UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Background and Objective: The specific condition with slow-drying mechanisms of cacao seeds may prove to be a possible break through in improving the short-term storage of this recalcitrant species. This study aimed to evaluate the effect of storage conditions on the changes of physiological, microstructural and soluble sugars associated with slow-drying mechanisms in cacao seeds. Materials and Methods: Seeds from ripened cacao pods (PBC 123) were demucilaged, placed in zip-lock polyethylene bags and stored at 14 and 16�C (40 and 80% RH), RT (25�C) and control (freshly extracted seeds). Results: In this study, seeds at RT and 16�C, 40% RH showed a similar germination percentage as the control. Thus, it shall be convenient for the storability up to 12 days. The SEMmicrographs proved that the mild dehydration in seeds of both treatments caused the least cells? morphological changes, which leads to lesser cell damage. However, seeds at RT reduced their storability due to 8-10% of germination occurrence during storage. Along with the results, seeds of both treatments maintained much lesser soluble sugars. The higher soluble sugars at the first 4 days after storage for seeds at 16�C, 40% RH than RT, reflected the negative feedback through the altered metabolisms during storage. Lesser respiration rate with more efficiency in utilizing seed reserves further leads to higher seedling performances for both treatments. Conclusion: This study recommended 16�C, 40% RH as the alternative storage condition for cacao seeds in at least 12 days due to their storability, least cells? damages and altered metabolisms. ? 2021 Shafeeqa Shahruddin et al. |
References |
Ali, A. S., & Elozeiri, A. A. (2017). Metabolic processes during seed germination. Advances in Seed Biology, (1), 141-166. Retrieved from www.scopus.com Angelovici, R., Galili, G., Fernie, A. R., & Fait, A. (2010). Seed desiccation: A bridge between maturation and germination. Trends in Plant Science, 15(4), 211-218. doi:10.1016/j.tplants.2010.01.003 Berjak, P., & Pammenter, N. W. (2013). Implications of the lack of desiccation tolerance in recalcitrant seeds. Frontiers in Plant Science, 4(NOV) doi:10.3389/fpls.2013.00478 Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). Seeds: Physiology of development, germination and dormancy, 3rd edition. Seeds: Physiology of development, germination and dormancy, 3rd edition (pp. 1-392) doi:10.1007/978-1-4614-4693-4 Retrieved from www.scopus.com Bonner, F. T. (1996). Responses to drying of recalcitrant seeds of quercus nigra L. Annals of Botany, 78(2), 181-187. doi:10.1006/anbo.1996.0111 Cherussery, A. V., Radha, P. G., Salim, N., & Jayaram, K. M. (2015). Role of sucrose and raffinose in the desiccation sensitivity of theobroma cacao seeds. Int.J.Plant Sci., 10, 38-42. Retrieved from www.scopus.com Connor, K. F., & Sowa, S. (2003). Effects of desiccation on the physiology and biochemistry of quercus alba acorns. Tree Physiology, 23(16), 1147-1152. doi:10.1093/treephys/23.16.1147 FAO. (2014). Genebank standards for plant genetic resources for food and agriculture. Genebank Standards for Plant Genetic Resources for Food and Agriculture, Retrieved from www.scopus.com FARIA, J. M. R. (2006). Desiccation Tolerance and Sensitivity in Medicago Truncatula and Inga Vera Seeds.2006, Retrieved from www.scopus.com Finch-Savage, W. E. (2003). Seed development -| onset of desiccation tolerance. Encyclopedia of Applied Plant Sciences, , 1279-1284. Retrieved from www.scopus.com Gimenez, J. I., Ferreira, G., & Corsato, J. M. (2014). Soluble sugars and germination of annona emarginata (schltdl.) H. rainer seeds submitted to immersion in GA3 up to different water contents. [Açúcares solúveis e germinação de sementes de Annona emarginata (Schltdl.) H. Rainer submetidas à imersão em GA3 até diferentes teores de água] Revista Brasileira De Fruticultura, 36(SPEC. EDITION 1), 281-287. doi:10.1590/S0100-29452014000500033 Ignatz, M., Hourston, J. E., Turečková, V., Strnad, M., Meinhard, J., Fischer, U., . . . Leubner-Metzger, G. (2019). The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta, 250(5), 1717-1729. doi:10.1007/s00425-019-03257-5 ISTA. (2011). International rules for seed testing. International Rules for Seed Testing, Retrieved from www.scopus.com Johnsiul, L., & Awang, A. (2019). Evaluation of clonal uniformity in class one malaysian commercial cocoa clones based on SSR markers. Int.J.Agric.for.Plantation, 8, 12-17. Retrieved from www.scopus.com Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J.Proc.R.Soc.N.S.W, 138(38), 65-75. Retrieved from www.scopus.com Liang, Y., & Sun, W. Q. (2000). Desiccation tolerance of recalcitrant theobroma cacao embryonic axes: The optimal drying rate and its physiological basis. Journal of Experimental Botany, 51(352), 1911-1919. doi:10.1093/jexbot/51.352.1911 Long, R. L., Gorecki, M. J., Renton, M., Scott, J. K., Colville, L., Goggin, D. E., . . . Finch-Savage, W. E. (2015). The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biological Reviews, 90(1), 31-59. doi:10.1111/brv.12095 Lukatkin, A. S., Brazaityte, A., Bobinas, C., & Duchovskis, P. (2012). Chilling injury in chilling-sensitive plants: A review. Agriculture, 99(2), 111-124. Retrieved from www.scopus.com Martínez Maldonado, F. E., Lasprilla, D. M., Magnitskiy, S., & Melgarejo, L. M. (2015). Germination, protein contents and soluble carbohydrates during storage of sugar apple seeds (annona squamosa L.). Journal of Applied Botany and Food Quality, 88, 308-313. doi:10.5073/JABFQ.2015.088.044 Moore, J. P., Nguema-Ona, E., Chevalier, L., Lindsey, G. G., Brandt, W. F., Lerouge, P., . . . Driouich, A. (2006). Response of the leaf cell wall to desiccation in the resurrection plant myrothamnus flabellifolius. Plant Physiology, 141(2), 651-662. doi:10.1104/pp.106.077701 Nath, K., Solanky, K. U., & Bala, M. (2015). Role of total soluble sugar, phenols and defense related enzymes in relation to banana fruit rot by lasiodiplodia theobromae [(path.) griff. and maubl.] during ripening. J.Plant Pathol.Microbiol, 6(8) Retrieved from www.scopus.com Obroucheva, N., Sinkevich, I., & Lityagina, S. (2016). Physiological aspects of seed recalcitrance: A case study on the tree aesculus hippocastanum. Tree Physiology, 36(9), 1127-1150. doi:10.1093/treephys/tpw037 Ofosu-Ansah, E., Budu, A. S., Mensah-Brown, H., Takrama, J. F., & Afoakwa, E. O. (2013). Changes in nib acidity, proteolysis and sugar concentration as influenced by pod storage and roasting conditions of fermented cocoa (theobroma cacao) beans. Journal of Food Science and Engineering, 3(12), 635-647. Retrieved from www.scopus.com Pukacka, S., Malec, M., & Ratajczak, E. (2011). ROS production and antioxidative system activity in embryonic axes of quercus robur seeds under different desiccation rate conditions. Acta Physiologiae Plantarum, 33(6), 2219-2227. doi:10.1007/s11738-011-0761-5 Raudienė, E., Rušinskas, D., Balčiūnas, G., Juodeikienė, G., & Gailius, D. (2017). Carbon dioxide respiration rates in wheat at various temperatures and moisture contents. Mapan - Journal of Metrology Society of India, 32(1), 51-58. doi:10.1007/s12647-016-0202-4 Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., & Prado, F. E. (2009). Soluble sugars-metabolism, sensing and abiotic stress a complex network in the life of plants. Plant Signaling and Behavior, 4(5), 388-393. doi:10.4161/psb.4.5.8294 Sershen, Perumal, A., Varghese, B., Govender, P., Ramdhani, S., & Berjak, P. (2014). Effects of elevated temperatures on germination and subsequent seedling vigour in recalcitrant trichilia emetica seeds. South African Journal of Botany, 90, 153-162. doi:10.1016/j.sajb.2013.11.005 Shahruddin, S., Lassim, M. M., Awang, A., Ramba, H., & Azman, E. A. (2020). Moisture equilibration on germinability and seedling performance of cacao (theobroma cacao) seed. Trans.Sci.Technol, 7, 121-126. Retrieved from www.scopus.com Soares, G. C. M., Dias, D. C. F. S., Faria, J. M. R., & Borges, E. E. L. (2015). Physiological and biochemical changes during the loss of desiccation tolerance in germinating adenanthera pavonina L. seeds. Anais Da Academia Brasileira De Ciencias, 87(4), 2001-2011. doi:10.1590/0001-3765201520140195 Tommasi, F., Paciolla, C., Concetta de Pinto, M., & De Gara, L. (2006). Effects of storage temperature on viability, germination and antioxidant metabolism in Ginkgo biloba L. seeds. Plant Physiology and Biochemistry, 44(5-6), 359-368. doi:10.1016/j.plaphy.2006.06.014 Vanitha, C., Ramamoorthy, K., Vijayakumar, A., & Sivasubramaniam, K. (2005). Moist and conditioning to minimize loss of viability in cocoa (theobroma cacao linn.) seed. Natural Product Radiance, 4, 487-491. Retrieved from www.scopus.com Wen, B. (2011). Cytological and physiological changes related to cryotolerance in recalcitrant livistona chinensis embryos during seed development. Protoplasma, 248(3), 483-491. doi:10.1007/s00709-010-0188-7 Wesley-Smith, J., Pammenter, N. W., Berjak, P., & Walters, C. (2001). The effects of two drying rates on the desiccation tolerance of embryonic axes of recalcitrant jackfruit (artocarpus heterophyllus lamk.) seeds. Annals of Botany, 88(4), 653-664. doi:10.1006/anbo.2001.1519 Xiao, H. W., & Gao, Z. J. (2012). The application of scanning electron microscope (SEM) to study the microstructure changes in the field of agricultural products drying. The Scanning Electron Microscope, , 213-226. Retrieved from www.scopus.com |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |