UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :thesis
Subject :QC Physics
Main Author :Azlina Yahya
Title :Structural, intensity parameters and luminescence analysis of rGO-/CNTs-Coated tellurite glass doped with erbium nanoparticles
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Corporate Name :Universiti Pendidikan Sultan Idris
PDF Guest :Click to view PDF file
PDF Full Text :Login required to access this item.

Abstract : Universiti Pendidikan Sultan Idris
This study aimed to improve the optical properties of reduced graphene oxide- and carbon nanotubes-coated tellurite glass doped with erbium oxide nanoparticles denoted as ZBTEr(NPs)-rGO and ZBTEr(NPs)-CNTs. Two sets of glass series were synthesized by melt-quenched technique with chemical composition of (0.47(1-y))TeO2+(0.2(1- y))B2O3+(0.29(1-y))+ZnO+Er2O3(y) wherein, y = 0.005, 0.01, 0.02, 0.03, 0.04, and 0.05 mol% Er2O3 nanoparticles. Tellurite-based glass was deposited with rGO and CNTs onto the glass surfaces by spray-coated technique. The physical, morphological, structural, and optical properties of ZBTEr(NPs)-rGO and ZBTEr(NPS)-CNTs glasses were characterized via densimeter, scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transforminfrared (FT-IR), micro-Raman spectroscopy, ultraviolet-visible (UV-Vis) spectrophotometer, and photoluminescence. SEM micrographs revealed morphological structures of rGO and CNTs on the glass surfaces meanwhile, EDX spectra disclosed elemental composition of rGO and CNTs. TEM images proved existence of Er(NPs) with average size (~23.53 nm) in glass matrix. XRD pattern verified amorphous nature of glasses. FT-IR spectra evaluated the presence of non-bridging oxygens (NBOs) with TeO4, TeO3, and BO3 functional groups meanwhile, Raman spectra demonstrated good quality of rGO and CNTs. The refractive index value was increased (2.402-2.775) for ZBTEr(NPs)- rGO meanwhile, (2.432-2.542) for ZBTEr(NPs)-CNTs. The optical bandgap energy value was improved (1.913-2.931 eV) for ZBTEr(NPs)-rGO and (2.513-2.875 eV) ZBTEr(NPs)- CNTs meanwhile, non-linear trend of Urbach energy (0.118-0.408 eV) for ZBTEr(NPs)- rGO and (0.158-0.375 eV) for ZBTEr(NPs)-CNTs. Judd-Ofelt’s intensity parameters showed Ω2>Ω6>Ω4 trend for ZBTEr(NPs)-rGO whilst, Ω2>Ω4>Ω6 trend for ZBTEr(NPs)- CNTs. Radiative parameters and branching ratio proved 2H11/2→4I15/2 transition showed highest radiative transition value, resulting in a strong green emission. Luminescence spectra exhibited two emission peaks assigned to 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions. In conclusion, the rGO and CNTs deposition enhanced the optical properties of glass materials. Implication of this study offers a new milestone in the glass coatings field for improving current fiber optics.

References

Aarts, L., Jaeqx, S., Ende, B. M. Van Der, & Meijerink, A. (2011). Downconversion for the Er3+, Yb3+ couple in KPb2Cl —A low-phonon frequency host. Journal of Luminescence, 131, 608–613. 

 

Abdel-Baki, M., & El-Diasty, F. (2007). Optical properties of oxide glasses containing transition metals : Case of titanium- and chromium-containing glasses. Current Opinion in Solid State and Materials Science, 10(5–6), 217–229. 

 

Abid, Sehrawat, P., Islam, S. S., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature , Defect States and Quantum Efficiency. Scientific Reports, 8(1). 

 

Afroozeh, A. (2021). Dependence of linear and non-linear optical properties to sp3 domains level and edges length in graphene-based nanomaterials. Optik, 226, 165903. 

 

Ahmadi, F., Hussin, R., & Ghoshal, S. K. (2016). Judd-Ofelt intensity parameters of samarium-doped magnesium zinc sulfophosphate glass. Journal of Non-Crystalline Solids, 448, 43–51. 

 

Ahmed, E. M., Youssif, M. I., & Elzelaky, A. A. (2019). Structural, thermal and photoemission properties of erbium doped phosphate glass. Ceramics International, 45(18), 24014–24021. 

 

Akbari, E., Akbari, I., & Ebrahimi, M. R. (2019). sp2/ sp3 bonding ratio dependence of the band-gap in graphene oxide. The European Physical Journal B, 92(4). 

 

Al-azzawi, A. A., Almukhtar, A. A., Hamida, B. A., Das, S., Dhar, A., & Paul, M. C. (2019). Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique. Results in Physics, 13, 102186. 

 

Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S., & Atieh, M. A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics International, 45, 14439–14448. 

 

Al-Hadeethi, Y., Sayyed, M. I., & Rammah, Y. S. (2019). Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3 – Bi2O3 – ZnO – CaO glasses. Ceramics International, 45(16), 20724–20732. 

 

Al-Harbi, N., Sayyed, M. I., Al-Hadeethi, Y., Kumar, A., Elsafi, M., Mahmoud, K. A., Khandaker, M. U., & Bradley, D. A. (2021). A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiation Physics and Chemistry, 188, 

109645. 

 

Alalawi, A., Al-Buriahi, M. S., Sayyed, M. I., Akyildirim, H., Arslan, H., Zaid, M. H. M., & Tonguc, B. T. (2020). Influence of lead and zinc oxides on the radiation shielding properties of tellurite glass systems. Ceramics International, 46(11), 17300–17306. 

 

Ali, E., Hadis, D., Hamzeh, K., Mohammad, K., Nosratollah, Z., Abolfazl, A., Mozhgan, A., Younes, H., & Woo, J. S. (2014). Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Research Letters, 9, 393. 

 

Alvarez-Ramos, M. E., Alvarado-Rivera, J., Zayas, M. E., Caldiño, U., & Hernández-Paredes, J. (2018). Yellow to orange-reddish glass phosphors: Sm3+, Tb3+and Sm3+/Tb3+ in zinc tellurite-germanate glasses. Optical Materials, 75, 88–93. 

 

Amiar Rodin, N. L., & Sahar, M. R. (2018). Erbium doped sodium magnesium boro-tellurite glass: Stability and Judd-Ofelt analysis. Materials Chemistry and Physics, 216, 177–185. 

 

Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., & Arifin, R. (2013). Synthesis and characterization of Dy3+ doped zinc-lead-phosphate glass. Optical Materials, 35, 1103–1108. 

 

Antidormi, A., Roche, S., & Colombo, L. (2020). Impact of oxidation morphology on reduced graphene oxides upon thermal annealing. JPhys Materials, 3(1). 

 

Aradhana, D. M., Dissanayake, S., Cifuentes, M. P., & Humphrey, M. G. (2018). Optical limiting properties of (reduced) graphene oxide covalently functionalized by coordination complexes. Coordination Chemistry Reviews, 375, 489–513. 

 

Arora, N., & Sharma, N. N. (2014). Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diamond and Related Materials, 50, 135–150. 

 

Arranz-Mascarós, P., Godino-Salido, M. L., López-Garzón, R., García-Gallarín, C., Chamorro-Mena, I., López-Garzón, F. J., Fernández-García, E., & Gutiérrez-Valero, M. D. (2020). Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface. ACS Omega, 5(30), 18849–18861. 

 

Asokamani, R., & Manjula, R. (1989). Correlation between electronegativity and superconductivity. Physica Review B, 39(7), 4217–4221. 

 

Augustine, S., Singh, J., Srivastava, M., Sharma, M., Das, A., & D. Malhotra, B. (2017). Biomaterials Science Recent advances in carbon based nanosystems for cancer theranostics. Biomaterials Science, 5, 901–952. 

 

Awang, A., Ghoshal, S. K., Sahar, M. R., & Arifin, R. (2015). Gold nanoparticles assisted structural and spectroscopic modification in Er3+-doped zinc sodium 

tellurite glass. Optical Materials, 42, 495–505. 

 

Azizighannad, S., & Mitra, S. (2018). Stepwise reduction of Graphene Oxide (GO) and its effects on chemical and colloidal properties. Scientific Reports, 8, 10083. 

 

Azlan, M. N., & Halimah, M. K. (2018). Role of Nd3+ nanoparticles on enhanced optical efficiency in borotellurite glass for optical fiber. Results in Physics, 11, 58–64. 

 

Azlan, M. N., Halimah, M. K., Baki, S. O., & Mohamad, D. W. (2015). Green Emission of Tellurite Based Glass Containing Erbium Oxide Nanoparticles. Journal of Nanomaterials. 

 

Azlan, M. N., Halimah, M. K., El-Mallawany, R., Faznny, M. F., & Eevon, C. (2017). Optical properties of zinc borotellurite glass system doped with erbium and erbium nanoparticles for photonic applications. Journal of Materials Science: Materials in Electronics, 28(5), 4318–4327. 

 

Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211–218. 

 

Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., & El-mallawany, R. (2019). Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Materials Chemistry and Physics, 236. 

 

Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82–88. 

 

Ba, H., Sutter, C., Papaefthimiou, V., Zafeiratos, S., Bahouka, A., Lafue, Y., Nguyen-Dinh, L., Romero, T., & Pham-Huu, C. (2020). Foldable flexible electronics based on few-layer graphene coated on paper composites. Carbon, 167, 169–180. 

 

Bachvarova-nedelcheva, A., Iordanova, R., Ganev, S., & Dimitriev, Y. (2018). Glass formation and structural studies of glasses in the TeO-ZnO-Bi2O3–NbO5 system. Journal of Non-Crystalline Solids. 

 

Bacon, R. (1960). Growth, structure, and properties of graphite whiskers. Journal of Applied Physics, 31(2), 283–290. 

 

Balda, R., Hakmeh, N., Barredo-zuriarrain, M., Merdrignac-Conacec, O., García-Revilla, S., Arriandiaga, M. A., & Fernández, J. (2016). Influence of Upconversion Processes in the Optically-Induced Inhomogeneous Thermal Behavior of Erbium-Doped Lanthanum Oxysulfide Powders. Materials, 9(5), 353. 

 

Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2(3), 463–470. 

 

Belosludtseva, A. A., Bobenko, N. G., Egorushkin, V. E., Korusenko, P. M., Melnikova, N. V., & Nesov, S. N. (2021). Oxygen functionalization and electronic band gap control in the disordered multi-walled carbon nanotubes. Synthetic Metals, 280, 116866. 

 

Bengisu, M. (2015). Borate glasses for scientific and industrial applications: a review. Journal of Materials Science, 51, 2199–2242. 

 

Bhardwaj, S., Shukla, R., Sanghi, S., Agarwal, A., & Pal, I. (2014). Spectroscopic properties of Sm3+ doped lead bismosilicate glasses using Judd-Ofelt theory. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 117, 191–197. 

 

Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of Nd3+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 5, 44–52. 

 

Bodelot, L., Pavic, L., Hallais, S., Charliac, J., & Lebental, B. (2019). Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: in-situ characterization. Scientific Reports, 9(1), 5513. 

 

Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature Photonics, 4(9), 611–622. 

 

Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 149(0), 249–259. 

 

Buddhudu, S., & Bryant, F. J. (1989). OPTICAL TRANSITIONS OF Er3+:La202S AND Er3+:Y202S. Journal of the Less-Common Metals, 147, 213–225. 

 

Bulus, I., Hussin, R., Ghoshal, S. K., Tamuri, A. R., & Jupri, S. A. (2019). Enhanced elastic and optical attributes of boro-telluro-dolomite glasses : Role of CeO2 doping. Ceramics International, 45, 18648–18658. 

 

Bunaciu, A. A., Udristioiu, E. gabriela, & Aboul-Enein, H. Y. (2015). X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry, 45(4), 289–299. 

 

Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M. Van Der, Parpia, J. M., Craighead, H. G., & Mceuen, P. L. (2008). Impermeable Atomic Membranes from 2008. Nano Letters, 8(8), 2458–2462. 

 

Câmara, J. G., da Silva, D. M., Kassab, L. R. P., de Araújo, C. B., & Gomes, A. S. L. (2021). Random laser emission from neodymium doped zinc tellurite glass-powder presenting luminescence concentration quenching. Journal of Luminescence, 233, 117936. 

 

Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 µm emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses. Scientific Reports, 6(1), 1–11. 

 

Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics, 49(10), 4424–4442. 

 

Chan, K. F., Mohd Zaid, M. H., Liza, S., Mamat, M. S., Matori, K. A., Endot, N. A., Tanemura, M., & Yaakob, Y. (2021). Tuning the optical bandgap of multi-walled carbon nanotube-modified zinc silicate glass-ceramic composites. Ceramics International, 47(14), 20108–20116. 

 

Chaudhary, K. T., Rizvi, Z. H., Bhatti, K. A., Ali, J., & Yupapin, P. P. (2013). Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. Journal of Nanomaterials, 1–13. 

 

Cheng, C., Li, S., Thomas, A., Kotov, N. A., & Haag, R. (2017). Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 117(3), 1826–1914. 

 

Chien, C. T., Li, S. S., Lai, W. J., Yeh, Y. C., Chen, H. A., Chen, I. S., Chen, L. C., Chen, K. H., Nemoto, T., Isoda, S., Chen, M., Fujita, T., Eda, G., Yamaguchi, H., Chhowalla, M., & Chen, C. W. (2012). Tunable photoluminescence from graphene oxide. Angewandte Chemie - International Edition, 51(27), 6662–6666. 

 

Chimalawong, P., Kirdsiri, K., Kaewkhao, J., & Limsuwan, P. (2012). Investigation on the physical and optical properties of Dy3+ doped soda-lime-silicate glasses. Procedia Engineering, 32, 690–698. 

 

Chopra, N., Kaur, S., Kaur, M., Singla, S., Marwaha, R., Sharma, G., & Heer, M. S. (2018). Optical, Physical and Structural Properties of Er3+ Doped Low-Phonon Energy Vitreous Matrix: ZnO-B2O3-TeO2. Physica Status Solidi (A), 215(13), 1700934. 

 

Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291–312. 

 

Dato, A., & Frenklach, M. (2010). Substrate-free microwave synthesis of graphene: experimental conditions and hydrocarbon precursors. New Journal of Physics, 12(12), 125013. 

De Silva, K. K. H., Huang, H. H., Joshi, R. K., & Yoshimura, M. (2017). Chemical reduction of graphene oxide using green reductants. Carbon, 119, 190–199. 

 

Deopa, N., & Rao, A. S. (2017). Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications. Optical Materials, 72, 31–39. 

 

Devreese, J. T. (2003). Polarons. Digital Encyclopedia of Applied Physics, 383–412. 

 

Dideikin, A. T., & Vul’, A. Y. (2019). Graphene oxide and derivatives: The place in graphene family. Frontiers in Physics, 6. 

 

Dimitrov, V., & Komatsu, T. (2013). Electronic polarizability, optical basicity and single bond strength of oxide glasses. Journal of Chemical Technology and Metallurgy, 48(6), 549–554. 

 

Dimitrov, V., & Sakka, S. (1996). Linear and nonlinear optical properties of simple oxides. II. Journal of Applied Physics, 79(3), 1741–1745. 

 

Ding, N., Diao, J., Zhang, D., Zheng, T., & Lv, J. (2020). Spectroscopic properties of Yb3+ and Nd3+ co-doped tellurite glass for 1.0 µm laser application. Ceramics International, 46, 25633–25637. 

 

Divina, R., Marimuthu, K., Sayyed, M. I., Tekin, H. O., & Agar, O. (2019). Physical, structural, and radiation shielding properties of B2O3–MgO–K2O–Sm2O3 glass network modified with TeO2. Radiation Physics and Chemistry, 160, 75–82. 

 

Dreyer, D. R., Ruoff, R. S., & Bielawski, C. W. (2010). From Conception to Realization : An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie International Edition, 49(49), 9336–9344. 

 

Dubois, S. M., Zanolli, Z., Declerck, X., & Charlier, J. (2009). Electronic properties and quantum transport in Graphene-based nanostructures. The European Physical Journal B, 72(1), 1–24. 

 

Edwards, R. S., & Coleman, K. S. (2013). Graphene synthesis : relationship to applications. Nanoscale, 5(1), 38–51. 

 

Effendy, N., Sidek, H. A. A., Halimah, M. K., & Zaid, M. H. M. (2021). Enhancement on thermal , elastic and optical properties of new formulation tellurite glasses : Influence of ZnO as a glass modifier. Materials Chemistry and Physics, 273, 125156. 

 

El-diasty, F., Wahab, F. A. A., & Abdel-baki, M. (2006). Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions. Journal of Applied Physics, 100, 093511. 

 

El-Mallawany, R., El Adawy, A., Gamal, A., & Rammah, Y. S. (2021). Experimental and theoretical elastic moduli of sodium–zinc–tellurite glasses. Optik, 243, 167330. 

 

El-Mallawany, Raouf. (2017). Introduction to tellurite glasses. Springer Series in Materials Science, 254, 1–13. 

 

Elkhoshkhany, N., Essam, O., & Embaby, A. M. (2018). Optical, thermal and antibacterial properties of tellurite glass system doped with ZnO. Materials Chemistry and Physics, 214, 489–498. 

 

Elkhoshkhany, N., Marzouk, S., El-Sherbiny, M., & Ahmed, A. (2019). Properties of tellurite glass doped with ytterbium oxide for optical applications. Journal of Materials Science: Materials in Electronics, 30(7), 6963–6976. 

 

Emiru, T. F., & Ayele, D. W. (2016). Controlled synthesis , characterization and reduction of graphene oxide : A convenient method for large scale production. Egyptian Journal of Basic and Applied Sciences, 4(1), 74–79. 

 

Eom, G., Oh, C., Moon, J., Kim, H., Kim, M. K., Kim, K., Seo, J. W., Kang, T., & Lee, H. J. (2019). Highly sensitive and selective detection of dopamine using overoxidized polypyrrole/sodium dodecyl sulfate-modified carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 848, 113295. 

 

Fang, M., Xiong, X., Hao, Y., Zhang, T., & Wang, H. (2019). Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. Journal of Materials Science & Technology, 35(9), 1989–1995. 

 

Fang, M., Xiong, X., Hao, Y., Zhang, T., Wang, H., Cheng, H., & Zeng, Y. (2019). Preparation of Highly Conductive Graphene-coated Glass Fibers by Sol-gel and Dip-coating Method. Journal of Materials Science & Technology, 35(9), 1989–1995. 

 

Fatemi, S. M., & Foroutan, M. (2015). Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. Journal of Nanostructure in Chemistry, 6(1), 29–40. 

 

Faznny, M. F., Halimah, M. K., & Azlan, M. N. (2016). Effect of Lanthanum Oxide on Optical Properties of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials, 8(2), 49–59. 

 

Fitzpatrick, M. E., Fry, A. T., Holdway, P., Kandil, F. A., Shackleton, J., & Suominen, L. (2005). Determination of Residual Stresses by X-ray Diffraction. National Physical Laboratory, 1309(52). 

 

Gaafar, M. S., & Marzouk, S. Y. (2017). Judd–Ofelt analysis of spectroscopic properties of Er3+ doped TeO2-BaO-ZnO glasses. Journal of Alloys and Compounds, 723, 

1070–1078. 

 

Ganesh, E. N. (2013). Single Walled and Multi Walled Carbon Nanotube Structure. Synthesis and Applications, 2(4), 311–320. 

 

Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped tellurite glasses using XRD, UV-Vis and FTIR. Materials Today: Proceedings, 17, 329–337. 

 

Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403–408. 

 

Gaur, M., Misra, C., Yadav, A. B., Swaroop, S., Maolmhuaidh, F. O., Bechelany, M., & Barhoum, A. (2021). Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. Materials, 14, 5978. 

 

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183–191. 

 

Gifford, B. J., He, X., Kim, M., Kwon, H., Saha, A., Sifain, A. E., Wang, Y., Htoon, H., Kilina, S., Doorn, S. K., & Tretiak, S. (2019). Optical Effects of Divalent Functionalization of Carbon Nanotubes. Chemistry of Materials, 31(17), 6950–6961. 

 

Goh, S. X. L., Goh, E. X. Y., & Lee, H. K. (2021). Sodium dodecyl sulfate-multi-walled carbon nanotubes-coated-membrane solid phase extraction of glucocorticoids in aqueous matrices. Talanta, 221, 121624. 

 

Gomaa, H. M., Yahia, I. S., & Zahran, H. Y. (2021). Correlation between the static refractive index and the optical bandgap: Review and new empirical approach. Physica B: Physics of Condensed Matter, 620, 413246. 

 

Gomes, J. F., Lima, A. M. O., Sandrini, M., Medina, A. N., Steimacher, A., Pedrochi, F., & Barboza, M. J. (2017). Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Optical Materials, 66, 211–219. 

 

Greenwood, G. . (1956). The growth of dispersed precipitates in solutions. Acta Metallurgica, 4(3), 243–248. 

 

Grobert, N. (2007). Carbon nanotubes – importance of clean CNT material for the success of future applications . Review Literature And Arts Of The Americas, 10(1–2), 28–35. 

 

Guo, J., Qi, H., Song, Z., Ni, J., Wang, C., Wang, W., & Peng, G. (2020). A Comparative Study of Thermal Impact on Erbium Doped Distributed Feedback Fiber Laser Output Power. IEEE Photonics Journal, 12(2), 1502009. 

 

Gupta, N., Khanna, A., Hirdesh, Dippel, A. C., & Gutowski, O. (2020). Structure of bismuth tellurite and bismuth niobium tellurite glasses and Bi2Te4O11 anti-glass by high energy X-ray diffraction. RSC Advances, 10(22), 13237–13251. 

 

Gupta, V., Sharma, N., Singh, U., Arif, M., & Singh, A. (2017). Synthesis and characterization of graphene oxide. Optik. 

 

Halimah, M. K., Faznny, M. F., Azlan, M. N., & Sidek, H. A. A. (2017). Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 7, 581–589. 

 

Halimah, M. K., Hamza, A. M., Muhammad, F. D., Chan, K. T., Umar, S. A., Umaru, I., & Geidam, I. G. (2019). Effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. Materials Chemistry and Physics, 236, 121795. 

 

Hamza, A. M., Halimah, M. K., Muhammad, F. D., & Chan, K. T. (2019). Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. Journal of Luminescence, 207, 497–506. 

 

Hamza, A. M., Halimah, M. K., Muhammad, F. D., Chan, K. T., Usman, A., Faznny, M. F., Zaitizila, I., & Tafida, R. A. (2019). Structural, optical and thermal properties of Er3+-Ag codoped bio-silicate borotellurite glass. Results in Physics, 14, 102457. 

 

Han, Z., & Fina, A. (2011). Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Progress in Polymer Science, 36(7), 914–944. 

 

Hasan, T., Senger, B. J., Ryan, C., Culp, M., Gonzalez-rodriguez, R., Coffer, J. L., & Naumov, A. V. (2017). Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment. Scientific Reports, 7(1). 

 

Hasim, N., & Rohani, M. S. (2017). The effect of Nd3+ composition on Judd-ofelt analysis of lithium niobate tellurite glasses codoped with Er3+. Solid State Phenomena, 268 SSP, 191–197. 

 

Huang, Y., Sutter, E., Shi, N. N., Zheng, J., Yang, T., Englund, D., Gao, H., & Sutter, P. (2015). Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. ACS Nano, 9(11), 10612–10620. 

 

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339. 

 

Hussein, K. I., Alqahtani, M. S., Alzahrani, K. J., Alqahtani, F. F., Zahran, H. Y., Alshehri, A. M., Yahia, I. S., Reben, M., & Yousef, E. S. (2022). The Effect of ZnO, MgO, TiO2, and Na2O Modifiers on the Physical, Optical, and Radiation Shielding 

Properties of a TeTaNb Glass System. Materials, 15(5). 

 

Ibrahim, A., Klopocinska, A., Horvat, K., & Hamid, Z. A. (2021). Graphene-based nanocomposites: Synthesis, mechanical properties, and characterizations. Polymers, 13(17). 

 

Iezid, M., Goumeidane, F., Abidi, A., Poulain, M., Legouera, M., Syam Prasad, P., Sroda, M., & Venkateswara Rao, P. (2021). Judd-Ofelt analysis and luminescence studies of Er3+ doped halogeno-antimonate glasses. Optical Materials, 120, 111422. 

 

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–58. 

 

Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. International Journal of Environmental Science and Technology, 363(6430), 603–605. 

 

Ikram, R., Jan, B. M., & Ahmad, W. (2020). An overview of industrial scalable production of graphene oxide and analytical approaches for synthesis and characterization. Journal of Materials Research and Technology, 9(5), 11587–11610. 

 

Ishtiaq, U., Aref, A., Muhsan, A. S., Rashid, A., & Hamdi, S. S. (2022). High strength glass beads coated with CNT/rGO incorporated urethane coating for improved crush resistance for effective hydraulic fracturing. Journal of Petroleum Exploration and Production Technology. 

 

Jacobs, R. R., & Weber, M. J. (1976). Dependence of the 4F3/2 . 4111/2 Induced-Emission Cross Section for Nd3+ on Glass Composition. IEEE Journal of Quantum Electronics, 12(2), 102–111. 

 

Jia, C., Zhang, X., Matras-Postolek, K., Huang, B., & Yang, P. (2018). Z-scheme reduced graphene oxide/TiO2-Bronze/W18O49 ternary heterostructure towards efficient full solar-spectrum photocatalysis. Carbon, 139, 415–426. 

 

Jiménez-pérez, J. L., Gutiérrez-fuentes, R., López-gamboa, G., & Sánchez-ramírez, J. F. (2018). Measurement of optical nonlinear refractive index response of graphene nanoparticles dispersed in an aqueous solution by Z scan technique. Optical Materials, 84, 236–241. 

 

Jimenez, J. A., Sendova, M., & Manchini, M. (2020). Thermal and spectroscopic characterization of copper and erbium containing aluminophosphate glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117546. 

 

Jin, Y., Zheng, Y., Podkolzin, S. G., & Lee, W. (2020). Band gap of reduced graphene oxide tuned by controlling functional groups. Journal of Materials Chemistry C, 

8(14), 4885–4894. 

 

Jlassi, I., Elhouichet, H., & Ferid, M. (2011). Thermal and optical properties of tellurite glasses doped erbium. Journal of Materials Science, 46(3), 806–812. 

 

Jlassi, I., Elhouichet, H., Ferid, M., & Barthou, C. (2010). Judd–Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5. Journal of Luminescence, 130(12), 2394–2401. 

 

Johari, P., & Shenoy, V. B. (2011). Modulating optical properties of graphene oxide: Role of prominent functional groups. ACS Nano, 5(9), 7640–7647. 

 

Jørgensen, Chr Klixbüll, & Judd, B. R. (1964). Hypersensitive pseudoquadrupole transitions in lanthanides. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 8(3), 281–290. 

 

Jørgensen, Christian K., & Reisfeld, R. (1983). Judd-Ofelt parameters and chemical bonding. Journal of The Less-Common Metals, 93, 107–112. 

 

Judd, B. R. (1962). Optical absorption intensities of rare-earth ions. Physical Review, 127(3), 750–761. 

 

Julien, C., Massot, M., Balkanski, W., Krol, A., & Nazarewicz, W. (1989). Infrared studies of the structure of borate glasses. Materials Science and Engineering B, 3(3), 307–312. 

 

Jupri, S. A., Ghoshal, S. K., Omar, M. F., & Yusof, N. N. (2018). Spectroscopic traits of holmium in magnesium zinc sulfophosphate glass host: Judd-Ofelt evaluation. Journal of Alloys and Compounds, 753, 446–456. 

 

Kasik, I., Matejec, V., Hayer, M., Kamradek, M., Podrazky, O., Mrazek, J., Peterka, P., & Honzatko, P. (2020). Glass materials for optical fibers. Ceramics - Silikaty, 64(1), 29–34. 

 

Kaur, S., Pandey, O. P., Jayasankar, C. K., & Chopra, N. (2021). Effect of gamma irradiation on physical, optical, spectroscopic and structural properties of Er3+-doped vitreous zinc borotellurite. Journal of Luminescence, 235, 118031. 

 

Khan, M. A., Amjad, R. J., Ahmad, M. A., Sattar, A., Hussain, S., Yasmeen, S., & Dousti, M. R. (2019). Structural and Optical Study of Erbium Doped Borophosphate Glasses. Optik - International Journal for Light and Electron Optics, 163707. 

 

Khan, S., Ali, J., Harsh, Husain, M., & Zulfequar, M. (2016). Synthesis of reduced graphene oxide and enhancement of its electrical and optical properties by attaching Ag nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 81, 320–325. 

Khosravi, M., Badehian, H. A., & Habibinejad, M. (2021). Optical properties of double walled carbon nanotubes. Journal of Electron Spectroscopy and Related Phenomena, 248, 147058. 

 

Kim, C. Bin, Lee, J., Cho, J., & Goh, M. (2018). Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation. Carbon, 139, 386–392. 

 

Kochmann, S., Hirsch, T., & Wolfbeis, O. S. (2012). The pH dependence of the total fluorescence of graphite oxide. Journal of Fluorescence, 22(3), 849–855. 

 

Konstantinidis, M., Lalla, E. A., Lopez-reyes, G., Rodríguez-mendoza, U. R., Lymer, E. A., Freemantle, J., & Daly, M. G. (2021). Statistical learning for the estimation of Judd-Ofelt parameters : A case study of Er3+ : Doped tellurite glasses. Journal of Luminescence, 235, 118020. 

 

Krupke, W. F. (1966). Optical absorption and fluorescence intensities in several rare-earth-doped Y2O3 and LaF3 single crystals. Physical Review, 145(1), 325–337. 

 

Kruskopf, M., Pierz, K., Pakdehi, D. M., Stosch, R., Bakin, A., & Schumacher, H. W. (2018). A morphology study on the epitaxial growth of graphene and its buffer layer. Thin Solid Films. 

 

Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud’homme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36–41. 

 

Kurzen, H., Bovigny, L., Bulloni, C., & Daul, C. (2013). Electronic structure and magnetic properties of lanthanide3+ cations. Chemical Physics Letters, 574, 129–132. 

 

Labhane, P. K., Patle, L. B., Huse, V. R., Sonawane, G. H., & Sonawane, S. H. (2016). Synthesis of reduced graphene oxide sheets decorated by zinc oxide nanoparticles: Crystallographic, optical, morphological and photocatalytic study. Chemical Physics Letters, 661, 13–19. 

 

Lachheb, R., Herrmann, A., Assadi, A. A., Damak, K., Rüssel, C., & Maâlej, R. (2018). Judd Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. Journal of Luminescence. 

 

Lakshmi, Y. A., Swapna, K., Rama, K. S., Reddy, K., Venkateswarlu, M., Mahamuda, S., & Rao, A. S. (2019). Structural, optical and NIR studies of Er3+ ions doped bismuth boro tellurite glasses for luminescence materials applications. Journal of Luminescence, 211, 39–47. 

 

Lalla, E. A., Konstantinidis, M., De Souza, I., Daly, M. G., Martín, I. R., Lavín, V., & Rodríguez-Mendoza, U. R. (2020). Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+= Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+). Journal of Alloys and Compounds, 845, 156028. 

 

Lalla, E. A., Lozano-Gorrín, A. D., Konstantinidis, M., Daly, M., Leon-Luis, S. F., Lavín, V., & Rodríguez-Mendoza, U. R. (2019). Optical temperature sensor based on Sm3+ emissions in a fluorotellurite glass. Optical Fiber Technology, 47, 178–186. 

 

Lamichhane, A., & Ravindra, N. M. (2020). Energy gap-refractive index relations in perovskites. Materials, 13(8), 1–16. 

 

Lee, X. J., Hiew, B. Y. Z., Lai, K. C., Lee, L. Y., Gan, S., Thangalazhy-Gopakumar, S., & Rigby, S. (2018). Review on graphene and its derivatives : Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 18, 13. 

 

Lee, K. H., Kim, T. H., Kim, Y. S., Jung, Y. J., Na, Y. H., & Ryu, B. K. (2008). Structural Modification of Alkali Tellurite Binary Glass System and Its Characterization. Korean Journal of Materials Research, 18(5), 235–240. 

 

Lesniak, M., Mach, G., Starzyk, B., Baranowska, A., Bik, M., Kochanowicz, M., Zmojda, J., Miluski, P., Sitarz, M., & Dorosz, D. (2020). Investigation of the structure in oxyfluoride TeO2–P2O5 based glasses with the various BaF2 content. Journal of Molecular Structure, 1217, 128452. 

 

Lesniak, M., Szal, R., Starzyk, B., Gajek, M., Kochanowicz, M., Zmojda, J., Miluski, P., Dorosz, J., Sitarz, M., & Dorosz, D. (2019). Influence of barium oxide on glass-forming ability and glass stability of the tellurite–phosphate oxide glasses. Journal of Thermal Analysis and Calorimetry, 138(6), 4295–4302. 

 

Li, Z., Zhang, W., & Xing, F. (2019). Graphene Optical Biosensors. International Journal of Molecular Sciences, 20(10), 2461. 

 

Liang, L., Mo, Z., Ju, B., Xia, C., Hou, Z., & Zhou, G. (2021). Visible and Near-Infrared emission properties of Yb3+/Pr3+ co-doped lanthanum aluminum silicate glass. Journal of Non-Crystalline Solids, 557, 120578. 

 

Linda, D., Duclére, J. R., Hayakawa, T., Dutreilh-Colas, M., Cardinal, T., Mirgorodsky, A., Kabadou, A., & Thomas, P. (2013). Optical properties of tellurite glasses elaborated within the TeO2-Ti2O-Ag2O and TeO2-ZnO-Ag2O ternary systems. Journal of Alloys and Compounds, 561, 151–160. 

 

Liu, W., & Speranza, G. (2021). Tuning the Oxygen Content of Reduced Graphene Oxide and Effects on Its Properties. ACS Omega, 6(9), 6195–6205. 

 

Liu, X., Li, S., Tan, C., Gao, C., Liu, Y., Ye, H., & Zhang, G. (2022). Coalescence kinetics and microstructure evolution of Cu nanoparticles sintering on substrates: a molecular dynamics study. Journal of Materials Research and Technology, 17, 1132–1145. 

 

Liu, Z., She, J., & Peng, B. (2021). Spectroscopic properties of Er3+-doped fluoroindate glasses. Journal of Rare Earths. 

 

Lundie, M., Sljivancanin, Z., & Tomic, S. (2015). Electronic and optical properties of reduced graphene oxide. Journal of Materials Chemistry C, 3, 7632–7641. 

 

Lunt, A. J. G., Chater, P., & Korsunsky, A. M. (2018). On the origins of strain inhomogeneity in amorphous materials. Scientific Reports, 8(1). 

 

Ma, C., Wang, C., Gao, B., Adams, J., Wu, G., & Zhang, H. (2019). Recent progress in ultrafast lasers based on 2D materials as a saturable absorber. Applied Physics Reviews, 6(4), 041304. 

 

Machado, T. M., Falci, R. F., Silva, I. L., Anjos, V., Bell, M. J. V, & Silva, M. A. P. (2019). Erbium 1.55 µm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses Tamires. Materials Chemistry and Physics, 224, 73–78. 

 

Madani, S. Y., Mandel, A., & Seifalian, A. M. (2013). A concise review of carbon nanotube’s toxicology. Nano Reviews, 4, 21521. 

 

Maheshvaran, K., Arunkumar, S., Sudarsan, V., Natarajan, V., & Marimuthu, K. (2013). Structural and luminescence studies on Er3+/Yb3+ co-doped boro-tellurite glasses. Journal of Alloys and Compounds, 561, 142–150. 

 

Mahmood, H., Vanzetti, L., Bersani, M., & Pegoretti, A. (2018). Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Composites Part A: Applied Science and Manufacturing, 107, 112–123. 

 

Mandal, S. K., Dutta, K., Pal, S., Mandal, S., Naskar, A., Pal, P. K., Bhattacharya, T. S., Singha, A., Saikh, R., De, S., & Jana, D. (2019). Engineering of ZnO/rGO nanocomposite photocatalyst towards rapid degradation of toxic dyes. Materials Chemistry and Physics, 223, 456–465. 

 

Manning, S., Ebendorff-heidepriem, H., & Monro, T. M. (2012). Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Optical Materials Express, 2(2), 305–308. 

 

Mao, X., Zhu, L., Liu, H., Chen, H., Li, W., Cao, R., & Li, W. (2021). Cu/graphene composite coatings electrodeposited in a directly dispersed graphene solution after electrochemical exfoliation with enhanced oxidation resistance. Journal of Alloys 

and Compounds, 882, 160706. 

 

Marcano, D. C., Kosynkin, D. V, Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8). 

 

Marczewska, A., & Sroda, M. (2018). Spectroscopic and thermal study of a new glass from TeO2–Ga2O3–GeO2 system. Journal of Molecular Structure, 1164, 100–108. 

 

Mariyappan, M., Arunkumar, S., & Marimuthu, K. (2019). Judd-Ofelt analysis and NIR luminescence investigations on Er3+ ions doped B2O3–Bi2O3–Li2O–K2O glasses for photonic applications. Physica B: Condensed Matter, 572, 27–35. 

 

Mariyappan, M., Arunkumar, S., & Marimuthu, K. (2019). Physical, structural and optical studies on Er3+ ions doped zinc bismuth borate glasses for photonic applications. AIP Conference Proceedings, 2115, 1–5. 

 

Marturi, N. (2013). Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. Micro and Nanotechnologies/Microelectronics. Université de Franche-Comté,. 

 

Marzouk, S. Y., Azooz, M. A., & Batal, H. A. El. (2021). Judd-Ofelt analysis of spectroscopic measurements of Er3+ doped boro-zincate glasses. Journal of Molecular Structure, 1243, 130925. 

 

Maslov, V. G., Svitenkov, A. I., & Krzhizhanovskaya, V. V. (2016). Abnormally high oscillator strengths of the graphene nanoribbons electronic spectrum: quantum chemistry calculations. RSC Advances. 

 

Mawlud, S. Q., Ameen, M. M., Sahar, R., Ashur, Z., Mahraz, S., & Ahmed, K. F. (2017). Spectroscopic properties of Sm3+ doped sodium-tellurite glasses : Judd-Ofelt analysis. Optical Materials, 69, 318–327. 

 

Mclaughlin, J. C., Tagg, S. L., Zwanziger, J. W., & Hae, D. R. (2000). The structure of tellurite glass : a combined NMR , neutron diffraction , and X-ray diffraction study. Journal of Non-Crystalline Solids, 274, 1–8. 

 

McSherry, M., Fitzpatrick, C., & Lewis, E. (2004). An optical fiber sensor for the detection of germicidal UV irradiation using narrowband luminescent coatings. IEEE Sensors Journal, 4(5), 619–626. 

 

Meyyappan, M., Delzeit, L., Cassell, A., & Hash, D. (2003). Carbon nanotube growth by PECVD: A review. Plasma Sources Science and Technology, 12(2), 205–216. 

 

Minitha, C. R., Anithaa, V. S., Subramaniam, V., & Rajendra Kumar, R. T. (2018). Impact of Oxygen Functional Groups on Reduced Graphene Oxide-Based Sensors 

for Ammonia and Toluene Detection at Room Temperature. ACS Omega, 3(4), 4105–4112. 

 

Mohammed, H., Kumar, A., Bekyarova, E., Al-Hadeethi, Y., Zhang, X., Chen, M., Ansari, M. S., Cochis, A., & Rimondini, L. (2020). Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Frontiers in Bioengineering and Biotechnology, 8. 

 

Mohan, V. B., Souri, H., Jayaraman, K., & Bhattacharyya, D. (2018). Mechanical properties of thin films of graphene materials: A study on their structural quality and functionalities. Current Applied Physics. 

 

Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1(6), 1–6. 

 

Morigaki, K., & Ogihara, C. (2006). Amorphous Semiconductors: Structure, Optical, and Electrical Properties. Springer Handbook of Electronic and Photonic Materials, 565–580. 

 

Mott, N. F., Davis, E. A., & Weiser, K. (1972). Electronic Processes in Non-Crystalline Materials. Physics Today, 25(12), 55. 

 

Mu, J., Gao, F., Cui, G., Wang, S., Tang, S., & Li, Z. (2021). A comprehensive review of anticorrosive graphene-composite coatings. Progress in Organic Coatings, 157(66), 106321. 

 

Mun, S. C., Park, J. J., Park, Y. T., Kim, D. Y., Lee, S. W., Cobos, M., Ye, S. J., Macosko, C. W., & Park, O. O. (2017). High electrical conductivity and oxygen barrier property of polymer- stabilized graphene thin films. Carbon, 125, 492–499. 

 

Munisudhakar, B., Raju, C. N., Babu, M. R., Reddy, N. M., & Moorthy, L. R. (2019). Materials Today : Proceedings Luminescence characteristics of Nd3+ doped bismuth borate glasses for photonic applications. Materials Today: Proceedings. 

 

Muruganandi, G., Saravanan, M., Vinitha, G., Jessie Raj, M. B., & Sabari Girisun, T. C. (2018). Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications. Optical Materials, 75, 612–618. 

 

Narayan, R., & Kim, S. O. (2015). Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2(1), 20. 

 

Naumov, A. V. (2017). Graphene Oxide: Fundamentals and Applications. John Wiley & Sons. 

 

Nazhirah, S. N. M., Ghoshal, S. K., Arifin, R., & Hamzah, K. (2021). Effects of bimetallic nanoparticles Ag and TiO2 embedment on tellurite zinc–silicate glass: 

Self-cleaning characteristics. Surfaces and Interfaces, 25, 101236. 

 

Nazrin, S. N., Halimah, M. K., Muhammad, F. D., Yip, J. S., Hasnimulyati, L., Faznny, M. F., Hazlin, M. A., & Zaitizila, I. (2018). The effect of erbium oxide in physical and structural properties of zinc tellurite glass system. Journal of Non-Crystalline Solids, 490, 35–43. 

 

Necolau, M. I., & Pandele, A. M. (2020). Recent advances in graphene oxide-based anticorrosive coatings: An overview. Coatings, 10, 1149. 

 

Noguera, O., Mirgorodsky, A. P., Smirnov, M. B., & Thomas, P. (2003). Vibrational and structural properties of glass and crystalline phases of TeO2. Journal of Non-Crystalline Solids, 330, 50–60. 

 

Norizan, M. N., Moklis, M. H., Ngah Demon, S. Z., Halim, N. A., Samsuri, A., Mohamad, I. S., Knight, V. F., & Abdullah, N. (2020). Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances, 10(71), 43704–43732. 

 

Nourbakhsh, A., Cantoro, M., Vosch, T., Pourtois, G., Clemente, F., Veen, M. H. Van Der, Hofkens, J., Heyns, M. M., Gendt, S. De, & Sels, B. F. (2010). Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 21(43), 435203. 

 

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306(5696), 666–669. 

 

Nurhafizah, M. D., Suriani, A. B., Mohamed, A., & Soga, T. (2020). Effect of voltage applied for graphene oxide/latex nanocomposites produced via electrochemical exfoliation and its application as conductive electrodes. Diamond & Related Materials, 101(107624). 

 

Ofelt, G. S. (1962). Intensities of crystal spectra of rare-earth ions. The Journal of Chemical Physics, 37(3), 511–520. 

 

Omidvar, A., RashidianVaziri, M. R., & Jaleh, B. (2018). Enhancing the nonlinear optical properties of graphene oxide by repairing with palladium nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 103, 239–245. 

 

Pach-Zawada, K., Lesniak, M., Filipecka, K., Golis, E., Yousef, E. S., Pawlik, P., Dorosz, D., Sitarz, M., & Filipecki, J. (2021). Structural studies of tellurite glasses from the 70TeO2-5XO-10P2O5–10ZnO–5PbF2 system (X = Ba, W, Sr, Cd) doped with erbium ions. Journal of Molecular Structure, 1224, 128787. 

 

Papadakis, I., Bakandritsos, A., Swain, A. K., Szabo, T., & Couris, S. (2020). Effects of Size and Oxidation on the Nonlinear Optical Response and Optical Limiting of 

Graphene Oxide Sheets. Journal of Physical Chemistry C, 124, 11265–11273. 

 

Park, S. J., Ok, J. G., Park, H. J., Lee, K. T., Lee, J. H., Kim, J. D., Cho, E., Baac, H. W., Kang, S., Guo, L. J., & Hart, A. J. (2018). Modulation of the effective density and refractive index of carbon nanotube forests via nanoimprint lithography. Carbon, 129, 8–14. 

 

Park, S., & Ruoff, R. S. (2009). Chemical methods for the production of graphenes. Nature Nanotechnology, 4, 45–47. 

 

Pauling, L. (1932). THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS. J. Am. Chem. Soc., 54(9), 3570–3582. 

 

Pavani, P. G., Sadhana, K., & Mouli, V. C. (2011). Optical , physical and structural studies of boro-zinc tellurite glasses. Physica B: Physics of Condensed Matter, 406(6–7), 1242–1247. 

 

Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210–3228. 

 

Pepe, Y., Erdem, M., Sennaroglu, A., & Eryurek, G. (2019). Enhanced gain bandwidth of Tm3+ and Er3+ doped tellurite glasses for broadband optical amplifier. Journal of Non-Crystalline Solids, 522, 119501. 

 

Perebeinos, V., Tersoff, J., & Avouris, P. (2005). Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Physical Review Letters, 94(2), 3–6. 

 

Piao, Y., Tondare, V. N., Davis, C. S., Gorham, J. M., Petersen, E. J., Gilman, J. W., Scott, K., Vladár, A. E., & Hight Walker, A. R. (2021). Comparative study of multiwall carbon nanotube nanocomposites by Raman, SEM, and XPS measurement techniques. Composites Science and Technology, 208, 108753. 

 

Pirouz, A. A., Karjiban, R. A., Bakar, F. A., & Selamat, J. (2018). A novel adsorbent magnetic graphene oxide modified with Chitosan for the simultaneous reduction of mycotoxins. Toxins, 10(9), 361. 

 

Pisarski, W. A., Kowalska, K., Kuwik, M., Polak, J., Pietrasik, E., Goryczka, T., & Pisarska, J. (2020). Novel multicomponent titanate-germanate glasses: Synthesis, structure, properties, transition metal, and rare earth doping. Materials, 13(19), 1–13. 

 

Prabhu, N. S., Hegde, V., Sayyed, M. I., Sakar, E., & Kamath, S. D. (2019). Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system. Infrared Physics and 

Technology, 98, 7–15. 

 

Price, R. J., Ladislaus, P. I., Smith, G. C., & Davies, T. J. (2019). A novel ‘bottom-up’ synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics - Sonochemistry, 56, 466–473. 

 

Purkait, T., Singh, G., Kumar, D., Singh, M., & Dey, R. S. (2018). High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Scientific Reports, 8(640), 1–13. 

 

Qian, L., Xie, Y., Zhang, S., & Zhang, J. (2020). Band Engineering of Carbon Nanotubes for Device Applications. Matter, 3(3), 664–695. 

 

Queiroz, M. N., Dantas, N. F., Brito, D. R. N., Barboza, M. J., Steimacher, A., & Pedrochi, F. (2019). Optical and Spectroscopic Investigation of Sm3+-Doped Calcium Borotellurite Glasses. Journal of Electronic Materials. 

 

Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 268, 115095. 

 

Reddy, R. R., & Nazeer, A. Y. (1995). Relationship between refractive index, optical electronegativities and electronic polarizability in alkali halides, III–V, II–VI group semiconductors. Crystal Research and Technology, 30(2), 263–266. 

 

Reddy, R. R., Nazeer Ahammed, Y., Abdul Azeem, P., Rama Gopal, K., & Rao, T. V. R. (2001). Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. Journal of Non-Crystalline Solids, 286(3), 169–180. 

 

Renteria, J. D., Ramirez, S., Malekpour, H., Alonso, B., Centeno, A., Zurutuza, A., Cocemasov, A. I., Nika, D. L., & Balandin, A. A. (2015). Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature. Advanced Functional Materials, 25(29), 4664–4672. 

 

Richards, B. D. O., & Jha, A. (2017). Lasers utilising tellurite glass-based gain media. Springer Series in Materials Science, 254, 101–130. 

 

Rodríguez-González, J. A., Rubio-González, C., & Pérez-Sánchez, A. (2021). Deposition of carbon nanotubes onto glass fibers using ultrasound standing waves. Frontiers of Materials Science, 15(3), 471–475. 

 

Ronda, C. (2007). Luminescence (From Theory to Applications). 

 

Ronda, C., & Srivastava, A. (2006). Luminescence science and display materials. Electrochemical Society Interface, 15(1), 55–57. 

 

Sadik, S. A., Durak, F. E., & Altuncu, A. (2020). Widely tunable erbium doped fiber ring laser based on loop and double-pass EDFA design. Optics and Laser Technology, 124, 105979. 

 

Sahoo, S., Sahoo, G., Mun, S., & Sekhar, C. (2022). Review article A review on supercapacitors based on plasma enhanced chemical vapor deposited vertical graphene arrays. Journal of Energy Storage, 53(April), 105212. 

 

Sahu, S., & Rout, G. C. (2017). Band gap opening in graphene : a short theoretical study. International Nano Letters, 7(2), 81–89. 

 

Said Mahraz, Z. A., Sahar, M. R., & Ghoshal, S. K. (2015). Enhanced luminescence from silver nanoparticles integrated Er3+-doped boro-tellurite glasses: Impact of annealing temperature. Journal of Alloys and Compounds, 649, 1102–1109. 

 

Saifuddin, N., Raziah, A. Z., & Junizah, A. R. (2013). Carbon nanotubes: A review on structure and their interaction with proteins. Journal of Chemistry. 

 

Sailaja, P., Mahamuda, S., Swapna, K., Venkateswarlu, M., Gupta, M., & Rao, A. S. (2021). Broadband NIR emission at 1.53 µm in trivalent erbium ions doped SrO-Al2O3-B2O3-BaCl2-10TeO2 glasses for optical fiber and NIR laser applications. Journal of Non-Crystalline Solids, 567, 120937. 

 

Sajna, M. S., Perumbilavil, S., Prakashan, V. P., Sanu, M. S., Joseph, C., Biju, P. R., & Unnikrishnan, N. V. (2018). Enhanced resonant nonlinear absorption and optical limiting in Er3+ ions doped multicomponent tellurite glasses. Materials Research Bulletin. 

 

Saraswati, A., Marzuki, A., Fausta, D. E., Suryanti, V., & Singgih, G. A. (2021). Borate Glasses for Low Loss Optical Fibre. Journal of Physics: Conference Series, 1912(1).  

 

Sayyed, M. I., Zaid, M. H. M., Effendy, N., Matori, K. A., Sidek, H. A. A., Lacomme, E., Mahmoud, K. A., & AlShammari, M. M. (2020). The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses. Journal of Materials Research and Technology, 9(4), 8429–8438. 

 

Schniepp, H. C., Li, J., Mcallister, M. J., Sai, H., Herrera-alonso, M., Adamson, D. H., Prud, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B Letetrs, 2, 8535–8539. 

 

Shakeri, M. S., & Rezvani, M. (2011). Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. Spectrochimica Acta Part A: 

Molecular and Biomolecular Spectroscopy, 79, 1920–1925. 

 

Shang, J., Ma, L., Li, J., Ai, W., Yu, T., & Gurzadyan, G. G. (2012). The origin of fluorescence from graphene oxide. Scientific Reports, 2, 1–8. 

 

Sharma, N., Arif, M., Monga, S., Shkir, M., Mishra, Y. K., & Singh, A. (2020). Investigation of bandgap alteration in graphene oxide with different reduction routes. Applied Surface Science, 513, 145396. 

 

Sharma, N., Tomar, S., Shkir, M., Kant Choubey, R., & Singh, A. (2019). Study of Optical and Electrical Properties of Graphene Oxide. Materials Today: Proceedings, 36, 730–735. 

 

Shen, C., Jia, Y., Yan, X., Zhang, W., Li, Y., Qing, F., & Li, X. (2018). Effects of Cu contamination on system reliability for graphene synthesis by chemical vapor deposition method. Carbon, 127, 676–680. 

 

Shen, X., Cheng, G., Zhang, L., & Wei, W. (2020). Fabrication of a hybrid-cladding tellurite glass fiber doped with Tm3+ and Ho3+. Journal of Luminescence, 227, 117540. 

 

Shin, D. S., Kim, H. G., Ahn, H. S., Jeong, H. Y., Kim, Y., Odkhuu, D., Tsogbadrakh, N., Lee, H., & Kim, B. H. (2017). Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. Royal Society of Chemistry, 7, 13979–13984. 

 

Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Advanced Functional Materials, 19(12), 1987–1992. 

 

Silva, A. A., Pinheiro, R. A., Rodrigues, A. C., Baldan, M. R., Trava-Airoldi, V. J., & Corat, E. J. (2018). Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Applied Surface Science. 

 

Silva, L. M. C., Gonçalves, B. S., Braga, J. de O., de Souza, T. C., de Castro, V. G., Silva, G. G., Lacerda, G. R. B. S., Matencio, T., Barbosa, T. C., Viana, C. M., Houmard, M., & Nunes, E. H. M. (2021). Preparation of titania-reduced graphene oxide composite coatings with electro- and photosensitive properties. Applied Surface Science, 538, 148029. 

 

Singh, V., Seshadri, M., Singh, N., & Mohapatra, M. (2019). Radiative properties of Er3+ doped and Er3+/Yb3+ co-doped Sr3Al2O6 phosphors : exploring the usefulness as a phosphor material. Journal of Materials Science: Materials in Electronics. 

 

 

Singh V , Joung D , Zhai L , Das S , Khondaker SI, S. S. (2011). Graphene based materials : Past , present and future. Progress in Materials Science, 56, 1178–1271. 

 

Slobodian, O. M., Lytvyn, P. M., Nikolenko, A. S., Naseka, V. M., Khyzhun, O. Y., Vasin, A. V., Sevostianov, S. V., & Nazarov, A. N. (2018). Low-Temperature Reduction of Graphene Oxide: Electrical Conductance and Scanning Kelvin Probe Force Microscopy. Nanoscale Research Letters, 13. 

 

Smith, A. T., Marie, A., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis , properties , and applications of graphene oxide/ reduced graphene oxide and their nanocomposites. Nano Materials Science. 

 

Smith, K. C. A., Wells, O. C., & McMullan, D. (2008). The fiftieth anniversary of the first applications of the scanning electron microscope in materials research. Physics Procedia, 1(1), 3–12. 

 

Sreedhar, V. B., Krishnaiah, K. V., Rasool, S. K. N., Venkatramu, V., & Jayasankar, C. K. (2019). Raman and photoluminescence studies of europium doped zinc-fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids, 505, 115–121. 

 

Sreeja, V. G., & Anila, E. I. (2019). Studies on the effect of reduced graphene oxide on nonlinear absorption and optical limiting properties of potassium doped zinc oxide thin film by Z - scan technique. Thin Solid Films, 685, 161–167. 

 

Sreeja, V. G., Vinitha, G., Reshmi, R., Anila, E. I., & Jayaraj, M. K. (2017). Effect of reduction time on third order optical nonlinearity of reduced graphene oxide. Optical Materials, 66, 460–468. 

 

Stambouli, W., Elhouichet, H., & Ferid, M. (2012). Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. Journal of Molecular Structure, 1028, 39–43. 

 

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. B. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565. 

 

Stanworth, J. E. (1952). Tellurite Glasses. Nature, 169(4301), 581–582. 

 

Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. Berichte Der Deutschen Chemischen Gesellschaft. 

 

Sun, G. (2010). Intersubband approach to silicon based lasers-circumventing the indirect bandgap limitation. Advances in Optics and Photonics, 3(1), 53. 

 

Sundaram, R. S., Burghard, M., Gómez-Navarro, C., Chuvilin, A., Kaiser, U., Kurasch, S., Meyer, J. C., & Kern, K. (2010). Atomic Structure of Reduced Graphene Oxide. Nano Letters, 10(4), 1144–1148. 

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M. H., Malek, M. F., Ahmad, M. K., Rosmi, M. S., & Tanemura, M. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex added with reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science, 52(11), 6611–6622. 

 

Taherunnisa, S. K., Krishna Reddy, D V SambasivaRao, T Rudramamba, K S Zhydachevskyy, Y A Suchocki, A., Piasecki, M., & Rami Reddy, M. (2019). Effect of up-conversion luminescence in Er3+ doped phosphate glasses for developing Erbium-Doped Fibre Amplifiers (EDFA) and G-LED’s. Optical Materials: X, 100034. 

 

Tanabe, S., Ohyagi, T., Soga, N., & Hanada, T. (1992). Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Physical Review B, 46(6), 3305–3310. 

 

Tanabe, S., Ohyagi, T., Todoroki, S., Hanada, T., & Soga, N. (1993). Relation between the O6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses. Journal of Applied Physics, 73(12), 8451–8454. 

 

Tang, S., Wu, W., Xie, X., Li, X., & Gu, J. (2017). Band gap opening of bilayer graphene by graphene oxide support doping. Royal Society of Chemistry, 7, 9862–9871. 

 

Tarcan, R., Todor-Boer, O., Petrovai, I., Leordean, C., Astilean, S., & Botiz, I. (2020). Reduced graphene oxide today. Journal of Materials Chemistry C, 8, 1198–1224. 

 

Thombre, D. B. (2016). The Estimation of Oxide Polarizability and Basicity using Electronegativity for B2O3 : M2O Glass System (M = Li , Na , K , Rb). International Journal of Innovative Research in Science, Engineering and Technology, 5(2), 1230–1236. 

 

Tian, J., Wu, S., Yin, X., & Wu, W. (2019). Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Applied Surface Science, 496, 143696. 

 

Tiedje, T., Colbow, K. M., Gao, Y., Dahn, J. R., Reimers, J. N., & Houghton, D. C. (1992). Role of Coulomb repulsion in 4f orbitals in electrical excitation of rare-earth impurities in semiconductors. Applied Physics Letters, 61(11), 1296–1297. 

 

Tiwari, H., & Dhondiyal, C. C. (2021). Physical and optical analysis of Sm3+ doped zinc phosphate glass. Materials Today: Proceedings. 

 

Tzounis, L., Zappalorto, M., Panozzo, F., Tsirka, K., Maragoni, L., Paipetis, A. S., & Quaresimin, M. (2019). Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Composites Part B: Engineering, 169, 37–44. 

 

Umar, S. A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability , optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids. 

 

Ural, N. (2021). The significance of scanning electron microscopy (SEM) analysis on the microstructure of improved clay: An overview. Open Geosciences, 13(1), 197–218. 

 

Usman, A., Halimah, M. K., Latif, A. A., Diana, F., & Abubakar, A. I. (2018). Influence of Ho3+ ions on structural and optical properties of zinc borotellurite glass system. Journal of Non-Crystalline Solids. 

 

Walsh, B. M., Barnes, N. P., Bartolo, B. Di, & Walsh, B. M. (1998). Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4. Journal of Applied Physics, 83(5), 2772–2787. 

 

Wan, Q., Wang, H., Li, S., & Wang, J. (2018). Journal of Colloid and Interface Science 3 , 3-tetramethylurea solution. Journal of Colloid And Interface Science, 526, 167–173. 

 

Wan, R., Wang, P., Li, S., & Ma, Y. (2021). 2.86 µm emission and fluorescence enhancement through controlled precipitation of ZnTe nanocrystals in DyF3 doped multicomponent tellurite oxyfluoride glass. Journal of Non-Crystalline Solids, 564, 120842. 

 

Wang, J., Mu, X., Sun, M., & Mu, T. (2019). Optoelectronic properties and applications of graphene-based hybrid nanomaterials and van der Waals heterostructures. Applied Materials Today, 16, 1–20. 

 

Wang, M., Li, Z., Hou, K., Wang, J., & Yang, S. (2020). Balancing oxygen-containing groups and structural defects for optimizing macroscopic tribological properties of graphene oxide coating. Applied Surface Science, 516, 146122. 

 

Wang, Q., Wen, J., Luo, Y., Peng, G.-D., Pang, F., Chen, Z., & Wang, T. (2020). Enhancement of lifetime in Er-doped silica optical fiber by doping Yb ions via atomic layer deposition. Optical Materials Express, 10(2), 397. 

 

Wang, W., Tuo, T., & Jiang, C. (2020). Enhancing near-infrared luminescence of Ln3+ (Yb3+/Er3+)-doped germanium tellurite glasses by coating with graphene. Optical and Quantum Electronics, 52(6), 1–8. 

 

 

Wang, X. Y., Narita, A., & Müllen, K. (2017). Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2(1). 

 

Wang, X., Zhi, L., & Mullen, K. (2008). Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 8(1), 323–327. 

 

Watt, M. R., & Gerhardt, R. A. (2020). Factors that affect network formation in carbon nanotube composites and their resultant electrical properties. Journal of Composites Science, 4(3), 100. 

 

Wei, C., Hu, J., & Menyuk, C. R. (2016). Comparison of Loss in Silica and Chalcogenide Negative Curvature Fibers as the Wavelength Varies. Frontiers in Physics, 4(30). 

 

Wen, H., Zhang, J., Yao, Q., Liu, L., Dong, W., Li, J., & Wang, J. (2019). Thermal, Optical Characterization and Judd-Ofelt Analyis of Nd3+-Doped BaO-TeO2-B2O3 Glasses. Materials and Technology, 53(3), 305–309. 

 

Woehrle, G. H., Hutchison, J. E., Özkar, S., & Finke, R. G. (2006). Analysis of nanoparticle transmission electron microscopy data using a public- domain image-processing program, Image. Turkish Journal of Chemistry, 30(1), 1–13. 

 

Woo, Y. S. (2019). Transparent conductive electrodes based on graphene-related materials. Micromachines, 10(1), 24–28. 

 

Xiao, J., Zhan, H., Wang, X., Xu, Z. Q., Xiong, Z., Zhang, K., Simon, G. P., Liu, J. Z., & Li, D. (2020). Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nature Nanotechnology, 15(8), 683–689. 

 

Xie, S., Li, W., Pan, Z., Chang, B., & Lianfeng, S. (2000). Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of Solids, 61(7), 1153–1158. 

 

Yan, S., Pu, S., Zhang, Y., Yuan, M., & Zhang, C. (2021). Sensing properties of graphene-oxide-functionalized single-mode–no-core–single-mode fiber structure. Results in Physics, 25, 104310. 

 

Yang, S., Lohe, M. R., Müllen, K., & Feng, X. (2016). New-Generation Graphene from Electrochemical Approaches: Production and Applications. Advanced Materials, 28(29), 6213–6221. 

 

Yang, Y., Liu, R., Wu, J., Jiang, X., Cao, P., Hu, X., & Pan, T. (2015). Bottom-up Fabrication of Graphene on Silicon/ Silica Substrate via a Facile Soft-hard Template Approach. Scientific Reports, 5(1). 

 

Yang, Zhongmin, Xu, S., Hu, L., & Jiang, Z. (2004). Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses. Journal of the 

Optical Society of America B, 21(5), 951. 

 

Yang, Zhoufei, Tian, J., Yin, Z., Cui, C., Qian, W., & Wei, F. (2019). Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: A review. Carbon, 141, 467–480. 

 

Yanmaz, E., Dogan, M., & Turhan, Y. (2021). Effect of sodium dodecyl sulfate on thermal properties of polyvinyl alcohol (PVA)/modified single-walled carbon nanotube (SWCNT) nanocomposites. Diamond and Related Materials, 115. 

 

Yao, J. H., Elder, K. R., Guo, H., & Grant, M. (1993). Theory and simulation of Ostwald ripening. Physical Review B, 47(21). 

 

Yilbas, B. S., Ibrahim, A., Ali, H., Khaled, M., & Laoui, T. (2018). Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface. Applied Surface Science, 442, 213–223. 

 

Yu, F., Song, P., Wu, D., Birks, T., Bird, D., & Knight, J. (2019). Attenuation limit of silica-based hollow-core fiber at mid-IR wavelengths. APL Photonics, 4(8), 080803. 

 

Yu, M. F., Files, B. S., Arepalli, S., & Ruoff, R. S. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 84(24), 5552–5555. 

 

Yuan, J., Zheng, G., Ye, Y., Chen, Y., Deng, T., Xiao, P., Ye, Y., & Wang, W. (2021). Enhanced 1.5 µm emission from Yb3+/Er3+-codoped tungsten tellurite glasses for broadband near-infrared optical fiber amplifiers and tunable fiber lasers. RSC Advances, 11(45), 27992–27999. 

 

Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Yasaka, P., & Kaewnuam, E. (2019). Optical and X-ray induced luminescence of Sm3+ -doped borotellurite and fluoroborotellurite glasses : A comparative study. Journal of Luminescence, 213, 19–28. 

 

Yusof, N. N., Ghoshal, S. K., Ari, R., Awang, A., Tewari, H. S., & Hamzah, K. (2017). Self-cleaning and spectral attributes of erbium doped sodium-zinc-tellurite glass : Role of titania nanoparticles. Journal of Non-Crystalline Solids. 

 

Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. Journal of Alloys and Compounds, 724, 1083–1092. 

 

Zachariasen, W. H. (1932). The Atomic Arrangement in Glass. Journal of the American Chemical Society, 54(10), 3841–3851. 

 

Zaitizila, I., Halimah, M. K., Muhammad, F. D., & Nurisya, M. S. (2018). Influence of manganese doping on elastic and structural properties of silica borotellurite glass. Journal of Non-Crystalline Solids, 492, 50–55. 

 

Zanane, H., Velázquez, M., Denux, D., Duclère, J. R., Cornette, J., Kermaoui, A., Kellou, H., Lahaye, M., & Buffière, S. (2020). Judd-Ofelt analysis and crystal field calculations of Er3+ ions in new oxyfluorogermanotellurite glasses and glass-ceramics. Optical Materials, 100, 109640. 

 

Zaytseva, O., & Neumann, G. (2016). Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications. Chemical and Biological Technologies in Agriculture, 3(1), 1–26. 

 

Zhang, F., Bi, Z., Huang, A., & Xiao, Z. (2015). Luminescence and Judd-Ofelt analysis of the Pr3+ doped fluorotellurite glass. Journal of Luminescence, 160(37), 85–89. 

 

Zhang, L., Xia, Y., Shen, X., Yang, R., & Wei, W. (2018). Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Optical Materials, 75, 1–6. 

 

Zhang, X., Shao, X., & Liu, S. (2012). Dual Fluorescence of Graphene Oxide: A Time-Resolved Study. The Journal of Physical Chemistry A, 116(27), 7308–7313. 

 

Zhang, Ya nan, Xie, W. ge, Wang, J., & Wang, P. (2018). Study on the effect of carbon nanotube coating on the refractive index sensing sensitivity of fiber modal interferometer. Optical Materials, 75, 666–672. 

 

Zhang, Yifan, Sheng, L., Fang, Y., An, K., Yu, L., Liu, Y., & Zhao, X. (2017). Synthesis of 3C-SiC nanowires from a graphene / Si configuration obtained by arc discharge method Abstract SiC nanowires were fabricated by heat-treating a graphene/ Si configuration without. Chemical Physics Letters. 

 

Zhang, Yu, Xia, L., Li, C., Ding, J., Li, J., & Zhou, Y. (2021). Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass. Optics and Laser Technology, 138, 106913. 

 

Zhang, Yu, Xia, L., Shen, X., Li, J., Yang, G., & Zhou, Y. (2021). Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass. Journal of Luminescence, 236, 118078. 

 

Zhao, G., Liu, H. Y., Du, X., Zhou, H., Mai, Y. W., Jia, Y. Y., & Yan, W. (2021). Glass fibres coated with flame synthesised carbon nanotubes to enhance interface properties. Composites Communications, 24, 100623. 

 

Zhao, X., Wang, X., Lin, H., & Wang, Z. (2008). Average electronegativity, electronic polarizability and optical basicity of lanthanide oxides for different coordination 

numbers. Physica B: Condensed Matter, 403(10–11), 1787–1792. 

 

Zhou, M., Wang, Y., Zhai, Y., Zhai, J., Ren, W., Wang, F., & Dong, S. (2009). Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry - A European Journal, 15(25), 6116–6120. 

 

Zhou, Y., Cheng, X., Huang, F., Sha, Z., Han, Z., Chen, J., Yang, W., Yu, Y., Zhang, J., Peng, S., Wu, S., Rider, A., Dai, L., & Wang, C. H. (2021). Hierarchically structured electrodes for moldable supercapacitors by synergistically hybridizing vertical graphene nanosheets and MnO2. Carbon, 172, 272–282. 

 

Zhu, Y., Shen, X., Su, X., Zhou, M., Zhou, Y., Li, J., & Yang, G. (2019). Concentration dependent structural , thermal and luminescence properties in Er3+ /Tm3+ doped tellurite glasses. Journal of Non-Crystalline Solids, 507, 19–29. 

 

Zimmermann, H. M. (2010). Basics of Optical Emission and Absorption. [Springer Series in Optical Sciences] Integrated Silicon Optoelectronics, 148. 

 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries with this repository, kindly contact us at pustakasys@upsi.edu.my or Whatsapp +60163630263 (Office hours only)