UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Waste dyes such as Congo red at certain levels can damage the environment because of toxicity and may cause malfunctioning of the liver, kidneys, and nerves. Therefore, this study aims to analyze optimum pH, concentration, particle size of the adsorbent, and the eluent flow rate on the adsorption of Congo red by Napa soil (NS). The results showed optimum pH of 6, an initial concentration of 20 mg/L, and a particle size of 75 μm and the optimum flow rate of the eluent of 40 drops/minute. Furthermore, the determination of adsorption at the optimum condition of the NS as adsorbent without treatment (fresh) has a higher capacity than the purified Napa soil. The absorption capacity was 0.37 mg/g and 0.25 mg/g, and desorption at the optimum condition (recovery column) showed that the highest percentage is by using ethanol. Besides reducing the concentration of the Congo red dye and determining the absorption capacity of the adsorbent, the other aim of the adsorbent application is for pre-concentration. The results showed that the number of concentrated Congo red dye is equal to 0.11 mg/g. © 2021, Rasayan Journal of Chemistry, c/o Dr. Pratima Sharma. |
References |
Adamis, Z., & Williams, R. B. (2005). Bentonite, Kaolin and Selected Clay Minerals, World Health Organization, Genewa, 25(11), 43. Retrieved from www.scopus.com Afkhami, A., & Moosavi, R. (2010). Adsorptive removal of congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. Journal of Hazardous Materials, 174(1-3), 398-403. doi:10.1016/j.jhazmat.2009.09.066 Ahmad, R., & Kumar, R. (2010). Adsorptive removal of congo red dye from aqueous solution using bael shell carbon. Applied Surface Science, 257(5), 1628-1633. doi:10.1016/j.apsusc.2010.08.111 Anwar, M., Munaf, E., Kosela, S., Wibowo, W., & Zainul, R. (2015). Study of pb(II) biosorption from aqueous solution using immobilized spirogyra subsalsa biomass. Journal of Chemical and Pharmaceutical Research, 7(11), 715-722. Retrieved from www.scopus.com Bhaumik, M., McCrindle, R., & Maity, A. (2013). Efficient removal of congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres. Chemical Engineering Journal, 228, 506-515. doi:10.1016/j.cej.2013.05.026 Boukhemkhem, A., & Rida, K. (2017). Improvement adsorption capacity of methylene blue onto modified tamazert kaolin. Adsorption Science and Technology, 35(9-10), 753-773. doi:10.1177/0263617416684835 Canli, M., Abali, Y., & Bayca, S. U. (2013). Removal of methylene blue by natural and ca and k-exchanged zeolite treated with hydrogen peroxide. Physicochemical Problems of Mineral Processing, 49(2), 481-496. doi:10.5277/ppmp130210 Caponi, N., Collazzo, G. C., Jahn, S. L., Dotto, G. L., Mazutti, M. A., & Foletto, E. L. (2017). Use of brazilian kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents. Materials Research, 20, 14-22. doi:10.1590/1980-5373-mr-2016-0673 Chatterjee, S., Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2007). Adsorptive removal of congo red, a carcinogenic textile dye by chitosan hydrobeads: Binding mechanism, equilibrium and kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 299(1-3), 146-152. doi:10.1016/j.colsurfa.2006.11.036 Chen, H., & Zhao, J. (2009). Adsorption study for removal of congo red anionic dye using organo-attapulgite. Adsorption, 15(4), 381-389. doi:10.1007/s10450-009-9155-z Crist, R. H., Karl, O., Jane, M., Johnson, J. K., & Michael Brlttsan, M. (1992). Interaction of metals and protons with algae. 3. marine algae, with emphasis on lead and aluminum. Environmental Science and Technology, 26(3), 496-502. doi:10.1021/es00027a007 Dawood, S., & Sen, T. K. (2014). Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. J.Chem.Proc.Eng., 1(1), 1-11. Retrieved from www.scopus.com Flores Segura, J. C., Reyes Cruz, V. E., García, F. L., Hernandez Cruz, L. E., & Veloz Rodreguez, M. A. (2012). Purification of kaolin clays by means of electrochemical techniques. Recent Developments in Metallurgy, Materials and Environment, , 145-154. Retrieved from www.scopus.com Huang, T., Yan, M., He, K., Huang, Z., Zeng, G., Chen, A., . . . Chen, G. (2019). Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. Journal of Colloid and Interface Science, 543, 43-51. doi:10.1016/j.jcis.2019.02.030 Laajeb, A., Addaou, A., Lahsini, A., Ghomri, F., Elfatri, M., & Rodriguez, M. A. (2012). Clay mineral characterization and effect of the particle size onto zinc adsorption kinetic studies. Asian Journal of Chemistry, 24(11), 4851-4854. Retrieved from www.scopus.com Li, S. -., Yu, C., Wu, Z. -., Cai, X. -., & Zha, F. -. (2020). Effect of kaolin particle size on the removal of pb(II) from aqueous solutions by kaolin-supported nanoscale zero-valent iron. Materials Research Express, 7(4) doi:10.1088/2053-1591/ab83a3 Liu, S., Ding, Y., Li, P., Diao, K., Tan, X., Lei, F., . . . Huang, Z. (2014). Adsorption of the anionic dye congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide. Chemical Engineering Journal, 248, 135-144. doi:10.1016/j.cej.2014.03.026 Mawardi, M., Sanjaya, H., & Zainul, R. (2015). Journal of Chemical and Pharmaceutical Research, 12, 905. Retrieved from www.scopus.com Meroufel, B., Benali, O., Benyahia, M., Benmoussa, Y., & Zenasni, M. A. (2013). Adsorptive removal of anionic dye from aqueous solutions by algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. Journal of Materials and Environmental Science, 4(3), 482-491. Retrieved from www.scopus.com Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Mohammed, A. K., & Shuaib, D. T. (2019). Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5(11) doi:10.1016/j.heliyon.2019.e02923 Nwabanne, J. T., & Igbokwe, P. K. (2012). Adsorption performance of packed bed column for the removal of lead (ii) using oil palm fi bre. International Journal of Applied Science and Technology, 2(5), 106-115. Retrieved from www.scopus.com Oscik, J. (1982). Adsorption, Retrieved from www.scopus.com Prabhu Dass Batvari, B., & Saravanan, D. (2020). Determination of heavy metals in pristipoma furcatus and acanthurus strigosus fish species collected from pulicat lake, chennai. Rasayan Journal of Chemistry, 13(1), 195-201. doi:10.31788/RJC.2020.1315474 Ramelow, U. S., Guidry, C. N., & Fisk, S. D. (1996). A kinetic study of metal ion binding by biomass immobilized in polymers. Journal of Hazardous Materials, 46(1), 37-55. doi:10.1016/0304-3894(95)00104-2 Samarghandi, M. R., Hadi, M., & McKay, G. (2014). Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone-derived active carbon. Adsorption Science and Technology, 32(10), 791-806. doi:10.1260/0263-6174.32.10.791 Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462. doi:10.1016/j.cej.2016.09.029 WANG, C., LI, J., WANG, L., SUN, X., & HUANG, J. (2009). Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and equilibrium studies. Chinese Journal of Chemical Engineering, 17(3), 513-521. doi:10.1016/S1004-9541(08)60239-6 Zen, S., & El Berrichi, F. Z. (2016). Adsorption of tannery anionic dyes by modified kaolin from aqueous solution. Desalination and Water Treatment, 57(13), 6024-6032. doi:10.1080/19443994.2014.981218 Zhang, J., Zhang, G., Zhou, Q., & Ou, L. (2016). Thermodynamics, kinetics and isotherm studies on the removal of methylene blue from aqueous solution by calcium alginate. Journal of Water Reuse and Desalination, 6(2), 301-309. doi:10.2166/wrd.2015.121 Zhu, H. -., Fu, Y. -., Jiang, R., Jiang, J. -., Xiao, L., Zeng, G. -., . . . Wang, Y. (2011). Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 173(2), 494-502. doi:10.1016/j.cej.2011.08.020 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |