statistical
analysis were utilized to analyse the effects of binaural beat music on the subjects’
depression level and to examine whether there were significant differences among the
intervals. The findings showed that 63.2% of the subjects exhibited positive responses
based on either an increasing relaxation level or a decreasing depression level or both, with
the remaining subjects exhibiting negative responses. In addition, the most conductive
electrodes were found to be the “F3, F7” electrodes, which effectively captured alpha and
beta bands from the frontal lobe area of the brain. Furthermore, the one-way ANOVA
results indicated that there were no significant differences in the effects among the intervals
[F (2, 87) =1, 86, p = 0.161]. Overall, this study highlights the benefits of the use of binaural
beats music in the level of depression and to improve the relaxation state of those suffering
from depression disorders. For future research, examining the effects of binaural beat music
on other aspects of human emotions is recommended. |
References |
Adamos, D. A., Dimitriadis, S. I., & Laskaris, N. A. (2016). Towards the bio- personalization of music recommendation systems: A single-sensor EEG biomarker of subjective music preference. Information Sciences, 343–344, 94–108. https://doi.org/10.1016/j.ins.2016.01.005
Akdemir Akar, S., Kara, S., Agambayev, S., & Bilgi??, V. (2015). Nonlinear analysis of EEGs of patients with major depression during different emotional states. Computers in Biology and Medicine, 67, 49–60. https://doi.org/10.1016/j.compbiomed.2015.09.019
Al-Galal, S. A. Y., Alshaikhli, I. F. T., Rahman, A. W. B. A., & Dzulkifli, M. A. (2016). EEG-based Emotion Recognition while Listening to Quran Recitation Compared with Relaxing Music Using Valence-Arousal Model. Proceedings - 2015 4th International Conference on Advanced Computer Science Applications and Technologies, ACSAT 2015, 245–250. https://doi.org/10.1109/ACSAT.2015.10
Bajaj, V., & Pachori, R. B. (2014). Human Emotion Classification from EEG Signals Using Multiwavelet Transform. 2014 International Conference on Medical Biometrics, (Md), 125–130. https://doi.org/10.1109/ICMB.2014.29
Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., … Ghose, P. (2016). Study on Brain Dynamics by Non Linear Analysis of Music Induced EEG Signals. Physica A: Statistical Mechanics and Its Applications, 444, 110–120. https://doi.org/10.1016/j.physa.2015.10.030
Baumgartner, T., Esslen, M., & Jäncke, L. (2006). From emotion perception to emotion experience: Emotions evoked by pictures and classical music. International Journal of Psychophysiology, 60(1), 34–43. https://doi.org/10.1016/j.ijpsycho.2005.04.007
Bhardwaj, A., Gupta, A., Jain, P., Rani, A., & Yadav, J. (2015). Classification of human emotions from EEG signals using SVM and LDA Classifiers. 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 180–185. https://doi.org/10.1109/SPIN.2015.7095376
Bhatti, A. M., Majid, M., Anwar, S. M., & Khan, B. (2016). Human emotion recognition and analysis in response to audio music using brain signals. Computers in Human Behavior, 65, 267–275. https://doi.org/10.1016/j.chb.2016.08.029
Chanel, G., Kierkels, J. J. M., Soleymani, M., & Pun, T. (2009). Short-term emotion assessment in a recall paradigm. International Journal of Human Computer Studies, 67(8), 607–627. https://doi.org/10.1016/j.ijhcs.2009.03.005
Chang, Y.-H., Lee, Y.-Y., Liang, K.-C., Chen, I.-P., Tsai, C.-G., & Hsieh, S. (2015). Experiencing affective music in eyes-closed and eyes-open states: an electroencephalography study. Frontiers in Psychology, 6(August), 1160–1168. https://doi.org/10.3389/fpsyg.2015.01160
Chavan, D. R., Kumbhar, M. S., & Chavan, R. R. (2016). The human stress recognition of brain, using music therapy. 2016 International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2016, 200–203. https://doi.org/10.1109/ICCPEIC.2016.7557197
Chen, L. L., Wang, B., & Zoul, J. Z. (n.d.). Effect Evaluation of Relaxation Training Based on Nonlinear Parameters of, 2–5.
Daimi, S. N., & Saha, G. (2014). Classification of emotions induced by music videos and correlation with participants’ rating. Expert Systems with Applications, 41(13), 6057– 6065. https://doi.org/10.1016/j.eswa.2014.03.050
Daly, I., Malik, A., Hwang, F., Roesch, E., Weaver, J., Kirke, A., … Nasuto, S. J. (2014). Neural correlates of emotional responses to music: An EEG study. Neuroscience Letters, 573, 52–57. https://doi.org/10.1016/j.neulet.2014.05.003
Daly, I., Malik, A., Weaver, J., Hwang, F., Nasuto, S. J., Williams, D., … Miranda, E. (2015). Identifying music-induced emotions from EEG for use in brain-computer music interfacing. 2015 International Conference on Affective Computing and Intelligent Interaction, ACII 2015, 22, 923–929. https://doi.org/10.1109/ACII.2015.7344685
Daly, I., Williams, D., Hallowell, J., Hwang, F., Kirke, A., Malik, A., … Nasuto, S. J. (2015). Music-induced emotions can be predicted from a combination of brain activity and acoustic features. Brain and Cognition, 101, 1–11. https://doi.org/10.1016/j.bandc.2015.08.003
Daly, I., Williams, D., Kirke, A., Weaver, J., Malik, A., Hwang, F., … Nasuto, S. J. (2016). Affective brain–computer music interfacing. Journal of Neural Engineering, 13(4), 46022. https://doi.org/10.1088/1741-2560/13/4/046022
Erkkilä, J., Gold, C., Fachner, J., Ala-Ruona, E., Punkanen, M., & Vanhala, M. (2008). The effect of improvisational music therapy on the treatment of depression: protocol for a randomised controlled trial. BMC Psychiatry, 8(1), 50. https://doi.org/10.1186/1471- 244X-8-50
Farzaneh, P., Afsaneh, M., Reza, R., & Masood, N. (2010). Source localization of the effects of Persian classical music forms on the brain waves by QEEG. Procedia - Social and Behavioral Sciences, 5(2), 770–773. https://doi.org/10.1016/j.sbspro.2010.07.182
Fikejz, F. (2011). Influence of Music on Human Electroenc ephalogram. Applied Electronics, 1–4.
Fikejz, F. (2012). Influence of Compressed Music Bit Rate on Human oencephalogram, 1–4.
Flores-Gutiérrez, E. O., Díaz, J. L., Barrios, F. A., Favila-Humara, R., Guevara, M. Á., del Río-Portilla, Y., & Corsi-Cabrera, M. (2007). Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. International Journal of Psychophysiology, 65(1), 69–84. https://doi.org/10.1016/j.ijpsycho.2007.03.004
Gawali, B. W., Rao, S., Abhang, P., Rokade, P., & Mehrotra, S. C. (2012). Classification of Eeg Signals for Different Emotional. Communication and Computing (ARTCom2012), Fourth International Conference on Advances in Recent Technologies in, 177–181. https://doi.org/10.1049/cp.2012.2521
Gupta, R., ur Rehman Laghari, K., & Falk, T. H. (2016). Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization. Neurocomputing, 174, 875–884. https://doi.org/10.1016/j.neucom.2015.09.085
Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2012). Toward an EEG-based recognition of music liking using time-frequency analysis. IEEE Transactions on Biomedical Engineering, 59(12), 3498–3510. https://doi.org/10.1109/TBME.2012.2217495
Hadjidimitriou, S. K., & Hadjileontiadis, L. J. (2013). EEG-Based classification of music appraisal responses using time-frequency analysis and familiarity ratings. IEEE Transactions on Affective Computing, 4(2), 161–172. https://doi.org/10.1109/T- AFFC.2013.6
Hasminda-Hassan, Murat, Z. H., Ross, V., Mohd-Zain, Z., & Buniyamin, N. (2011). Enhancing learning using music to achieve a balanced brain. 2011 3rd International Congress on Engineering Education: Rethinking Engineering Education, The Way Forward, ICEED 2011, 66–70. https://doi.org/10.1109/ICEED.2011.6235362
Hassan, H., Murat, Z. H., Ross, V., & Buniyamin, N. (2012). A Preliminary Study on the Effects of Music on Human Brainwaves. 2012 International Conference on Control, Automation and Information Sciences (ICCAIS), 176–180. https://doi.org/10.1109/ICCAIS.2012.6466581
Hatamikia, S., & Nasrabadi, A. M. (2011). Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification. 2014 21st Iranian Conference on Biomedical Engineering, ICBME 2014, (Icbme), 333–337. https://doi.org/10.1109/ICBME.2014.7043946
Hoseingholizade, S., Golpaygani, M. R. H., & Monfared, A. S. (2012). Studying emotion through nonlinear processing of EEG. Procedia - Social and Behavioral Sciences, 32(2010), 163–169. https://doi.org/10.1016/j.sbspro.2012.01.026
Hsu, J.-L., Zhen, Y.-L., Lin, T.-C., & Chiu, Y.-S. (2014). Personalized Music Emotion Recognition Using Electroencephalography (EEG). 2014 IEEE International Symposium on Multimedia, 277–278. https://doi.org/10.1109/ISM.2014.19
Islam, M., Ahmad, M., & Yusuf, M. S. U. (2016). An approach to estimate cognitive state with the impact of listening music on brain activity. 2nd International Conference on Electrical Information and Communication Technologies, EICT 2015, (Eict), 152– 157. https://doi.org/10.1109/EICT.2015.7391938
Ito, S. I., Mitsukura, Y., Fukumi, M., & Cao, J. (2007). Method for detecting music to match the user’s mood in prefrontal cortex electroencephalogram activity based on individual characteristics. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2640–2644. https://doi.org/10.1109/ICSMC.2007.4413830
Ito, S. I., Mitsukura, Y., Sato, K., Fujisawa, S., & Fukumi, M. (2009). A study on relationship between personal feature of EEG and human’s characteristic for BCI based on mental state. IECON Proceedings (Industrial Electronics Conference), 4229–4232. https://doi.org/10.1109/IECON.2009.5415062
Jäncke, L., & Alahmadi, N. (2016). Detection of independent functional networks during music listening using electroencephalogram and {sLORETA-ICA.}. Neuroreport, 27(6), 455–461. https://doi.org/10.1097/WNR.0000000000000563
Jang, D., Park, Y. J., Shin, S., Lee, J., Jang, S. J., & Lim, T. B. (2015). Research about relation of music preference and brain-wave. International Conference on Information Networking, 2015–Janua, 466–467. https://doi.org/10.1109/ICOIN.2015.7057948
Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2013). Real-time EEG-based happiness detection system. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/618649
Jatupaiboon, N., Pan-Ngum, S., & Israsena, P. (2015). Subject-Dependent and Subject- Independent Emotion Classification Using Unimodal and Multimodal Physiological Signals. Journal of Medical Imaging and Health Informatics, 5(5), 1020–1027. https://doi.org/10.1166/jmihi.2015.1490
Jaušovec, N., Jaušovec, K., & Gerli?, I. (2006). The influence of Mozart’s music on brain activity in the process of learning. Clinical Neurophysiology, 117(12), 2703–2714. https://doi.org/10.1016/j.clinph.2006.08.010
Jia-wei, S., & Wen, C. S. (n.d.). A Study on Non-Invasive Brainwave Optimization. https://doi.org/10.1049/cp.2014.1530
Jirakittayakorn, N., & Wongsawat, Y. (2017). Brain responses to 40-Hz binaural beat and e ff ects on emotion and memory. International Journal of Psychophysiology, 120(June), 96–107. https://doi.org/10.1016/j.ijpsycho.2017.07.010
Kadir M. H.;Murat, Z. H.;Taib, M. N.;Rahman, H. A.;Aris, S. A. M., R. S. S. A. ;Ghazal. (2010). The Preliminary Study On The Effect OfNasyid Music And Rock Music On Brainwave Signal Using EEG. Engineering Education (ICEED), 2010 2nd International Congress on, 58–63. https://doi.org/10.1109/iceed.2010.5940764
Kemalasari, & Purnomo, M. H. (2009). Analysis the dominant location of brain activity in frontal lobe using K-means method. International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009, ICICI- BME 2009, 8–10. https://doi.org/10.1109/ICICI-BME.2009.5417266
Khosrowabadi, R., Wahab, A., & Ang, K. K. (2009). From Musical and Vocal Stimuli. Heart, 1590–1594.
Kroupi, E., Vesin, J. M., & Ebrahimi, T. (2013). Phase-amplitude coupling between EEG and EDA while experiencing multimedia content. Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013, 865–870. https://doi.org/10.1109/ACII.2013.162
Kumar, N., Khaund, K., & Hazarika, S. M. (2016). Bispectral Analysis of EEG for Emotion Recognition. Procedia Computer Science, 84, 31–35. https://doi.org/10.1016/j.procs.2016.04.062
Kwon, M., Gang, M., & Oh, K. (2013). Effect of the group music therapy on brain wave, behavior, and cognitive function among patients with chronic schizophrenia. Asian Nursing Research, 7(4), 168–174. https://doi.org/10.1016/j.anr.2013.09.005
Lee, Y. Y., See, A. R., Chen, S. C., & Liang, C. K. (2013). Effect of Music Listening on Frontal EEG Asymmetry. Applied Mechanics and Materials, 311, 502–506. https://doi.org/10.4028/www.scientific.net/AMM.311.502
Lense, M. D., Gordon, R. L., Key, A. P. F., & Dykens, E. M. (2014). Neural correlates of cross-modal affective priming by music in williams syndrome. Social Cognitive and Affective Neuroscience, 9(4), 529–537. https://doi.org/10.1093/scan/nst017
Li, Q., Yang, Z., Liu, S., Dai, Z., & Liu, Y. (2015). The Study of Emotion Recognition from Physiological Signals. Seventh International Conference on Advanced Computer Intelligence (ICACI), 378–382. https://doi.org/10.1109/ICACI.2015.7184734
Lin, L. C., Chiang, C. T., Lee, M. W., Mok, H. K., Yang, Y. H., Wu, H. C., … Yang, R. C. (2013). Parasympathetic activation is involved in reducing epileptiform discharges when listening to Mozart music. Clinical Neurophysiology, 124(8), 1528–1535. https://doi.org/10.1016/j.clinph.2013.02.021
Lin, L. C., Lee, W. Te, Wu, H. C., Tsai, C. L., Wei, R. C., Mok, H. K., … Yang, R. C. (2011). The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy. Epilepsy and Behavior, 21(4), 420–424. https://doi.org/10.1016/j.yebeh.2011.05.015
Lin, Y., Duann, J., Feng, W., Chen, J., & Jung, T. (2014). Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis. Journal of NeuroEngineering and Rehabilitation, 11, 1–11. https://doi.org/10.1186/1743-0003-11-18
Lin, Y., & Jung, T.-P. (2014). Exploring Day-to-Day Variability in EEG-based Emotion Classification. IEEE International Conference on Systems, Man, and Cybernetics, 2226–2229. https://doi.org/10.1109/SMC.2014.6974255
Lin, Y. P., Duann, J. R., Chen, J. H., & Jung, T. P. (2010). Electroencephalographic dynamics of musical emotion perception revealed by independent spectral components. Neuroreport, 21(6), 410–415. https://doi.org/10.1097/WNR.0b013e32833774de
Lin, Y. P., Jung, T. P., & Chen, J. H. (2009). EEG dynamics during music appreciation. Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009, 5316–5319. https://doi.org/10.1109/IEMBS.2009.5333524
Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., & Chen, J. H. (2010). EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798–1806. https://doi.org/10.1109/TBME.2010.2048568
Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2007). Multilayer perceptron for EEG signal classification during listening to emotional music. IEEE Region 10 Annual International Conference, Proceedings/TENCON. https://doi.org/10.1109/TENCON.2007.4428831
Lin, Y. P., Wang, C. H., Wu, T. L., Jeng, S. K., & Chen, J. H. (2008). Support vector machine for EEG signal classification during listening to emotional music. Proceedings of the 2008 IEEE 10th Workshop on Multimedia Signal Processing, MMSP 2008, 127–130. https://doi.org/10.1109/MMSP.2008.4665061
Lin, Y. P., Yang, Y. H., & Jung, T. P. (2014). Fusion of electroencephalographic dynamics and musical contents for estimating emotional responses in music listening. Frontiers in Neuroscience, 8(8 MAY), 1–14. https://doi.org/10.3389/fnins.2014.00094
Ma, X., & Yang, F. (2015). An Empirical Study on Interest Point Ranking and Valence- Arousal Tags of EEG Data. 2015 8th International Symposium on Computational Intelligence and Design (ISCID), 499–502. https://doi.org/10.1109/ISCID.2015.57
Maity, A. K., Pratihar, R., Agrawal, V., Mitra, A., & Dey, S. (2015). Multifractal Detrended Fluctuation Analysis of the Music Induced EEG Signals, 252–257.
Marsella, P., Scorpecci, A., Vecchiato, G., Maglione, A. G., Colosimo, A., & Babiloni, F. (2014). Neuroelectrical imaging investigation of cortical activity during listening to music in prelingually deaf children with cochlear implants. International Journal of Pediatric Otorhinolaryngology, 78(5), 737–743. https://doi.org/10.1016/j.ijporl.2014.01.030
Mikutta, C., Altorfer, A., Strik, W., & Koenig, T. (2012). Emotions, arousal, and frontal alpha rhythm asymmetry during beethoven’s 5th symphony. Brain Topography, 25(4), 423–430. https://doi.org/10.1007/s10548-012-0227-0
Mohd Aris, S. A., Sulaiman, N., Abdul Hamid, N. H., & Taib, M. N. (2010). Initial investigation on alpha asymmetry during listening to therapy music. Proceedings - CSPA 2010: 2010 6th International Colloquium on Signal Processing and Its Applications, 255–258. https://doi.org/10.1109/CSPA.2010.5545285
Morita, Y., Huang, H. H., & Kawagoe, K. (2013). Towards Music Information Retrieval driven by EEG signals: Architecture and preliminary experiments. 2013 IEEE/ACIS 12th International Conference on Computer and Information Science, ICIS 2013 - Proceedings, 213–217. https://doi.org/10.1109/ICIS.2013.6607843
Murugappan, M. (2011). Human emotion classification using wavelet transform and KNN, 1(June), 148–153. https://doi.org/10.1109/ICPAIR.2011.5976886
Murugappan, M., & Murugappan, S. (2013). Human emotion recognition through short time Electroencephalogram (EEG) signals using Fast Fourier Transform (FFT). Signal Processing and Its Applications (CSPA), 2013 IEEE 9th International Colloquium on, 289–294. https://doi.org/10.1109/CSPA.2013.6530058
Naji, M., Firoozabadi, M., & Azadfallah, P. (2015). Emotion classification during music listening from forehead biosignals. Signal, Image and Video Processing, 9(6), 1365– 1375. https://doi.org/10.1007/s11760-013-0591-6
Nakamura, S., Sadato, N., Oohashi, T., Nishina, E., Fuwamoto, Y., & Yonekura, Y. (1999). Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neuroscience Letters, 275(3), 222–226. https://doi.org/10.1016/S0304- 3940(99)00766-1
Naraballobh, J., & Thanapatay, D. (2015). EEG-Based Analysis of Auditory Stimulus in a Brain-Computer Interface. 2015 6th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES) EEG-Based, 6–9. https://doi.org/10.1109/ICTEmSys.2015.7110835
Naraballobh, J., Thanapatay, D., Chinrungrueng, J., & Nishihara, A. (2015). Effect of auditory stimulus in EEG signal using a Brain-Computer Interface. ECTI-CON 2015 - 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. https://doi.org/10.1109/ECTICon.2015.7206944
Navea, R. F., & Dadios, E. (2016). Classification of tone stimulated EEG signals using independent components and power spectrum vectors. 8th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, HNICEM 2015, (December). https://doi.org/10.1109/HNICEM.2015.7393163
Nawasalkar, R. K. (2015). EEG based Stress Recognition System based on Indian Classical Music.
O’Kelly, J., James, L., Palaniappan, R., Taborin, J., Fachner, J., & Magee, W. L. L. (2013). Neurophysiological and behavioral responses to music therapy in vegetative and minimally conscious States. Frontiers in Human Neuroscience, 7(December), 884. https://doi.org/10.3389/fnhum.2013.00884
Ogawa, T., Ito, S., Mitsukura, Y., Fukumi, M., & Akamatsua, N. (2004). Feature extraction from eeg patterns in music listening. Ieee Ispacs 2004., 17–21. https://doi.org/10.1109/ISPACS.2004.1439007
Ogawa, T., Karungarul, S., Mitsukura, Y., Fukumil, M., & Akamatsul, N. (2006). Feature Extraction in Listen â€TM ng to Mus ;’ C Using Statistical Analystis of the EEG, (D), 5120–5123.
Poikonen, H., Alluri, V., Brattico, E., Lartillot, O., Tervaniemi, M., & Huotilainen, M. (2016). Event-related brain responses while listening to entire pieces of music. Neuroscience, 312, 58–73. https://doi.org/10.1016/j.neuroscience.2015.10.061
Poikonen, H., Toiviainen, P., & Tervaniemi, M. (2016). Early auditory processing in musicians and dancers during a contemporary dance piece. Nature Publishing Group, 35(September), 1–11. https://doi.org/10.1038/srep33056
Rahnuma, K. S., Wahab, A., Kamaruddin, N., & Majid, H. (2011). EEG analysis for understanding stress based on affective model basis function. Proceedings of the International Symposium on Consumer Electronics, ISCE, 592–597. https://doi.org/10.1109/ISCE.2011.5973899
Ramirez, R., Palencia-Lefler, M., Giraldo, S., & Vamvakousis, Z. (2015). Musical neurofeedback for treating depression in elderly people. Frontiers in Neuroscience, 9(OCT), 1–10. https://doi.org/10.3389/fnins.2015.00354
Rigoulot, S., Pell, M. D., & Armony, J. L. (2015). Time course of the influence of musical expertise on the processing of vocal and musical sounds. Neuroscience, 290, 175–184. https://doi.org/10.1016/j.neuroscience.2015.01.033
Rogenmoser, L., Zollinger, N., Elmer, S., & J??ncke, L. (2016). Independent component processes underlying emotions during natural music listening. Social Cognitive and Affective Neuroscience, 11(9), 1428–1439. https://doi.org/10.1093/scan/nsw048
Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293–304. https://doi.org/10.1111/j.1469- 8986.2007.00497.x
Sandler, H., Tamm, S., Fendel, U., Rose, M., Klapp, B. F., & B??sel, R. (2016). Positive Emotional Experience: Induced by Vibroacoustic Stimulation Using a Body Monochord in Patients with Psychosomatic Disorders: Is Associated with an Increase in EEG-Theta and a Decrease in EEG-Alpha Power. Brain Topography, 29(4), 524– 538. https://doi.org/10.1007/s10548-016-0480-8
Sanyal, S., Banerjee, A., Pratihar, R., Maity, A. K., Dey, S., Agrawal, V., … Ghosh, D. (2016). Detrended Fluctuation and Power Spectral Analysis of alpha and delta EEG brain rhythms to study music elicited emotion. Proceedings of 2015 International Conference on Signal Processing, Computing and Control, ISPCC 2015, 205–210. https://doi.org/10.1109/ISPCC.2015.7375026
Shahabi, H., & Moghimi, S. (2016). Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity. Computers in Human Behavior, 58, 231–239. https://doi.org/10.1016/j.chb.2016.01.005
Sourina, O., Liu, Y., & Nguyen, M. K. (2012). Real-time EEG-based emotion recognition for music therapy. Journal on Multimodal User Interfaces, 5(1–2), 27–35. https://doi.org/10.1007/s12193-011-0080-6
Sreedevi, M., Ajesh, a., Ajithnath, R., & Binu, L. S. (2009). A Study of Effect of Music Pitch Variation in EEG Using Factor Analysis and Neural Networks. 2009 2nd International Conference on Biomedical Engineering and Informatics, 9–11. https://doi.org/10.1109/BMEI.2009.5305592
Tan, L. F., Dienes, Z., Jansari, A., & Goh, S. Y. (2014). Effect of mindfulness meditation on brain-computer interface performance. Consciousness and Cognition, 23(1), 12– 21. https://doi.org/10.1016/j.concog.2013.10.010
Thammasan, N. (2016). Application of Deep Belief Networks in EEG-based Dynamic Music-emotion Recognition, 881–888.
Tseng, K. C., Lin, B. S., Han, C. M., & Wang, P. S. (2013). Emotion recognition of EEG underlying favourite music by support vector machine. ICOT 2013 - 1st International Conference on Orange Technologies, 155–158. https://doi.org/10.1109/ICOT.2013.6521181
Uma, M., & Sridhar, S. S. (2013). A feasibility study for developing an emotional control system through brain computer interface. 2013 International Conference on Human Computer Interactions (ICHCI), 1–6. https://doi.org/10.1109/ICHCI- IEEE.2013.6887801
Unehara, M., Yamada, K., & Shimada, T. (2014). Subjective evaluation of music with brain wave analysis for interactive music composition by IEC. 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), 66–70. https://doi.org/10.1109/SCIS-ISIS.2014.7044758
Uzun, S. S., Yildirim, S., & Yildirim, E. (2012). Emotion primitives estimation from EEG signals using Hilbert Huang Transform. Proceedings - IEEE-EMBS International Conference on Biomedical and Health Informatics: Global Grand Challenge of Health Informatics, BHI 2012, 1(Bhi), 224–227. https://doi.org/10.1109/BHI.2012.6211551
Vijayalakshmi, K., Sridhar, S., & Khanwani, P. (2010). Estimation of effects of alpha music on EEG components by time and frequency domain analysis. Paper presented at the Computer and Communication Engineering (ICCCE), 2010 International Conference
Verrusio, W., Ettorre, E., Vicenzini, E., Vanacore, N., Cacciafesta, M., & Mecarelli, O. (2015). The Mozart Effect: A quantitative EEG study. Consciousness and Cognition, 35, 150–155. https://doi.org/10.1016/j.concog.2015.05.005
Wang, S., Zhu, Y., Yue, L., & Ji, Q. (2015). Emotion recognition with the help of privileged information. IEEE Transactions on Autonomous Mental Development, 7(3), 189–200. https://doi.org/10.1109/TAMD.2015.2463113
Wu, J., Zhang, J., Ding, X., Li, R., & Zhou, C. (2013). The effects of music on brain functional networks: A network analysis. Neuroscience, 250, 49–59. https://doi.org/10.1016/j.neuroscience.2013.06.021
Yu, G., & Chan, K. C. C. (2015). What Strikes the Strings of Your Heart?–Multi-Label Dimensionality Reduction for Music Emotion Analysis via Brain Imaging. IEEE Transactions on Autonomous Mental Development, 7(3), 176–188. https://doi.org/10.1109/TAMD.2015.2429580
Zhang, F., Meng, H., & Li, M. (2016). Emotion extraction and recognition from music. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2016, 1728–1733. https://doi.org/10.1109/FSKD.2016.7603438
Zhang, Y., Ji, X., & Zhang, S. (2016). An approach to EEG-based emotion recognition using combined feature extraction method. Neuroscience Letters, 633, 152–157. https://doi.org/10.1016/j.neulet.2016.09.037
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |