UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :final_year_project
Subject :LB Theory and practice of education
Main Author :Tang, Li Ping
Title :Sentiment analysis for social media by using SVM
Place of Production :Tanjong Malim
Publisher :Fakulti Seni, Komputeran dan Industri Kreatif
Year of Publication :2023
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file

Abstract : Universiti Pendidikan Sultan Idris
This project attempts to assist educators in analysing the sentiment of Malay social media posts. The output from the sentiment can be used to enhance their teaching and learning activities. In this project, training and testing data was acquired from Husein in 2018, the Malay Stopwords List that used in data preprocessing stage was based on the research of Fatimah Ahmad (1995). All datasets need to be prepared using preprocessing, including tokenization, stop word removal, lower casing, removing numbers, and removing punctuations. Then the TF-IDF vectorization method was used. In this project, we implemented Support Vector Machine (SVM). The performance of trained models were evaluated using Confusion Matrix and Evaluation Matrix. From the experiment this project tends to produce 93% accuracy, 92% for prediction and 92% for recall.

References

Ahmad, I., Basheri, M., Iqbal, M. J., & Rahim, A. (2018). Performance Comparison of 

Support Vector Machine, Random Forest, and Extreme Learning Machine for 

Intrusion Detection. IEEE Access, 6(c), 33789–33795. 

https://doi.org/10.1109/ACCESS.2018.2841987 

 

Buntoro, G. A. (2017). Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di 

Twitter. Integer Journal, 2(1), 32–41. 

https://doi.org/https://doi.org/10.31284/j.integer.2017.v2i1.95 

 

Cai, C., Li, L., & Zeng, D. (2016). New words enlightened sentiment analysis in 

social media. IEEE International Conference on Intelligence and Security 

Informatics: Cybersecurity and Big Data, ISI 2016, 202–204. 

https://doi.org/10.1109/ISI.2016.7745470 

 

Cheng, L. C., & Tsai, S. L. (2019). Deep learning for automated sentiment analysis of 

social media. Proceedings of the 2019 IEEE/ACM International Conference on 

Advances in Social Networks Analysis and Mining, ASONAM 2019, 1001–1004. 

https://doi.org/10.1145/3341161.3344821 

 

Dadgar, S. M. H., Araghi, M. S., & Farahani, M. M. (2016). A novel text mining 

approach based on TF-IDF and support vector machine for news classification. 

Proceedings of 2nd IEEE International Conference on Engineering and 

Technology, ICETECH 2016, 112–116. 

https://doi.org/10.1109/ICETECH.2016.7569223 

 

Dwivedi, S. K., & Rawat, B. (2016). A review paper on data preprocessing: A critical 

phase in web usage mining process. Proceedings of the 2015 International 

Conference on Green Computing and Internet of Things, ICGCIoT 2015, 506–

510. https://doi.org/10.1109/ICGCIoT.2015.7380517 

 

Fatimah Dato Ahmad. (1995). Sistem capaian dokumen bahasa melayu: satu 

pendekatan eksperimen & analisis. Tesis Dr Falsafah, Jabatan Sains Komputer, 

Universiti Kebangsaan Malaysia. 

 

Fitri, V. A., Andreswari, R., & Hasibuan, M. A. (2019). Sentiment analysis of social 

media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve 

Bayes, decision tree, and random forest algorithm. Procedia Computer Science, 

161, 765–772. https://doi.org/10.1016/j.procs.2019.11.181 

 

Gao, Z., Feng, A. O., Song, X., & Wu, X. I. (2019). Target-Dependent Sentiment 

Classification With BERT. IEEE Access, 7, 154290–154299. 

https://doi.org/10.1109/ACCESS.2019.2946594 

 

Guzman, E., & Maalej, W. (2014). How Do Users Like This Feature ? A Fine Grained 

Sentiment Analysis of App Reviews. 2014 IEEE 22nd International Requirements 

Engineering Conference (RE). 

 

Hakim, A. A., Erwin, A., Eng, K. I., Galinium, M., & Muliady, W. (2014). Automated 

document classification for news article in Bahasa Indonesia based on term 

frequency inverse document frequency (TF-IDF) approach. Proceedings - 2014 

6th International Conference on Information Technology and Electrical 

Engineering: Leveraging Research and Technology Through University-Industry 

Collaboration, ICITEE 2014. https://doi.org/10.1109/ICITEED.2014.7007894 

 

Hao, W., & Castanon, J. A. (2015). Sentiment Expression via Emoticons on Social 

Media- Twitter. IEEE International Conference on Big Data (Big Data), 6(6), 

818–824. https://doi.org/10.22214/ijraset.2018.6125 

 

Haque, R., Islam, N., Tasneem, M., & Das, A. K. (2023). MULTI-CLASS 

SENTIMENT CLASSIFICATION ON BENGALI SOCIAL MEDIA 

COMMENTS USING. International Journal of Cognitive Computing in 

Engineering, 0–45. https://doi.org/10.1016/j.ijcce.2023.01.001 

 

Hassan, A. U., Hussain, J., Hussain, M., Sadiq, M., & Lee, S. (2017). Sentiment 

analysis of social networking sites (SNS) data using machine learning approach 

for the measurement of depression. International Conference on Information and 

Communication Technology Convergence: ICT Convergence Technologies 

Leading the Fourth Industrial Revolution, ICTC 2017, 2017-Decem, 138–140. 

https://doi.org/10.1109/ICTC.2017.8190959 

 

Hollander, J. B., Graves, E., Renski, H., Foster-Karim, C., Wiley, A., & Das, D. 

(2016). A (Short) History of Social Media Sentiment Analysis. Urban Social 

Listening: Potential and Pitfalls for Using Microblogging Data in Studying 

Cities, 1–97. https://doi.org/10.1057/978-1-137-59491-4 

 

Imamah, Husni, Rachman, E. M., Suzanti, I. O., & Mufarroha, F. A. (2019). Text 

Mining and Support Vector Machine for Sentiment Analysis of Tourist Reviews 

in Bangkalan Regency. Journal of Physics: Conference Series, 1477(2). 

https://doi.org/10.1088/1742-6596/1477/2/022023 

 

Imran, A. S., Daudpota, S. M., Kastrati, Z., & Bhatra, R. (2020). Cross-Cultural 

Polarity and Emotion Detection Using Sentiment Analysis and Deep Learning on 

COVID-19 Related Tweets. IEEE Access, 8, 181074–181090. 

https://doi.org/10.1109/ACCESS.2020.3027350 

 

Jony, R. I., Mohammed, N., Habib, A., Momen, S., & Rony, R. I. (2015). An 

Evaluation of Data Processing Solutions Considering Preprocessing and 

“special” Features. Proceedings - 11th International Conference on Signal-Image 

Technology and Internet-Based Systems, SITIS 2015, 224–231. 

https://doi.org/10.1109/SITIS.2015.125 

 

Li, J., & Qiu, L. (2017). A sentiment analysis method of short texts in microblog. 

Proceedings - 2017 IEEE International Conference on Computational Science 

and Engineering and IEEE/IFIP International Conference on Embedded and 

Ubiquitous Computing, CSE and EUC 2017, 1, 776–779. 

https://doi.org/10.1109/CSE-EUC.2017.153 

 

Li, S., & Wan, P. (2009). Study on the data preprocessing of the questionnaire based 

on the combined classification data mining model. 2009 International 

Conference on E-Learning, E-Business, Enterprise Information Systems, and E-

Government, EEEE 2009, 217–220. https://doi.org/10.1109/EEEE.2009.49 

 

Luo, F., Li, C., & Cao, Z. (2016). Affective-feature-based sentiment analysis using 

SVM classifier. Proceedings of the 2016 IEEE 20th International Conference on 

Computer Supported Cooperative Work in Design, CSCWD 2016, 276–281. 

https://doi.org/10.1109/CSCWD.2016.7566001 

 

Mao, J., & Liu, W. (2019). A BERT-based approach for automatic humor detection 

and scoring. CEUR Workshop Proceedings, 2421(September 2019), 197–202. 

 

Melgani, F., & Bruzzone, L. (2004). Classification of hyperspectral remote sensing 

images with support vector machines. IEEE Transactions on Geoscience and 

Remote Sensing, 42(8), 1778–1790. https://doi.org/10.1109/TGRS.2004.831865 

 

Mishra, A., & Vishwakarma, S. (2015). Analysis of TF-IDF Model and its Variant for 

Document Retrieval. Proceedings - 2015 International Conference on 

Computational Intelligence and Communication Networks, CICN 2015, 772–776.  

https://doi.org/10.1109/CICN.2015.157 

 

Ren, L., Xu, B., Lin, H., Liu, X., & Yang, L. (2020). Sarcasm Detection with 

Sentiment Semantics Enhanced Multi-level Memory Network. Neurocomputing, 

401, 320–326. https://doi.org/10.1016/j.neucom.2020.03.081 

 

Seki, Y. (2016). Use of Twitter for Analysis of Public Sentiment for Improvement of 

Local Government Service. 2016 IEEE International Conference on Smart 

Computing, SMARTCOMP 2016, 1–3. 

https://doi.org/10.1109/SMARTCOMP.2016.7501726 

 

Shi, H. X., & Li, X. J. (2011). A sentiment analysis model for hotel reviews based on 

supervised learning. Proceedings - International Conference on Machine 

Learning and Cybernetics, 950–954. 

https://doi.org/10.1109/ICMLC.2011.6016866 

 

Su, Y., Li, S., Ju, S., Zhou, G., & Li, X. (2012). Multi-view Learning for Semi-

supervised Sentiment Classification. 2012 International Conference on Asian 

Language Processing Multi-View, 13–16. https://doi.org/10.1109/IALP.2012.53 

 

Yahav, I., Shehory, O., & Schwartz, D. (2019). Comments Mining With TF-IDF: The 

Inherent Bias and Its Removal. IEEE Transactions on Knowledge and Data 

Engineering, 31(3), 437–450. https://doi.org/10.1109/TKDE.2018.2840127 

 

Yunitasari, Y., Musdholifah, A., & Sari, A. K. (2019). Sarcasm Detection For 

Sentiment Analysis in Indonesian Tweets. IJCCS (Indonesian Journal of 

Computing and Cybernetics Systems), 13(1), 53. 

https://doi.org/10.22146/ijccs.41136 

 

Zhai, G., Yang, Y., Wang, H., & Du, S. (2020). Multi-attention fusion modeling for 

sentiment analysis of educational big data. Big Data Mining and Analytics, 3(4), 

311–319. https://doi.org/10.26599/BDMA.2020.9020024 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.