UPSI Digital Repository (UDRep)
Start | FAQ | About

QR Code Link :

Type :article
ISSN :1566-2543
Main Author :Suriani Abu Bakar
Additional Authors :Azmi Mohamed
Title :Incorporation of different polymeric additives for polyvinylidene fluoride membrane fabrication and its performance on methylene blue rejection and antifouling improvement
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Journal of Polymers and the Environment
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Polyvinylidene fluoride (PVDF)/titanium dioxide (TiO2)/graphene oxide (GO)-based hybrid membrane was blended with polymer additive of polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) and poly (methyl methacrylate) (PMMA) through phase inversion method. A triple-tail surfactant was utilised to assist the initial GO synthesis and achieve better GO dispersion in the polymer matrix. The effect of incorporating different polymer additives was investigated based on methylene blue (MB) dye rejection and antifouling performance. Experimental results showed that the incorporation of PVP in the polymer matrix resulted in the highest pure water flux (635.897 l/m2?h) and permeability (255.833 l/m2 h?MPa) as well as 57.56% MB dye rejection rate. Interestingly, PVDF-TiO2/GO/PMMA presented higher dye rejection rate (79.18%) and flux recovery ratio (FRR) value (86.46%) than other fabricated membranes. Overall, the incorporation of different polymer additives successfully alters the morphology, properties, and performance of the membrane. 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

References

Talaiekhozani A, Reza Mosayebi M, Fulazzaky MA et al (2020) Combination of TiO2 microreactor and electrofotation for organic pollutant removal from textile dyeing industry wastewater. Alexandria Eng J 59:549–563. https://doi.org/10.1016/j.aej.2020.01.052

El Qada EN, Allen SJ, Walker GM (2008) Adsorption of basic dyes from aqueous solution onto activated carbons. Chem Eng J 135:174–184. https://doi.org/10.1016/j.cej.2007.02.023

Park HJ, Bhatti UH, Nam SC et al (2018) Nafon/TiO2 nanoparticle decorated thin flm composite hollow fber membrane for efcient removal of SO2 gas. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2018.10.010

Zin G, Wu J, Rezzadori K et al (2019) Modifcation of hydrophobic commercial PVDF microfltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Sep Purif Technol 212:641–649. https://doi.org/10.1016/j.seppur.2018.10.014

Su QW, Lu H, Zhang JY, Zhang LZ (2019) Fabrication and analysis of a highly hydrophobic and permeable block GO-PVP/PVDF membrane for membrane humidifcation-dehumidifcation desalination. J Memb Sci 582:367–380. https://doi.org/10.1016/j.memsci.2019.04.023

Van TTT, Kumar SR, Lue SJ (2019) Separation mechanisms of binary dye mixtures using a PVDF ultrafltration membrane: Donnan efect and intermolecular interaction. J Memb Sci 575:38–49. https://doi.org/10.1016/j.memsci.2018.12.070

Zhang X, Wang Y, You Y et al (2012) Preparation, performance and adsorption activity of TiO2 nanoparticles entrapped PVDF hybrid membranes. Appl Surf Sci 263:660–665. https://doi.org/10.1016/j.apsusc.2012.09.131

Yan L, Li YS, Xiang CB, Xianda S (2006) Efect of nano-sized Al2O3-particle addition on PVDF ultrafltration membrane performance. J Memb Sci 276:162–167. https://doi.org/10.1016/j.memsci.2005.09.044

Park SJ, Cheedrala RK, Diallo MS et al (2012) Nanofltration membranes based on polyvinylidene fuoride nanofbrous scaffolds and crosslinked polyethyleneimine networks. Nanotechnol Sustain Dev First Ed 14:33–46. https://doi.org/10.1007/978-3-319-05041-6_3

Qin A, Li X, Zhao X et al (2015) Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Appl Mater Interfaces 7:8427–8436. https://doi.org/10.1021/acsami.5b00978

Tayel A, Ramadan AR, El SOA (2018) Titanium dioxide/graphene and titanium dioxide/graphene oxide nanocomposites: synthesis, characterization and photocatalytic applications for water decontamination. Catalysts 8:491–535. https://doi.org/10.3390/catal8110491

Wang J, Wang Y, Zhu J et al (2017) Construction of TiO2@graphene oxide incorporated antifouling nanofltration membrane with elevated fltration performance. J Memb Sci 533:279–288. https://doi.org/10.1016/j.memsci.2017.03.040

Zhang H, Wang X, Li N et al (2018) Synthesis and characterization of TiO2/graphene oxide nanocomposites for  hotoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv 8:34241–34251. https://doi.org/10.1039/c8ra06681g

Sirinupong T, Youravong W, Tirawat D et al (2017) Synthesis and characterization of thin flm composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.05.006

Li C, Sun W, Lu Z et  al (2019) Systematic evaluation of TiO2-GO-modifed ceramic membranes for water treatment: Retention properties and fouling mechanisms. Chem Eng J 378:122138. https://doi.org/10.1016/j.cej.2019.122138

Suriani AB, Nurhafzah MD, Mohamed A et al (2016) Highly conductive electrodes of graphene oxide/natural rubber latexbased electrodes by using a hyper-branched surfactant. JMADE. https://doi.org/10.1016/j.matdes.2016.03.067

Suriani AB, Muqoyyanah MA et al (2018) Improving the photovoltaic performance of DSSCs using a combination of mixedphase TiO2 nanostructure photoanode and agglomerated free reduced graphene oxide counter electrode assisted with hyperbranched surfactant. Optik (Stuttg) 158:522–534. https://doi.org/10.1016/j.ijleo.2017.12.149

Abu Bakar S, Fatiatun MA et al (2019) Improved DSSC photovoltaic performance using reduced graphene oxide–carbon nanotube/platinum assisted with customised triple-tail surfactant as counter electrode and zinc oxide nanowire/titanium dioxide nanoparticle bilayer nanocomposite as photoanode. Graphene Technol 4:17–31. https://doi.org/10.1007/s41127-019-00024-x

Mohamat R, Suriani AB, Mohamed A et al (2021) Efect of surfactants’ tail number on the PVDF/GO/TiO2-based nanofltration membrane for dye rejection and antifouling performance improvement. Int J Environ Res 15:149–161. https://doi.org/10.1007/s41742-020-00299-6

Suriani AB, Muqoyyanah MA et al (2019) Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fuoride-based nanofltration membrane for dye rejection. Water Air Soil Pollut 230:176.https://doi.org/10.1007/s11270-019-4222-x

Mohamat R, Bakar SA, Muqoyyanah, et al (2022) Efect of triple-tail surfactant on the morphological properties of polyethersulfone-based membrane and its antifouling ability. J Mater Sci. https://doi.org/10.1007/s10853-022-07646-2

Benhabiles O, Galiano F, Marino T et al (2019) Preparation and characterization of TiO2-PVDF/PMMA blend membranes using an alternative non-toxic solvent for UF/MF and photocatalytic application. Molecules 24:1–20. https://doi.org/10.3390/molecules24040724

Sakarkar S, Muthukumaran S, Jegatheesan V (2020) Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin flm coating on polyvinylidene fuoride (PVDF) membrane for the removal of textile dyes. Chemosphere 257:127144. https://doi.org/10.1016/j.chemosphere.2020.127144

Beygmohammdi F, Nourizadeh Kazerouni H, Jafarzadeh Y et al (2020) Preparation and characterization of PVDF/PVP-GO membranes to be used in MBR system. Chem Eng Res Des 154:232–240. https://doi.org/10.1016/j.cherd.2019.12.016

Meng X, Donghui F, Chenguang G et al (2016) Fouling behaviour of membranes with diferent characteristics by urban wastewater secondary efuent. Environ Technol (United Kingdom) 37:805–814. https://doi.org/10.1080/09593330.2015.1085456

Jaleh B, Zare E, Azizian S et al (2020) Preparation and characterization of polyvinylpyrrolidone/polysulfone ultrafltration membrane modifed by graphene oxide and titanium dioxide for enhancing hydrophilicity and antifouling properties. J Inorg Organomet Polym Mater 30:2213–2223. https://doi.org/10.1007/s10904-019-01367-x

Dave HK, Nath K (2016) Graphene oxide incorporated novel polyvinyl alcohol composite membrane for pervaporative recovery of acetic acid from vinegar wastewater. J Water Process Eng 14:124–134. https://doi.org/10.1016/j.jwpe.2016.11.002


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.