UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Forests are vital in combating climate change by storing and sequestrating CO2 from the atmosphere. Measuring the influence of land use/land cover (LULC) changes on the capacity of carbon storage (CS) within forest ecosystems presents a significant challenge. This study employs remote sensing techniques to examine the changes in spatiotemporal patterns of CS in the Chittagong Hill Tracts (CHT), resulting from LULC alterations between 1996 and 2021. LULC change patterns were identified for six different years utilizing the Google Earth Engine (GEE). The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model was combined with GEE to evaluate the changing patterns of CS. The study discovered that the CHT region experienced a loss of 21.65 106 Mg of CS, owing to a 21% reduction in vegetation cover (2862.85 km^2) during the study period. The central city area (Chittagong) accounted for the most significant loss of CS (7.99 106 Mg), while the suburban areas of Khagrachari (0.92 106 Mg) and Rangamati (3.53 106 Mg) contributed the least. The multiple regression model revealed that elevation and vegetation characteristics significantly influenced CS. The findings underscore the importance of developing policies and strategies that mitigate the adverse effects of land cover change on CS, and advocate for sustainable forest management practices that strike a balance between ecological, social, and economic concerns. 2023 The Author(s) |
References |
Aalde, H., Gonzalez, P., Gytarsky, M., Krug, T., Kurz, W.A., Lasco, R.D., Martino, D.L., McConkey, B.G., Ogle, S., Paustian, K., 2006. Generic methodologies applicable to multiple land-use categories. In IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES) for the IPCC: Kanagawa, Japan 4, 1–59. Adelisardou, F., Zhao, W., Chow, R., et al., 2022. Spatiotemporal change detection of carbon storage and sequestration in an arid ecosystem by integrating Google Earth Engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol. 19, 5929–5944. https://doi.org/10.1007/s13762-021-03676-6. Ahmad, A., Ahmad, S., Nabi, G., Zeb, A., Rajpar, M.N., Ullah, S., Khalid, F., Rahman, M., Liu, Q., Zu, K., Guo, X., Wanghe, K., 2022. Carbon emissions with forest cover change and wood harvest in the dry temperate region of Pakistan Between 1908 and 2015. Front. Environ. Sci. 10, 876225 https://doi.org/10.3389/fenvs.2022.876225. Ahmed, M.A., Roy, P., Shah, M.H., Argha, D.P., Datta, D., Riyad, R.H., 2021. Recycling of cotton dust for organic farming is a pivotal replacement of chemical fertilizers by composting and its quality analysis. Environ. Res. Technol. 4 (2), 108–116. https://doi.org/10.35208/ert.815322. Ahmad, A. & Quegan, S. "Analysis of Maximum Likelihood classification technique on Landsat 5 TM satellite data of tropical land covers," 2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2012, pp. 280-285, doi: 10.1109/ICCSCE.2012.6487156. Almulhim, A.I., Cobbinah, P.B., 2022. Urbanization-environment conundrum: an invitation to sustainable development in Saudi Arabian cities. Int. J. Sustain. Dev. World Ecol. 1–15. Amit, S., Kafy, A.-A., Barua, L., 2023. Systemic Barriers to Financial Inclusion in the Banking Sector of Bangladesh. In: Endress, T., Badir, Y.F. (Eds.), Business and Management in Asia: Digital Innovation and Sustainability. Springer Nature Singapore, Singapore, pp. 121–138. Anjum, F. et al. (2021). Land Use/Land Cover Change Analysis Due to Tourism in the Chittagong Hill Tracts of Bangladesh. In: Fujita, H., Selamat, A., Lin, J.CW., Ali, M. (eds) Advances and Trends in Artificial Intelligence. From Theory to Practice. IEA/AIE 2021. Lecture Notes in Computer Science, vol 12799. Springer, Cham. https://doi.org/10.1007/978-3-030-79463-7_15. Baul, T.K., Chowdhury, A.I., Uddin, M.J., Hasan, M.K., Kilpel¨ainen, A., Nandi, R., Sultana, T., 2021. Forest carbon stocks under three canopy densities in Sitapahar natural forest reserve in Chittagong Hill Tracts of Bangladesh. For. Ecol. Manage. 492, 119217. BBS. 2022. Population & Housing Census 2022 Preliminary Report. Bangladesh Bureau of Statistics. Ministry of Planning, Government of the People’s Republic of Bangladesh. Begum, R.A., Raihan, A., Said, M.N.M., 2020. Dynamic impacts of economic growth and forested area on carbon dioxide emissions in Malaysia. Sustainability 12, 9375. https://doi.org/10.3390/su12229375. Brando, P.M., Paolucci, L., Ummenhofer, C.C., Ordway, E.M., Hartmann, H., Cattau, M. E., Rattis, L., Medjibe, V., Coe, M.T., Balch, J., 2019. Droughts, wildfires, and forest carbon cycling: a pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47 (1), 555–581. Chowdhury, M., Hasan, M.E., Abdullah-Al-Mamun, M.M., 2020. Land use/land cover change assessment of Halda watershed using remote sensing and GIS, Egypt. J. Remote Sens. Space Sci. 23 (1), 63–75. Enescu, R., Dinc˘a, L., Vasile, D., Vlad, R., 2022. Does the slope aspect influence the soil organic matter concentration in forest soils? Forests 13, 1472. https://doi.org/10.3390/f13091472. Faisal, A.A., Kafy, A.A., Afroz, F., Rahaman, Z.A., 2023. Exploring and forecasting spatial and temporal patterns of fire hazard risk in Nepal’s tiger conservation zones. Ecol. Model. 476, 110244. Fattah, M., Morshed, S.R., Morshed, S.Y., 2021a. Impacts of land use-based carbon emission pattern on surface temperature dynamics: experience from the urban and suburban areas of Khulna, Bangladesh. Remote Sens. Appl. Soc. Environ. 22 (11) https://doi.org/10.1016/j.rsase.2021.100508. Fattah, M., Morshed, S.R., Morshed, S.Y., 2021b. Multi-layer perceptron-Markov chainbased artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Appl. Sci. 3, 359. https://doi.org/10.1007/s42452-021-04351-8. Favretto, N., Stringer, L.C., Dougill, A.J., Dallimer, M., Perkins, J.S., Reed, M.S., Atlhopheng, J.R., Mulale, K., 2016. Multi-Criteria Decision Analysis to identify dryland ecosystem service trade-offs under different rangeland land uses. Ecosyst. Serv. 17, 142–151. https://doi.org/10.1016/j.ecoser.2015.12.005. Ha, N.T., Manley-Harris, M., Pham, T.D., Hawes, I., 2020. A comparative assessment of ensemble-based machine learning and maximum likelihood methods for mapping seagrass using sentinel-2 imagery in Tauranga Harbor, New Zealand. Remote Sens. 12 (3), 355. Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C.R.I., 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10, 89–95. https://doi.org/10.5194/nhess-10-89-2010. Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., Potapov, P.V., Suarez, D.R., Roman- Cuesta, R.M., Saatchi, S.S., Slay, C.M., Turubanova, S.A., Tyukavina, A., 2021. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Chang. 11 (3), 234–240. Hasan, S.S., Sarmin, N.S., Miah, M.G., 2019. Assessment of scenario-based land use changes in the Chittagong Hill Tracts of Bangladesh. Environ. Dev. 34, 100463. Hoque, M.Z., Cui, S., Islam, I., Xu, L., Ding, S., 2021. Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol. Indic. 130, 107954 https://doi.org/10.1016/j.ecolind.2021.107954. Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A.K., Ewango, C.E.N., Fauset, S., Mukinzi, J.M., Sheil, D., Sonk´e, B., Sullivan, M.J.P., Sunderland, T.C.H., Taedoumg, H., Thomas, S.C., White, L.J.T., Abernethy, K.A., Adu-Bredu, S., Amani, C.A., Baker, T.R., Banin, L.F., Baya, F., Begne, S.K., Bennett, A.C., Benedet, F., Bitariho, R., Bocko, Y.E., Boeckx, P., Boundja, P., Brienen, R.J.W., Brncic, T., Chezeaux, E., Chuyong, G.B., Clark, C.J., Collins, M., Comiskey, J.A., Coomes, D.A., Dargie, G.C., de Haulleville, T., Kamdem, M.N.D., Doucet, J.-L., Esquivel-Muelbert, A., Feldpausch, T.R., Fofanah, A., Foli, E.G., Gilpin, M., Gloor, E., Gonmadje, C., Gourlet-Fleury, S., Hall, J.S., Hamilton, A.C., Harris, D.J., Hart, T.B., Hockemba, M.B.N., Hladik, A., Ifo, S.A., Jeffery, K.J., Jucker, T., Yakusu, E.K., Kearsley, E., Kenfack, D., Koch, A., Leal, M.E., Levesley, A., Lindsell, J.A., Lisingo, J., Lopez-Gonzalez, G., Lovett, J.C., Makana, J.-R., Malhi, Y., Marshall, A.R., Martin, J., Martin, E.H., Mbayu, F.M., Medjibe, V.P., Mihindou, V., Mitchard, E.T.A., Moore, S., Munishi, P.K.T., Bengone, N.N., Ojo, L., Ondo, F.E., Peh, K.-H., Pickavance, G.C., Poulsen, A.D., Poulsen, J.R., Qie, L., Reitsma, J., Rovero, F., Swaine, M.D., Talbot, J., Taplin, J., Taylor, D.M., Thomas, D.W., Toirambe, B., Mukendi, J.T., Tuagben, D., Umunay, P. M., van der Heijden, G.M.F., Verbeeck, H., Vleminckx, J., Willcock, S., W¨oll, H., Woods, J.T., Zemagho, L., 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579 (7797), 80–87. https://doi.org/10.1038/s41586-020-2035-0. Iban, M.C., Sahin, E., 2022. Monitoring land use and land cover change near a nuclear power plant construction site: Akkuyu case, Turkey. Environ. Monit. Assess. 194, 724. https://doi.org/10.1007/s10661-022-10437-6. IPCC guidelines for national greenhouse gas inventories- Refinement to the 2006 (2019) Available at: https://www.ipcc.ch/site/assets/uploads/2019/12/19R_V0_01_Overview.pdf. Islam, I., Cui, S., Hoque, M.Z., Abdullah, H.M., Tonny, K.F., Ahmed, M., Ferdush, J., Xu, L., Ding, S., 2022. Dynamics of tree outside forest land cover development and ecosystem carbon storage change in eastern coastal zone, Bangladesh. Land 11, 76. https://doi.org/10.3390/land11010076. Jenerowicz, A., Wierzbicki, D., Kedzierski, M., 2023. Radiometric correction with topography influence of multispectral imagery obtained from unmanned aerial vehicles. Remote Sens. 15 (8), 2059. Jiang, W., Deng, Y., Tang, Z., Lei, X., Chen, Z., 2017. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 345, 30–40. https://doi.org/10.1016/j.ecolmodel.2016.12.002. Kafy, A.-A., Faisal, A.-A., Al Rakib, A., Fattah, M.A., Rahaman, Z.A., Sattar, G.S., 2022. Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Build. Environ. 208, 108573 https://doi.org/10.1016/j.buildenv.2021.108573. Kanime, N., Kaushal, R., Tewari, S.K., Raverkar, K.P., Chaturvedi, S., Chaturvedi, O.P., 2013. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For. Trees Livelihoods 22, 38–50. https://doi.org/10.1080/14728028.2013.764073. Keller, A.A., Fournier, E., Fox, J., 2015. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. J. Environ. Manage. 156, 23–30. https://doi.org/10.1016/j.jenvman.2015.03.017. Kobler, J., Zehetgruber, B., Dirnb¨ock, T., Jandl, R., Mirtl, M., Schindlbacher, A., 2019. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landscape Ecol. 34 (2), 325–340. https://doi.org/10.1007/s10980-019-00769-z. Koutika, L.-S., 2022. Boosting C sequestration and land restoration through forest management in tropical ecosystems: a mini-review. Ecologies 3, 13–29. https://doi.org/10.3390/ecologies3010003. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |