UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0127-9696
Main Author :Norjan Yusof
Additional Authors : Azlan Kamari
Title :Production of lipid and carbohydrate in tetradesmus obliquus UPSI-JRM02 under nitrogen stress condition
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Jurnal Teknologi
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Nitrogen stress condition is believed to increase the production of lipid in microalgae, but the synthesis of both lipid and carbohydrate is less known. Therefore, the effect of nitrogen stress condition on the synthesis of lipid and carbohydrate of Tetradesmus obliquus UPSI-JRM02 was studied in a 2 L bioreactor system. The highest lipid and carbohydrate yields achieved under nitrogen stress condition were 37% and 23%, respectively. Nitrogen stress condition induced the accumulation of carbohydrate at early stage but started to reduce on day 4 when the carbon shifted towards lipid production. The fatty acid profile produced under nitrogen stress condition was composed of 54% polyunsaturated fatty acid (PUFA), 43% saturated fatty acid (SFA) and 3% monounsaturated fatty acid (MUFA). The biofuel properties of T. obliquus obtained under the nitrogen stress condition was within the range of biodiesel standard and is most suitable for the usage in cold country. ? 2021 Penerbit UTM Press. All rights reserved.

References

Suparmaniam, U., Lam, M., Uemura, Y., Lim, J., Lee, K., & Shuit, S. 2019. Insights into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renewable and Sustainable Energy Reviews. 115: 109361. Doi: 10.1016/j.rser.2019.109361.

Nordin, N., Yusof, N., & Samsudin, S. 2017. Biomass Production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in Nitrified Landfill Leachate. Waste and Biomass Valorization. 8(7): 2301-2311. Doi: 10.1007/s12649- 016-9709-8.

Chu, W. 2017. Strategies to Enhance Production of Microalgal Biomass and Lipids for Biofuel Feedstock. European Journal of Phycology. 52(4): 419-437. Doi: 10.1080/09670262.2017.1379100.

Breuer, G., Lamers, P., Martens, D., Draaisma, R., & Wijffels, R. 2013. Effect of Light Intensity, pH, and Temperature on Triacylglycerol (TAG) Accumulation Induced by Nitrogen Starvation in Scenedesmus obliquus. Bioresource Technology. 143: 1-9. Doi: 10.1016/j.biortech.2013.05.105.

Stephenson, A., Dennis, J., Howe, C., Scott, S., & Smith, A. 2010. Influence of Nitrogen-Limitation Regime on the Production by Chlorella vulgaris of Lipids for Biodiesel Feedstocks. Biofuels. 1(1): 47-58. Doi: 10.4155/bfs.09.1.

Chellamboli, C., & Perumalsamy, M. 2014. Application of Response Surface Methodology for Optimization of Growth and Lipids in Scenedesmus abundans using Batch Culture System. RSC Adv. 4(42): 22129-22140. Doi: 10.1039/c4ra01179a.

Martin, G. J. O., Hill, D. R. A., Olmstead, I. L. D., Bergamin, A., Shears, M. J., Dias, D. A., & Callahan, D. L. 2014. Lipid Profile Remodelling in Response to Nitrogen Deprivation in the Microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS ONE. 9(8). Doi: 10.1371/journal.pone.0103389.

Yang, F., Long, L., Sun, X., Wu, H., Li, T., & Xiang, W. 2014. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp. Marine Drugs. 12(3): 1245-1257. Doi: 10.3390/md12031245.

Markou, G., Angelidaki, I., Georgakakis, D. 2012. Microalgal Carbohydrates: An Overview of the Factors Influencing Carbohydrates Production, and of Main Bioconversion Technologies for Production of Biofuels. Applied Microbiology and Biotechnology. 96(3): 631-645. Doi: 10.1007/s00253-012-4398-0.

Fulbright, S. P., Robbins-Pianka, A., Berg-Lyons, D., Knight, R., Reardon, K. F., & Chisholm, S. T. 2018. Bacterial Community Changes in an Industrial Algae Production System. Algal Research. 31: 147-156. Doi: 10.1016/j.algal.2017.09.010.

Parsa, M., Jalilzadeh, H., Pazoki, M., Ghasemzadeh, R., & Abduli, M. A. 2018. Hydrothermal Liquefaction of Gracilaria gracilis and Cladophora glomerata macroAlgae for Biocrude Production. Bioresource Technology. 250: 26-34. Doi: 10.1016/j.biortech.2017.10.059.

Lee, O., Seong, D., Lee, C., Lee, E. 2015. Sustainable Production of Liquid Biofuels from Renewable Microalgae Biomass. Journal of Industrial and Engineering Chemistry. 29: 24-31. Doi: 10.1016/j.jiec.2015.04.016.

Li, L., Cui, J., Liu, Q., Ding, Y., Liu, J. 2015. Screening and Phylogenetic Analysis of Lipid-Rich Microalgae. Algal Research. 11: 381-386. Doi: 10.1016/j.algal.2015.02.028.

Nordin, N., Yusof, N., & Samsudin, S. 2014. Microalgae Biomass Production and Nitrate Removal from Landfill Leachate. Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences 2014. Yogyakarta: Yogyakarta State University.

Nordin, N., Samsudin, S., & Yusof, N. 2019. Isolation and Identification of Microalgae from High Nitrate Landfill Leachate. Jurnal Teknologi. 81(5): 61-67. Doi: https://doi.org/10.11113/jt.v81.13581.

Singh, P., Guldhe, A., Kumari, S., Rawat, I., Bux, F. 2015. Investigation of Combined Effect of Nitrogen, Phosphorus and Iron on Lipid Productivity of Microalgae Ankistrodesmus falcatus KJ671624 using Response Surface Methodology. Biochemical Engineering Journal. 94: 22-29. Doi: 10.1016/j.bej.2014.10.019.

Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., Yuan, Z. 2013. Metabolic Changes of Starch and Lipid Triggered by Nitrogen Starvation in the Microalga Chlorella zofingiensis. Bioresource Technology. 152: 292-298. Doi: 10.1016/j.biortech.2013.10.092.

Francisco, É., Neves, D., Jacob-Lopes, E., & Franco, T. 2010. Microalgae as Feedstock for Biodiesel Production: Carbon Dioxide Sequestration, Lipid Production and Biofuel Quality. Journal of Chemical Technology & Biotechnology. 85(3): 395-403. Doi: 10.1002/jctb.2338.

Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. 2009. Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology. 100(1): 261-268. Doi: 10.1016/j.biortech.2008.06.039.

Ramírez-Verduzco, L., Rodríguez-Rodríguez, J., & JaramilloJacob, A. 2012. Predicting Cetane Number, Kinematic Viscosity, Density and Higher Heating Value of Biodiesel from Its Fatty Acid Methyl Ester Composition. Fuel. 91(1): 102-111. Doi: 10.1016/j.fuel.2011.06.070.

Wu, H., & Miao, X. 2014. Biodiesel Quality and Biochemical Changes of Microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in Response to Nitrate Levels. Bioresource Technology. 170: 421-427. Doi: 10.1016/j.biortech.2014.08.017.

Agirman, N., & Cetin, A. 2017. Effect of Nitrogen Limitation on Growth, Total Lipid Accumulation and Protein Amount in Scenedesmus acutus as Biofuel Reactor Candidate. Natural Science and Discovery. 3(3): 33-38. Doi: 10.20863/nsd.322614.

BenMoussa-Dahmen, I., Chtourou, H., Rezgui, F., Sayadi, S., & Dhouib, A. 2016. Salinity Stress Increases Lipid, Secondary Metabolites and Enzyme Activity in Amphora subtropica and Dunaliella sp. for Biodiesel Production. Bioresource Technology. 218: 816-825. Doi: 10.1016/j.biortech.2016.07.022.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.