UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Previous studies [Langmuir, 2014, 30, 21, 6057?6063, Phys. Chem. Chem. Phys., 2017,19, 23869?23877] have shown that surfactants bearing highly-methylated alkyl tails (so-called ?hedgehog? groups) are able to reduce the limiting surface tension at the aqueous critical micelle concentration (CMC) to ?CMC ~24 mN m?1, which is considerably lower than for common n-alkyl tail surfactants (30?40 mN m?1). In the quest to develop even more effective and efficient non-fluorinated surfactants, this study introduces new amphiphiles having double and triple hedgehog tails and examines relationships between surfactant structure and aqueous solution properties. Of particular interest are links between ?CMC, the effective hydrophobic-tail layer density (?layer) and total number of carbon and silicon atoms in the hydrophobic tails (NC+Si). Interestingly, ?CMC is seen to depend on ?layer rather than NC+Si, and ?layer ~0.63 g cm?3 appears to be an optimal surface layer density for promoting low ?CMC. For a surfactant bearing trimethysilyl (TMS) chain tips, exchanging the surfactant counterions from Na+ to Mg2+ reduced ?CMC from 23.8 mN m?1 to 21.5 mN m?1, which is very low for a hydrocarbon surfactant, and comparable to typical fluorinated surfactants. A new measure of the ability of different surfactants to lower surface tension is proposed, which is helpful for targeting low surface energy (tension) non-fluorinated surfactants. In terms of both ?CMC and CMC TMS-terminal tips are shown to be key groups for promoting hydrophobicity and/or low surface tensions. ? 2021 Elsevier B.V. |
References |
Alexander, S., Smith, G. N., James, C., Rogers, S. E., Guittard, F., Sagisaka, M., & Eastoe, J. (2014). Low-surface energy surfactants with branched hydrocarbon architectures. Langmuir, 30(12), 3413-3421. doi:10.1021/la500332s Bakr, S. A. (2017). Surface, biological and antitumor activity of some thio- based cationic surfactants. J.Am.Sci., 13, 106-120. Retrieved from www.scopus.com Beans, C. (2021). How “forever chemicals” might impair the immune system. Proceedings of the National Academy of Sciences of the United States of America, 118(15) doi:10.1073/pnas.2105018118 Beckman, E. J. (2004). Supercritical and near-critical CO2 in green chemical synthesis and processing. Journal of Supercritical Fluids, 28(2-3), 121-191. doi:10.1016/S0896-8446(03)00029-9 Callow, M. E., & Fletcher, R. L. (1994). The influence of low surface energy materials on bioadhesion - a review. International Biodeterioration and Biodegradation, 34(3-4), 333-348. doi:10.1016/0964-8305(94)90092-2 Consan, K. A., & Smith, R. D. (1990). Observations on the solubility of surfactants and related molecules in carbon dioxide at 50°C. The Journal of Supercritical Fluids, 3(2), 51-65. doi:10.1016/0896-8446(90)90008-A Czajka, A., Hill, C., Peach, J., Pegg, J. C., Grillo, I., Guittard, F., . . . Eastoe, J. (2017). Trimethylsilyl hedgehogs - A novel class of super-efficient hydrocarbon surfactants. Physical Chemistry Chemical Physics, 19(35), 23869-23877. doi:10.1039/c7cp02570j Fröba, A. P., Penedo Pellegrino, L., & Leipertz, A. (2004). Viscosity and surface tension of saturated n-pentane. International Journal of Thermophysics, 25(5), 1323-1337. doi:10.1007/s10765-004-5741-1 Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science and Technology, 35(7), 1339-1342. doi:10.1021/es001834k Goetheer, E. L. V., Vorstman, M. A. G., & Keurentjes, J. T. F. (1999). Opportunities for process intensification using reverse micelles in liquid and supercritical carbon dioxide. Chemical Engineering Science, 54(10), 1589-1596. doi:10.1016/S0009-2509(99)00043-3 Grandjean, P., Heilmann, C., Weihe, P., Nielsen, F., Mogensen, U. B., Timmermann, A., & Budtz-Jørgensen, E. (2017). Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. Journal of Immunotoxicology, 14(1), 188-195. doi:10.1080/1547691X.2017.1360968 Hill, C., Umetsu, Y., Fujita, K., Endo, T., Sato, K., Yoshizawa, A., . . . Sagisaka, M. (2020). Design of surfactant tails for effective surface tension reduction and micellization in water and/or supercritical CO2. Langmuir, 36(48), 14829-14840. doi:10.1021/acs.langmuir.0c02835 Hussain, S. M. S., Kamal, M. S., Solling, T., Murtaza, M., & Fogang, L. T. (2019). Surface and thermal properties of synthesized cationic poly(ethylene oxide) gemini surfactants: The role of the spacer. RSC Advances, 9(52), 30154-30163. doi:10.1039/c9ra06577f Jamaluddin, N. A., Mohamed, A., Abu Bakar, S., Ardyani, T., Sagisaka, M., Suhara, S., . . . Eastoe, J. (2020). Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: Colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 22(22), 12732-12744. doi:10.1039/d0cp01243b Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents. Journal of the American Oil Chemists Society, 30(2), 74-80. doi:10.1007/BF02635002 Kondor, A., Quellet, C., & Dallos, A. (2015). Surface characterization of standard cotton fibres and determination of adsorption isotherms of fragrances by IGC. Surface and Interface Analysis, 47(11), 1040-1050. doi:10.1002/sia.5811 Kovalchuk, N. M., Sagisaka, M., Osaki, S., & Simmons, M. J. H. (2020). Superspreading performance of branched ionic trimethylsilyl surfactant mg(AOTSiC)2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604 doi:10.1016/j.colsurfa.2020.125277 Lee Jr., C. T., Psathas, P. A., Johnston, K. P., DeGrazia, J., & Randolph, T. W. (1999). Water-in-carbon dioxide emulsions: Formation and stability. Langmuir, 15(20), 6781-6791. doi:10.1021/la9903548 Lee, S., & Kam, S. I. (2013). Enhanced oil recovery by using CO2 foams: Fundamentals and field applications. Enhanced oil recovery field case studies (pp. 23-61) doi:10.1016/B978-0-12-386545-8.00002-6 Retrieved from www.scopus.com Looker, C., Luster, M. I., Calafat, A. M., Johnson, V. J., Burleson, G. R., Burleson, F. G., & Fletcher, T. (2014). Influenza vaccine response in adults exposed to perfluorooctanoate and perfluorooctanesulfonate. Toxicological Sciences, 138(1), 76-88. doi:10.1093/toxsci/kft269 Martin, J. W., Smithwick, M. M., Braune, B. M., Hoekstra, P. F., Muir, D. C. G., & Mabury, S. A. (2004). Identification of long-chain perfluorinated acids in biota from the canadian arctic. Environmental Science and Technology, 38(2), 373-380. doi:10.1021/es034727+ Masuda, J., Nakahara, H., Karasawa, S., Moroi, Y., & Shibata, O. (2007). Solution properties of perfluorinated anionic surfactants with divalent counterion of separate electric charges. Langmuir, 23(17), 8778-8783. doi:10.1021/la7005474 Matsumoto, Y., Yoshida, K., & Ishida, M. (1998). A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices. Sensors and Actuators, A: Physical, 66(1-3), 308-314. doi:10.1016/S0924-4247(97)01763-9 Mohamed, A., Sagisaka, M., Guittard, F., Cummings, S., Paul, A., Rogers, S. E., . . . Eastoe, J. (2011). Low fluorine content CO2-philic surfactants. Langmuir, 27(17), 10562-10569. doi:10.1021/la2021885 Nave, S., Eastoe, J., & Penfold, J. (2000). What is so special about aerosol-OT? 1. aqueous systems. Langmuir, 16(23), 8733-8740. doi:10.1021/la000341q Nishino, T., Meguro, M., Nakamae, K., Matsushita, M., & Ueda, Y. (1999). The lowest surface free energy based on -CF3 alignment. Langmuir, 15(13), 4321-4323. doi:10.1021/la981727s Patra, N., Ray, D., Aswal, V. K., & Ghosh, S. (2018). Exploring physicochemical interactions of different salts with sodium N-dodecanoyl sarcosinate in aqueous solution. ACS Omega, 3(8), 9256-9266. doi:10.1021/acsomega.8b00718 Peach, J., & Eastoe, J. (2014). Supercritical carbon dioxide: A solvent like no other. Beilstein Journal of Organic Chemistry, 10, 1878-1895. doi:10.3762/bjoc.10.196 Poliakoff, M., Fitzpatrick, J. M., Farren, T. R., & Anastas, P. T. (2002). Green chemistry: Science and politics of change. Science, 297(5582), 807-810. doi:10.1126/science.297.5582.807 Renner, R. (2001). Growing concern over perfluorinated chemicals. Environmental Science and Technology, 35(7), 154A-160A. doi:10.1021/es012317k Sagisaka, M., Ito, A., Kondo, Y., Yoshino, N., Ok Kwon, K., Sakai, H., & Abe, M. (2001). Effects of fluoroalkyl chain length and added moles of oxyethylene on aggregate formation of branched-tail fluorinated anionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183-185, 749-755. doi:10.1016/S0927-7757(01)00501-5 Sagisaka, M., Iwama, S., Yoshizawa, A., Mohamed, A., Cummings, S., & Eastoe, J. (2012). Effective and efficient surfactant for CO 2 having only short fluorocarbon chains. Langmuir, 28(30), 10988-10996. doi:10.1021/la301305q Sagisaka, M., Narumi, T., Niwase, M., Narita, S., Ohata, A., James, C., . . . Eastoe, J. (2014). Hyperbranched hydrocarbon surfactants give fluorocarbon-like low surface energies. Langmuir, 30(21), 6057-6063. doi:10.1021/la501328s Sagisaka, M., Ono, S., James, C., Yoshizawa, A., Mohamed, A., Guittard, F., . . . Eastoe, J. (2018). Anisotropic reversed micelles with fluorocarbon-hydrocarbon hybrid surfactants in supercritical CO2. Colloids and Surfaces B: Biointerfaces, 168, 201-210. doi:10.1016/j.colsurfb.2017.12.012 Sagisaka, M., Saito, T., Abe, M., Yoshizawa, A., Blesic, M., Rogers, S. E., . . . Eastoe, J. (2020). Water-in-CO2Microemulsions stabilized by an efficient catanionic surfactant. Langmuir, 36(26), 7418-7426. doi:10.1021/acs.langmuir.0c00970 Sagisaka, M., Yoda, S., Takebayashi, Y., Otake, K., Kondo, Y., Yoshino, N., . . . Abe, M. (2003). Effects of CO2-philic tail structure on phase behavior of fluorinated aerosol-OT analogue surfactant/water/supercritical CO2 systems. Langmuir, 19(20), 8161-8167. doi:10.1021/la027040w Schmidt, D. L., Coburn, C. E., Dekoven, B. M., Potter, G. E., Meyers, G. F., & Fischer, D. A. (1994). Water-based non-stick hydrophobic coatings. Nature, 368(6466), 39-41. doi:10.1038/368039a0 Serras-Pereira, J., Aleiferis, P. G., Richardson, D., & Wallace, S. (2009). Characteristics of ethanol, butanol, iso-octane and gasoline sprays and combustion from a multi-hole injector in a DISI engine. SAE International Journal of Fuels and Lubricants, 1(1), 893-909. doi:10.4271/2008-01-1591 Song, J., & Rojas, O. J. (2013). Approaching super-hydrophobicity from cellulosic materials: A review. Nordic Pulp and Paper Research Journal, 28(2), 216-238. doi:10.3183/npprj-2013-28-02-p216-238 Tsibouklis, J., & Nevell, T. G. (2003). Ultra-low surface energy polymers: The molecular design requirements. Advanced Materials, 15(7-8), 647-650. doi:10.1002/adma.200301638 Tsubone, K., Arakawa, Y., & Rosen, M. J. (2003). Structural effects on surface and micellar properties of alkanediyl- α,ω -bis(sodium N -acyl- β -alaninate) gemini surfactants. Journal of Colloid and Interface Science, 262(2), 516-524. doi:10.1016/S0021-9797(03)00078-X Vargaftik, N. B., Volkov, B. N., & Voljak, L. D. (1983). International tables of the surface tension of water. Journal of Physical and Chemical Reference Data, 12(3), 817-820. doi:10.1063/1.555688 Yan, H., Sone, M., Mizushima, A., Nagai, T., Abe, K., Ichihara, S., & Miyata, S. (2004). Electroplating in CO2-in-water and water-in-CO2 emulsions using a nickel electroplating solution with anionic fluorinated surfactant. Surface and Coatings Technology, 187(1), 86-92. doi:10.1016/j.surfcoat.2004.01.009 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |