UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :L Education (General)
ISSN :2196-1115
Main Author :Mazlin Binti Mohamed Mokhtar
Title :Education on quality assurance and assessment in teaching quality of high school instructors
Place of Production :Tanjung Malim
Publisher :Fakulti Bahasa dan Komunikasi
Year of Publication :2023
Notes :Journal of Big Data
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Research on language teaching quality has certainly stood out enough to be noticed as the momentum higher school teaching change proceeds to extend and develop. The way to further developing language teaching quality is to further develop teaching quality, and educator assessment is a significant instrument for doing as such. Accordingly, school administration necessitates the turn of events and refinement of a framework for assessing language teaching quality. Thus, hybrid learning technique for assessing the teaching quality of high school instructors should be created. We present an interesting model for assessing the quality of homeroom teaching involving artificial intelligence innovation in high schools, which depends on better hereditary calculations and neural networks. The fundamental thought is to utilize higher request factual elements (skewness, change, second and kurtosis), even vulnerability, Improved Independent Component Analysis (IICA), Holo-entropy based highlights to remove the underlying loads and limits of gathered data. The teaching quality assessment results were enhanced by further developing the neural networks forecast accuracy and intermingling speed, bringing about a more down to earth plot for assessing high school language teaching quality. We have led simulation investigations and comparative analysis utilizing the Bi-directional Long Short Term Memory (Bi-LSTM) and Convolutional Neural Network (ConvNet/CNN) models. Then, an education quality assessment framework is laid out by hybrid optimizing model parameters which is Seagull Optimization Algorithm (SOA) and Red Colobuses Monkey (RCM). 2023, Springer Nature Switzerland AG.

References

Guo J. Empirical Analysis for English Teaching Integration and Optimization Based on Big Data Mining Technology. In Proceedings of the 2020 International Conference on Computers. Information Processing and Advanced Education, 2020, pp. 504–508. https://doi.org/10.1145/3419635.3419736

Qiu C. Empirical Study of Big Data Mining Technology in English Teaching Integration and Optimization Analysis. In Proceedings of the 2020 International Conference on Computers, Information Processing and Advanced Education. 2020, pp. 495–499. https://doi.org/10.1145/3419635.3419734

Zhang H, Tsai SB. An empirical study on Big Data Model and visualization of internet + teaching. Math Probl Eng. 2021. https://doi.org/10.1155/2021/9974891

Hou W. Analysis of key indicators in English teaching evaluation based on Big Data Model. Sci Program. 2022. https://doi.org/10.1155/2022/1231700

Duan J, Gao R. Research on college English teaching based on data mining technology. Eurasip J Wirel Commun Netw. 2021;1:1–12. https://doi.org/10.1186/s13638-021-02071-6

XU J. Research on Multidimensional Teaching Mode of College English based on Data Mining. 2020 Int Conf Big Data Social Sci (ICBDSS) Xi’an China. 2020;1–4. https://doi.org/10.1109/ICBDSS51270.2020.00008

Yang L, Data Mining Based College English Teaching Assistant Expert System. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA), Kunming, China, 2021, pp. 280–283. https://doi.org/10.1109/ICSGEA53208.2021.00068

Yu L, College English Teaching. Application Research of SVM-based Mining Algorithm in Evaluation of. 2016 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 2016, pp. 73–76. https://doi.org/10.1109/ICITBS.2016.124

Wu Y, Huang H. Data Mining in Teaching Quality Analysis: a Case Study in College English teaching. 2009 Int Conf Comput Intell Softw Eng Wuhan China. 2009;1–4. https://doi.org/10.1109/CISE.2009.5367040

Wang J, Research on College English Teaching Strategies and Applications Based on Big Data. 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 2019, pp. 283–287. https://doi.org/10.1109/MLBDBI48998.2019.00063

Wan L. Extraction Algorithm of English Text Summarization for English Teaching, 2018 International Conference on Intelligent Transportation. Big Data & Smart City (ICITBS), Xiamen, China, 2018, pp. 307–310. https://doi.org/10.1109/ICITBS.2018.00085

Kong H, Shu Y, Shi P, Application Research of Personalized Recommendation Technology in College English Teaching Reform under The Background of Big Data. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA), Kunming, China, 2021, pp. 468–472. https://doi.org/10.1109/ICSGEA53208.2021.00112

Wu HA, Method for Classification of English Reading Materials Based on Web Information Mining. 2009 First International Workshop on Education Technology and Computer Science, Wuhan, China, 2009, pp. 465–468. https://doi.org/10.1109/ETCS.2009.112

Sun M, Li Y. Eco-Environment Construction of English Teaching Using Artificial Intelligence Under Big Data Environment, in IEEE Access, 8, 2020, pp. 193955–193965. https://doi.org/10.1109/ACCESS.2020.3033068

Liang J, Design of Evaluation Model of English Teaching Achievement in Microcourse. 2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 2018, pp. 497–500. https://doi.org/10.1109/ICMTMA.2018.00126

Xue L, Aidong G. The application of data mining technology in the college English network self-learning monitoring system. 2013 3rd International Conference on Consumer Electronics Communications and Networks Xianning China. 2013;666–8. https://doi.org/10.1109/CECNet.2013.6703418

YANG Y, WANG C, Analysis of Business English Information Mining Method Based on Task Cooperative Learning Model. 2019 International Conference on Robots & Intelligent System (ICRIS), Haikou, China, 2019, pp. 344–348. https://doi.org/10.1109/ICRIS.2019.00093

Xiaoya G, Kan L, Ping L. Visual analysis of college students’ scores in English test. 2009 4th International Conference on Computer Science & Education Nanning. 2009;1816–9. https://doi.org/10.1109/ICCSE.2009.5228253

Wu J. Empirical Analysis of Evaluation of English Teachers’ Educational Ability under MOOC Environment. 2018 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Xiamen, China, 2018, pp. 303–306. https://doi.org/10.1109/ICITBS.2018.00084

Chen D, Aghdam AR, Kamalpour M, Sim ATH. The impact of College English Test (CET) on graduates’ salaries using data mining techniques. 2013 International Conference on Research and Innovation in Information Systems (ICRIIS), Kuala Lumpur, Malaysia, 2013, pp. 559–563. https://doi.org/10.1109/ICRIIS.2013.6716770


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.