UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
Subject :Q Science
ISBN :9783035735802
ISSN :1012-0394
Main Author :Izan Roshawaty Mustapa
Additional Authors :Norlinda Daud
Title :Thermomechanical, crystallization and melting behavior of plasticized poly (Lactic acid) nanocomposites
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2021
Notes :Solid State Phenomena
Corporate Name :Universiti Pendidikan Sultan Idris
Web Link :Click to view web link
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
The incorporation of filler and plasticizer provides effective nucleation and mechanical reinforcement in polymer composites to impart flexibility, toughness, thermal stability and tensile strength of poly (lactic acid) (PLA) composites that can be used in the development of packaging applications. In this paper, the inclusion of plasticizer and reinforcement of nanofiller in PLA matrix prepared using solvent casting and thermocompression methods aim to improve the thermomechanical properties that consequently alter the crystallization and melting behavior of PLA composites. Plasticized PLA with different percentages of titanium dioxide (TiO2) at 2.0, 3.5, 5.0, and 7.0 % w/w were dispersed in PLA solution using a mechanical mixer and ultrasonication technique to introduce a matrix reinforcing nanophase within the composite. The thermomechanical properties and thermal behavior of PLA nanocomposites were characterized using dynamic mechanical analysis (DMA) and differential scanning calorimeter (DSC). DSC cooling curves at a low scanning rate of 2.0 K�min-1 proved that the presence of tributyl citrate (TBC) in the PLA matrix increased the crystallinity of plasticized PLA nanocomposites that initiated the formation of perfect spherulites. TBC increased the crystallization activity during cooling, which in turn reduced the recrystallization effect on heating, in parallel with DMA results that revealed a small peak of cold-crystallization activity on PLA nanocomposites with the addition of plasticizer observed at the temperature range of 80 �C to 100 �C. Nanofiller induced nucleation for crystallization of PLA matrix and plasticizer accelerated the overall crystallization process. Considerable adjustments of plasticizer and nanofiller in PLA matrix in having a good balance of stiffness and flexibility are a practical strategy that has potential in biopolymer medical engineering and the development of packaging applications. ? 2021 Trans Tech Publications Ltd, Switzerland.

References

Ahmed, J., Varshney, S. K., Auras, R., & Hwang, S. W. (2010). Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films. Journal of Food Science, 75(8), N97-N108. doi:10.1111/j.1750-3841.2010.01809.x

Anuar, H., Razali, M. S., Saidin, H. A., Hisham, A. F. B., Mohd Apandi, S. N. E., & Ali, F. (2016). Tensile properties of durian skin fibre reinforced plasticized polylactic acid biocomposites. Int.J.Eng.Mater.Manuf., 1(1), 16-20. Retrieved from www.scopus.com

Arjmandi, R., Hassan, A., Haafiz, M. K. M., Zakaria, Z., & Inuwa, I. M. (2014). Characterization of polylactic acid/microcrystalline cellulose/montmorillonite hybrid composites. [Pencirian komposit polilaktik asid/selulosa mikrohablur/ hibrid montmorilonit] Malaysian Journal of Analytical Sciences, 18(3), 642-650. Retrieved from www.scopus.com

Arrieta, M. P., Samper, M. D., Aldas, M., & López, J. (2017). On the use of PLA-PHB blends for sustainable food packaging applications. Materials, 10(9) doi:10.3390/ma10091008

Azeredo, H. M. C. d. (2009). Nanocomposites for food packaging applications. Food Research International, 42(9), 1240-1253. doi:10.1016/j.foodres.2009.03.019

Baek, N., Kim, Y. T., Marcy, J. E., Duncan, S. E., & O'Keefe, S. F. (2018). Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life, 17, 30-38. doi:10.1016/j.fpsl.2018.05.004

Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., & Wintermantel, E. (2003). Thermal and mechanical properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science, 90(7), 1731-1738. doi:10.1002/app.12549

Buzarovska, A. (2013). PLA nanocomposites with functionalized TiO2 nanoparticles. Polymer - Plastics Technology and Engineering, 52(3), 280-286. doi:10.1080/03602559.2012.751411

Cargnello, M., Gordon, T. R., & Murray, C. B. (2014). Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chemical Reviews, 114(19), 9319-9345. doi:10.1021/cr500170p

Chen, L., & Dou, Q. (2019). Influence of the combination of nucleating agent and plasticizer on the nonisothermal crystallization kinetics and activation energies of poly (lactic acid). J.Therm.Anal.Calorim, , 1-22. Retrieved from www.scopus.com

Costa, R. G. F., Ribeiro, C., & Mattoso, L. H. C. (2010). Morphological and photocatalytic properties of PVA/TiO 2 nanocomposite fibers produced by electrospinning. Journal of Nanoscience and Nanotechnology, 10(8), 5144-5152. doi:10.1166/jnn.2010.2405

Costa, R. G. F., Ribeiro, C., & Mattoso, L. H. C. (2013). Study of the effect of rutile/anatase TiO2 nanoparticles synthesized by hydrothermal route in electrospun PVA/TiO2 nanocomposites. Journal of Applied Polymer Science, 127(6), 4463-4469. doi:10.1002/app.38031

Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12(23), 1841-1846. doi:10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H. A., & Jafari, S. H. (2015). Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. Journal of Thermal Analysis and Calorimetry, 121(3), 1321-1332. doi:10.1007/s10973-015-4554-8

Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. doi:10.1016/j.addr.2016.06.012

Finkenstadt, V. L., Liu, C. -., Cooke, P. H., Liu, L. S., & Willett, J. L. (2008). Mechanical property characterization of plasticized sugar beet pulp and poly(lactic acid) green composites using acoustic emission and confocal microscopy. Journal of Polymers and the Environment, 16(1), 19-26. doi:10.1007/s10924-008-0085-8

Ge, H., Yang, F., Hao, Y., Wu, G., Zhang, H., & Dong, L. (2013). Thermal, mechanical, and rheological properties of plasticized poly(L -lactic acid). Journal of Applied Polymer Science, 127(4), 2832-2839. doi:10.1002/app.37620

Giita Silverajah, V. S., Ibrahim, N. A., Zainuddin, N., Wan Yunus, W. M. Z., & Hassan, H. A. (2012). Mechanical, thermal and morphological properties of poly(lactic acid)/epoxidized palm olein blend. Molecules, 17(10), 11729-11747. doi:10.3390/molecules171011729

Harte, I., Birkinshaw, C., Jones, E., Kennedy, J., & DeBarra, E. (2012). The effect of citrate ester plasticizers on the thermal and mechanical properties of poly (DL-lactide). J.Appl.Polym.Sci, , 1-7. Retrieved from www.scopus.com

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x

Kang, H., Li, Y., Gong, M., Guo, Y., Guo, Z., Fang, Q., & Li, X. (2018). An environmentally sustainable plasticizer toughened polylactide. RSC Advances, 8(21), 11643-11651. doi:10.1039/c7ra13448g

Kratochvíl, J., & Kelnar, I. (2017). Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. Journal of Thermal Analysis and Calorimetry, 130(2), 1043-1052. doi:10.1007/s10973-017-6417-y

Kumar, V., Tyagi, L., & Sinha, S. (2011). Wood flour-reinforced plastic composites: A review. Reviews in Chemical Engineering, 27(5-6), 253-264. doi:10.1515/REVCE.2011.006

Kuswandi, B. (2017). Environmental friendly food nano-packaging. Environmental Chemistry Letters, 15(2), 205-221. doi:10.1007/s10311-017-0613-7

Labrecque, L. V., Kumar, R. A., Davé, V., Gross, R. A., & Mccarthy, S. P. (1997). Citrate esters as plasticizers for poly(lactic acid). Journal of Applied Polymer Science, 66(8), 1507-1513. doi:10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0

Lim, L. -., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science (Oxford), 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004

Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092

Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing polylactic acid (PLA). Polimeros, 25(6), 581-590. doi:10.1590/0104-1428.1986

Marra, A., Silvestre, C., Kujundziski, A. P., Chamovska, D., & Duraccio, D. (2017). Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 74(8), 3027-3041. doi:10.1007/s00289-016-1881-2

Mustapa, I. R., Daud, N., & Shanks, R. A. (2020). Non-isothermal crystallization kinetics of plasticized poly(lactic-acid) nanocomposites. Journal of Advanced Research in Dynamical and Control Systems, 12(Special Issue 2), 701-708. doi:10.5373/JARDCS/V12SP2/SP20201123

Mustapa, I. R., Shanks, R. A., & Kong, I. (2013). Poly(lactic acid)-hemp-nanosilica hybrid composites: Thermomechanical, thermal behavior and morphological properties. Int.J.Adv.Sci.Eng.Technol., 3(1), 192-199. Retrieved from www.scopus.com

Mustapa, I. R., Shanks, R. A., Kong, I., & Daud, N. (2018). Morphological structure and thermomechanical properties of hemp fibre reinforced poly(lactic acid) nanocomposites plasticized with tributyl citrate. Materials Today: Proceedings, 5(1), 3211-3218. doi:10.1016/j.matpr.2018.01.130

Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry and Engineering, 4(6), 2899-2916. doi:10.1021/acssuschemeng.6b00321

Pillin, I., Montrelay, N., Bourmaud, A., & Grohens, Y. (2008). Effect of thermo-mechanical cycles on the physico-chemical properties of poly(lactic acid). Polymer Degradation and Stability, 93(2), 321-328. doi:10.1016/j.polymdegradstab.2007.12.005

Pluta, M., & Galeski, A. (2002). Crystalline and supermolecular structure of polylactide in relation to the crystallization method. Journal of Applied Polymer Science, 86(6), 1386-1395. doi:10.1002/app.11280

Pluta, M., Galeski, A., Alexandre, M., Paul, M. -., & Dubois, P. (2002). Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. Journal of Applied Polymer Science, 86(6), 1497-1506. doi:10.1002/app.11309

Shi, N., & Dou, Q. (2015). Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. Journal of Thermal Analysis and Calorimetry, 119(1), 635-642. doi:10.1007/s10973-014-4162-z

Singh, S., Maspoch, M. L., & Oksman, K. (2019). Crystallization of triethyl-citrate-plasticized poly(lactic acid) induced by chitin nanocrystals. Journal of Applied Polymer Science, 136(36) doi:10.1002/app.47936

Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science and Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003

Su, Z., Li, Q., Liu, Y., Hu, G. -., & Wu, C. (2009). Multiple melting behavior of poly(lactic acid) filled with modified carbon black. Journal of Polymer Science, Part B: Polymer Physics, 47(20), 1971-1980. doi:10.1002/polb.21790

Thuy, N. T., Duc, V. M., & Liem, N. T. (2018). Properties of poly (lactic acid) plasticized by epoxidized rubber seed oil. Vietnam J.Chem, 56(2), 181-186. Retrieved from www.scopus.com

Wang, N., Zhang, X., Ma, X., & Fang, J. (2008). Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polymer Degradation and Stability, 93(6), 1044-1052. doi:10.1016/j.polymdegradstab.2008.03.023

Yee, Y. Y., Ching, Y. C., Rozali, S., Hashim, N. A., & Singh, R. (2016). Preparation and characterization of poly(lactic acid)-based composite reinforced with oil palm empty fruit bunch fiber and nanosilica. BioResources, 11(1), 2269-2286. doi:10.15376/BIORES.11.1.2269-2286

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science (Oxford), 31(6), 576-602. doi:10.1016/j.progpolymsci.2006.03.002

Zhang, Q., Li, D., Zhang, H., Su, G., & Li, G. (2018). Preparation and properties of poly(lactic acid)/sesbania gum/nano-TiO2 composites. Polymer Bulletin, 75(2), 623-635. doi:10.1007/s00289-017-2059-2

Zhao, J. -., Pan, H. -., Yang, H. -., Bian, J. -., Zhang, H. -., Gao, G., & Dong, L. -. (2019). Studies on rheological, thermal, and mechanical properties of Polylactide/Methyl methacrylate-butadiene-styrene Copolymer/Poly(propylene carbonate) polyurethane ternary blends. Chinese Journal of Polymer Science (English Edition), 37(12), 1273-1282. doi:10.1007/s10118-019-2276-2

Zhijun, Q., Xingxiang, Z., Ning, W., & Jianming, F. (2009). Poly(1,3-butylene adipate) plasticized poly(lactic acid)/carbon black as electrical conductive polymer composites. Polymer Composites, 30(11), 1576-1584. doi:10.1002/pc.20730


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)