UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In the fuzzy multicriteria decision-making approach, a committee of decision-makers is usually involved in the assessment of the suitability of different alternatives based on the evaluation criteria by using linguistic terms and their equivalent fuzzy numbers. In this context, researchers have developed the Pythagorean fuzzy set (PFS) to overcome the limitation of intuitionistic fuzzy set in the description of decision-maker information such as imposing restrictions on the representation of membership and nonmembership grades. On the one hand, PFS still does not have sufficient ability and flexibility to deal with such issues. On the other hand, multipolar technology is used to operate large-scale systems in real-life situations, especially in dealing with dissatisfaction and indeterminacy grades for the alternatives of the reference set. Thus, m-polar fuzzy set is utilized and applied with other fuzzy sets because of its remarkable ability as a tool for depicting fuzziness and uncertainty under multipolar information in many circumstances. With the practical features of m-polar fuzzy set in combination with PFS, this paper employs it to extend two considerable MCDM methods, namely, fuzzy decision by opinion score method and fuzzy-weighted zero inconsistency. Such extensions, called Pythagorean m-polar fuzzy-weighted zero-inconsistency (Pm-PFWZIC) method and Pythagorean m-polar fuzzy decision by opinion score method (Pm-PFDOSM), are formulated to weight the evaluation criteria followed by alternative ranking progressively. The research methodology is presented as follows. Firstly, the mechanisms of Pm-PFWZIC and Pm-PFDOSM are formulated and integrated into the development phase. Secondly, the description of the real-world case study of the evaluation and benchmarking of the sign language recognition systems is adapted and presented. The result of Pm-PFWZIC shows that the criterion of 'finger movements' has the highest weight amongst the rest of the criteria, whereas 'misclassification error' has the lowest weight. In the ranking results, a variation of ranking is scored by each expert, and group decision-making is applied to solve the individual ranking variety. The robustness of the formulated methods is evaluated using systematic ranking, sensitivity analysis and comparison analysis. 2023 World Scientific Publishing Company. |
References |
Abdulkareem, K. H., Arbaiy, N., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Salih, M. M. (2020). A Novel Multi-Perspective Benchmarking Framework for Selecting Image Dehazing Intelligent Algorithms Based on BWM and Group VIKOR Techniques. International Journal of Information Technology and Decision Making, 19(3), 909–957. https://doi.org/10.1142/S0219622020500169 Abdullateef, B. N., Elias, N. F., Mohamed, H., Zaidan, A. A., & Zaidan, B. B. (2016). An evaluation and selection problems of OSS-LMS packages. SpringerPlus, 5(1), 1–35. https://doi.org/10.1186/s40064-016-1828-y Adeel, A., Akram, M., Ahmed, I., & Nazar, K. (2019). Novel m-polar fuzzy linguistic ELECTRE-I method for group decision-making. Symmetry, 11(4). https://doi.org/10.3390/sym11040471 Adeel, A., Akram, M., & Koam, A. N. A. (2019a). Group decision-making based on m-polar fuzzy linguistic TOPSIS method. Symmetry, 11(6). https://doi.org/10.3390/sym11060735 Adeel, A., Akram, M., & Koam, A. N. A. (2019b). Multi-Criteria Decision-Making under mHF ELECTRE-I and HmF ELECTRE-I. Energies, 12(9). https://doi.org/10.3390/en12091661 Akram, M., Ali, G., & Alcantud, J. C. R. (2019). Hybrid multi-attribute decision-making model based on (m,N)-soft rough sets. Journal of Intelligent and Fuzzy Systems, 36(6), 6325–6342. https://doi.org/10.3233/JIFS-182616 Akram, M., Alsulami, S., & Zahid, K. (2021). A Hybrid Method for Complex Pythagorean Fuzzy Decision Making. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/9915432 Akram, M., Kahraman, C., & Zahid, K. (2021). Group decision-making based on complex spherical fuzzy VIKOR approach. Knowledge-Based Systems, 216. https://doi.org/10.1016/j.knosys.2021.106793 Akram, M., & Sarwar, M. (2017). Novel applications of m-polar fuzzy hypergraphs. Journal of Intelligent and Fuzzy Systems, 32(3), 2747–2762. https://doi.org/10.3233/JIFS-16859 Akram, M., & Shumaiza. (2021). Multi-criteria decision making based on q-rung orthopair fuzzy promethee approach. Iranian Journal of Fuzzy Systems, 18(5), 107–127. https://doi.org/10.22111/ijfs.2021.6258 Akram, M., Waseem, N., & Liu, P. (2019). Novel Approach in Decision Making with m–Polar Fuzzy ELECTRE-I. International Journal of Fuzzy Systems, 21(4), 1117–1129. https://doi.org/10.1007/s40815-019-00608-y Alaa, M., Albakri, I. S. M. A., Singh, C. K. S., Hammed, H., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Salih, M. M., Almahdi, E. M., Shareef, A. H., & Jasim, A. N. (2019). Assessment and Ranking Framework for the English Skills of Pre-Service Teachers Based on Fuzzy Delphi and TOPSIS Methods. IEEE Access, 7, 126201–126223. https://doi.org/10.1109/ACCESS.2019.2936898 Alamoodi, A. H., Garfan, S., Zaidan, B. B., Zaidan, A. A., Shuwandy, M. L., Alaa, M., Alsalem, M. A., Mohammed, A., Aleesa, A. M., Albahri, O. S., Al-Hussein, W. A., & Alobaidi, O. R. (2020). A systematic review into the assessment of medical apps: motivations, challenges, recommendations and methodological aspect. Health and Technology, 10(5), 1045–1061. https://doi.org/10.1007/s12553-020-00451-4 Albahri, A. S., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alsattar, H. A., Mohammed, R., Alamoodi, A. H., Zaidan, B. B., Aickelin, U., Alazab, M., Ahmaro, I. Y. Y., & Ahmed, M. A. (2022). Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. Computer Standards and Interfaces, 80. https://doi.org/10.1016/j.csi.2021.103572 Albahri, A. S., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Alsalem, M. A., Mohsin, A. H., Mohammed, K. I., Alamoodi, A. H., Enaizan, O., al Shafeey, G. A., & Baqer, M. J. (2019). Based Multiple Heterogeneous Wearable Sensors: A Smart Real-Time Health Monitoring Structured for Hospitals Distributor. IEEE Access, 7, 37269–37323. https://doi.org/10.1109/ACCESS.2019.2898214 Albahri, A. S., Alnoor, A., Zaidan, A. A., Albahri, O. S., Hameed, H., Zaidan, B. B., Peh, S. S., Zain, A. B., Siraj, S. B., Alamoodi, A. H., Alamoodi, A. H., & Yass, A. A. (2021). Based on the multi-assessment model: Towards a new context of combining the artificial neural network and structural equation modelling: A review. Chaos, Solitons and Fractals, 153. https://doi.org/10.1016/j.chaos.2021.111445 Albahri, A. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, O. S., Hamid, R. A., Zaidan, B. B., Alamoodi, A. H., & Hashim, M. (2020). Multi-Biological Laboratory Examination Framework for the Prioritization of Patients with COVID-19 Based on Integrated AHP and Group VIKOR Methods. International Journal of Information Technology and Decision Making, 19(5), 1247–1269. https://doi.org/10.1142/S0219622020500285 Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., & Alsalem, M. A. (2018). Real-Time Fault-Tolerant mHealth System: Comprehensive Review of Healthcare Services, Opens Issues, Challenges and Methodological Aspects. Journal of Medical Systems, 42(8). https://doi.org/10.1007/s10916-018-0983-9 Albahri, O. S., Albahri, A. S., Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Hashim, M., & Salman, O. H. (2018). Systematic Review of Real-time Remote Health Monitoring System in Triage and Priority-Based Sensor Technology: Taxonomy, Open Challenges, Motivation and Recommendations. Journal of Medical Systems, 42(5). https://doi.org/10.1007/s10916-018-0943-4 Albahri, O. S., Albahri, A. S., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Mohsin, A. H., Mohammed, K. I., Alamoodi, A. H., Nidhal, S., Enaizan, O., Jalood, N. S., & Shareef, A. H. (2019). Fault-Tolerant mHealth Framework in the Context of IoT-Based Real-Time Wearable Health Data Sensors. IEEE Access, 7, 50052–50080. https://doi.org/10.1109/ACCESS.2019.2910411 Albahri, O. S., Al-Obaidi, J. R., Zaidan, A. A., Albahri, A. S., Zaidan, B. B., Salih, M. M., Qays, A., Dawood, K. A., Mohammed, R. T., Abdulkareem, K. H., Chyad, M. A., & Zulkifli, C. Z. (2020). Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. Computer Methods and Programs in Biomedicine, 196. https://doi.org/10.1016/j.cmpb.2020.105617 Albahri, O. S., Zaidan, A. A., Albahri, A. S., Alsattar, H. A., Mohammed, R., Aickelin, U., Kou, G., Jumaah, F. M., Salih, M. M., Alamoodi, A. H., Alnoor, A., & Al-Obaidi, J. R. (2022). Novel dynamic fuzzy Decision-Making framework for COVID-19 vaccine dose recipients. Journal of Advanced Research, 37, 147–168. https://doi.org/10.1016/j.jare.2021.08.009 Albahri, O. S., Zaidan, A. A., Albahri, A. S., Zaidan, B. B., Abdulkareem, K. H., Al-qaysi, Z. T., Alamoodi, A. H., Aleesa, A. M., Chyad, M. A., Alesa, R. M., Ibrahim, A. B., & Rashid, N. A. (2020). Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of Infection and Public Health, 13(10), 1381–1396. https://doi.org/10.1016/j.jiph.2020.06.028 Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, A. S., & Alsalem, M. A. (2018). Real-Time Remote Health-Monitoring Systems in a Medical Centre: A Review of the Provision of Healthcare Services-Based Body Sensor Information, Open Challenges and Methodological Aspects. Journal of Medical Systems, 42(9). https://doi.org/10.1007/s10916-018-1006-6 Alcantud, J. C. R., & Giarlotta, A. (2019). Necessary and possible hesitant fuzzy sets: A novel model for group decision making. Information Fusion, 46, 63–76. https://doi.org/10.1016/j.inffus.2018.05.005 Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019a). Mobile Patient Monitoring Systems from a Benchmarking Aspect: Challenges, Open Issues and Recommended Solutions. Journal of Medical Systems, 43(7). https://doi.org/10.1007/s10916-019-1336-z Almahdi, E. M., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2019b). Mobile-Based Patient Monitoring Systems: A Prioritisation Framework Using Multi-Criteria Decision-Making Techniques. Journal of Medical Systems, 43(7). https://doi.org/10.1007/s10916-019-1339-9 Alsalem, M. A., Alsattar, H. A., Albahri, A. S., Mohammed, R. T., Albahri, O. S., Zaidan, A. A., Alnoor, A., Alamoodi, A. H., Qahtan, S., Zaidan, B. B., Alazab, M., & Jumaah, F. M. (2021). Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. Journal of Infection and Public Health, 14(10), 1513–1559. https://doi.org/10.1016/j.jiph.2021.08.026 Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., Mohsin, A. H., & Mohammed, K. I. (2019). Multiclass Benchmarking Framework for Automated Acute Leukaemia Detection and Classification Based on BWM and Group-VIKOR. Journal of Medical Systems, 43(7). https://doi.org/10.1007/s10916-019-1338-x Alsalem, M. A., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, O. S., Albahri, A. S., Hadi, A., & Mohammed, K. I. (2018). Systematic Review of an Automated Multiclass Detection and Classification System for Acute Leukaemia in Terms of Evaluation and Benchmarking, Open Challenges, Issues and Methodological Aspects. Journal of Medical Systems, 42(11). https://doi.org/10.1007/s10916-018-1064-9 Asif, M., Akram, M., & Ali, G. (2020). Pythagorean fuzzy matroids with application. Symmetry, 12(3). https://doi.org/10.3390/sym12030423 Chen, J., Li, S., Ma, S., & Wang, X. (2014). M-Polar fuzzy sets: An extension of bipolar fuzzy sets. Scientific World Journal, 2014. https://doi.org/10.1155/2014/416530 Chen, Z.-S., Chin, K.-S., Li, Y.-L., & Yang, Y. (2016). On generalized extended bonferroni means for decision making. IEEE Transactions on Fuzzy Systems, 24(6), 1525–1543. https://doi.org/10.1109/TFUZZ.2016.2540066 Chen, Z.-S., Chin, K.-S., & Tsui, K.-L. (2019). Constructing the geometric Bonferroni mean from the generalized Bonferroni mean with several extensions to linguistic 2-tuples for decision-making. Applied Soft Computing Journal, 78, 595–613. https://doi.org/10.1016/j.asoc.2019.03.007 Chu, T.-C., & Lin, Y. (2009). An extension to fuzzy MCDM. Computers and Mathematics with Applications, 57(3), 445–454. https://doi.org/10.1016/j.camwa.2008.10.076 Enaizan, O., Zaidan, A. A., Alwi, N. H. M., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., & Albahri, A. S. (2020). Electronic medical record systems: decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Health and Technology, 10(3), 795–822. https://doi.org/10.1007/s12553-018-0278-7 Hashmi, M. R., Riaz, M., & Smarandache, F. (2020). m-Polar Neutrosophic Topology with Applications to Multi-criteria Decision-Making in Medical Diagnosis and Clustering Analysis. International Journal of Fuzzy Systems, 22(1), 273–292. https://doi.org/10.1007/s40815-019-00763-2 Huang, C., Lin, M., & Xu, Z. (2020). Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: its application in multicriteria decision making process. Knowledge and Information Systems, 62(11), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y Ibrahim, N. K., Hammed, H., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Mohammed, R. T., Jasim, A. N., Shareef, A. H., Jalood, N. S., Almahdi, E. M., & Alaa, M. (2019). Multi-Criteria Evaluation and Benchmarking for Young Learners’ English Language Mobile Applications in Terms of LSRW Skills. IEEE Access, 7, 146620–146651. https://doi.org/10.1109/ACCESS.2019.2941640 Iqbal, S., Kiah, M. L. M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., & Alsalem, M. A. (2019). Real-time-based E-health systems: design and implementation of a lightweight key management protocol for securing sensitive information of patients. Health and Technology, 9(2), 93–111. https://doi.org/10.1007/s12553-018-0252-4 Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., & Bahbibi, R. (2018). Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement: Journal of the International Measurement Confederation, 118, 83–95. https://doi.org/10.1016/j.measurement.2018.01.011 Jumaah, F. M., Zaidan, A. A., Zaidan, B. B., Bahbibi, R., Qahtan, M. Y., & Sali, A. (2018). Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommunication Systems, 68(3), 425–443. https://doi.org/10.1007/s11235-017-0401-5 Kalid, N., Zaidan, A. A., Zaidan, B. B., Salman, O. H., Hashim, M., Albahri, O. S., & Albahri, A. S. (2018). Based on Real Time Remote Health Monitoring Systems: A New Approach for Prioritization “Large Scales Data” Patients with Chronic Heart Diseases Using Body Sensors and Communication Technology. Journal of Medical Systems, 42(4). https://doi.org/10.1007/s10916-018-0916-7 Khatari, M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., & Alsalem, M. A. (2019). Multi-Criteria Evaluation and Benchmarking for Active Queue Management Methods: Open Issues, Challenges and Recommended Pathway Solutions. International Journal of Information Technology and Decision Making, 18(4), 1187–1242. https://doi.org/10.1142/S0219622019300039 Lin, M., Chen, Z., Liao, H., & Xu, Z. (2019). ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing. Nonlinear Dynamics, 96(3), 2125–2143. https://doi.org/10.1007/s11071-019-04910-0 Lin, M., Huang, C., & Xu, Z. (2020). MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustainable Cities and Society, 53. https://doi.org/10.1016/j.scs.2019.101873 Lin, M., Li, X., & Chen, L. (2020). Linguistic q-rung orthopair fuzzy sets and their interactional partitioned Heronian mean aggregation operators. International Journal of Intelligent Systems, 35(2), 217–249. https://doi.org/10.1002/int.22136 Lin, M., Li, X., Chen, R., Fujita, H., & Lin, J. (2022). Picture fuzzy interactional partitioned Heronian mean aggregation operators: an application to MADM process. Artificial Intelligence Review, 55(2), 1171–1208. https://doi.org/10.1007/s10462-021-09953-7 Mandal, P., & Ranadive, A. S. (2019). Hesitant bipolar-valued fuzzy sets and bipolar-valued hesitant fuzzy sets and their applications in multi-attribute group decision making. Granular Computing, 4(3), 559–583. https://doi.org/10.1007/s41066-018-0118-1 Mohammed, K. I., Jaafar, J., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., Abdulkareem, K. H., Jasim, A. N., Shareef, A. H., Baqer, M. J., Albahri, A. S., Alsalem, M. A., & Alamoodi, A. H. (2020). A Uniform Intelligent Prioritisation for Solving Diverse and Big Data Generated from Multiple Chronic Diseases Patients Based on Hybrid Decision-Making and Voting Method. IEEE Access, 8, 91521–91530. https://doi.org/10.1109/ACCESS.2020.2994746 Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., Alsalem, M. A., & Mohsin, A. H. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. Computer Methods and Programs in Biomedicine, 185. https://doi.org/10.1016/j.cmpb.2019.105151 Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Hadi, A., & Hashim, M. (2019). Real-Time Remote-Health Monitoring Systems: a Review on Patients Prioritisation for Multiple-Chronic Diseases, Taxonomy Analysis, Concerns and Solution Procedure. Journal of Medical Systems, 43(7). https://doi.org/10.1007/s10916-019-1362-x Naeem, K., Riaz, M., & Afzal, D. (2019). Pythagorean m-polar fuzzy sets and TOPSIS method for the selection of advertisement mode. Journal of Intelligent and Fuzzy Systems, 37(6), 8441–8458. https://doi.org/10.3233/JIFS-191087 Napi, N. M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., & Albahri, A. S. (2019). Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. Health and Technology, 9(5), 679–700. https://doi.org/10.1007/s12553-019-00357-w Rahmatullah, B., Zaidan, A. A., Mohamed, F., & Sali, A. (2017). Multi-complex attributes analysis for optimum GPS baseband receiver tracking channels selection. 2017 4th International Conference on Control, Decision and Information Technologies, CoDIT 2017, 2017-Janua, 1084–1088. https://doi.org/10.1109/CoDIT.2017.8102743 Riaz, M., & Hashmi, M. R. (2019). MAGDM for agribusiness in the environment of various cubic m-polar fuzzy averaging aggregation operators. Journal of Intelligent and Fuzzy Systems, 37(3), 3671–3691. https://doi.org/10.3233/JIFS-182809 Riaz, M., & Hashmi, M. R. (2020). Soft rough Pythagorean m-polar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision-making. Computational and Applied Mathematics, 39(1). https://doi.org/10.1007/s40314-019-0989-z Salih, M. M., Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Jumaah, F. M., & Albahri, A. S. (2021). Benchmarking of AQM methods of network congestion control based on extension of interval type-2 trapezoidal fuzzy decision by opinion score method. Telecommunication Systems, 77(3), 493–522. https://doi.org/10.1007/s11235-021-00773-2 Salih, M. M., Zaidan, B. B., & Zaidan, A. A. (2020). Fuzzy decision by opinion score method. Applied Soft Computing Journal, 96. https://doi.org/10.1016/j.asoc.2020.106595 Salman, O. H., Zaidan, A. A., Zaidan, B. B., Naserkalid, & Hashim, M. (2017). Novel Methodology for Triage and Prioritizing Using “big Data” Patients with Chronic Heart Diseases Through Telemedicine Environmental. International Journal of Information Technology and Decision Making, 16(5), 1211–1245. https://doi.org/10.1142/S0219622017500225 Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Alamoodi, A. H., Kiah, M. L. M., Jumaah, F. M., & Alaa, M. (2019). Comprehensive review and analysis of anti-malware apps for smartphones. Telecommunication Systems, 72(2), 285–337. https://doi.org/10.1007/s11235-019-00575-7 Tariq, I., AlSattar, H. A., Zaidan, A. A., Zaidan, B. B., Abu Bakar, M. R., Mohammed, R. T., Albahri, O. S., Alsalem, M. A., & Albahri, A. S. (2020). MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Computing and Applications, 32(8), 3101–3115. https://doi.org/10.1007/s00521-018-3808-3 Xia, M., & Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning, 52(3), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 Xia, M., Xu, Z., & Chen, N. (2013). Some Hesitant Fuzzy Aggregation Operators with Their Application in Group Decision Making. Group Decision and Negotiation, 22(2), 259–279. https://doi.org/10.1007/s10726-011-9261-7 Yang, Y., Chen, Z.-S., Chen, Y.-H., & Chin, K.-S. (2018). Interval-valued pythagorean fuzzy frank power aggregation operators based on an isomorphic frank dual triple. International Journal of Computational Intelligence Systems, 11(1), 1091–1110. https://doi.org/10.2991/ijcis.11.1.83 Yang, Y., Chen, Z.-S., Rodríguez, R. M., Pedrycz, W., & Chin, K.-S. (2022). Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: a case study in quality assessment of SmartWatch appearance design. International Journal of Machine Learning and Cybernetics, 13(3), 609–632. https://doi.org/10.1007/s13042-020-01269-2 Yas, Q. M., Zadain, A. A., Zaidan, B. B., Lakulu, M. B., & Rahmatullah, B. (2017). Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. International Journal of Pattern Recognition and Artificial Intelligence, 31(3). https://doi.org/10.1142/S0218001417590029 Yu, D., Wu, Y., & Zhou, W. (2011). Multi-criteria decision making based on Choquet integral under hesitant fuzzy environment. Journal of Computational Information Systems, 7(12), 4506–4513. Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alsalem, M. A., Albahri, A. S., Yas, Q. M., & Hashim, M. (2018). A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 8(4), 223–238. https://doi.org/10.1007/s12553-018-0223-9 Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., Albahri, A. S., & Qahtan, M. Y. (2020). Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Computing and Applications, 32(12), 8315–8366. https://doi.org/10.1007/s00521-019-04325-3 Zaidan, A. A., Zaidan, B. B., Hussain, M., Al-Haiqi, A. M., Mat Kiah, M. L., & Abdulnabi, M. (2015). Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decision Support Systems, 78, 15–27. https://doi.org/10.1016/j.dss.2015.07.002 Zaidan, B. B., & Zaidan, A. A. (2017). Software and Hardware FPGA-Based Digital Watermarking and Steganography Approaches: Toward New Methodology for Evaluation and Benchmarking Using Multi-Criteria Decision-Making Techniques. Journal of Circuits, Systems and Computers, 26(7). https://doi.org/10.1142/S021812661750116X Zaidan, B. B., & Zaidan, A. A. (2018). Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement: Journal of the International Measurement Confederation, 117, 277–294. https://doi.org/10.1016/j.measurement.2017.12.019 Zaidan, B. B., Zaidan, A. A., Karim, H. A., & Ahmad, N. N. (2017). A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data.’ Software - Practice and Experience, 47(10), 1365–1392. https://doi.org/10.1002/spe.2465 Zughoul, O., Momani, F., Almasri, O. H., Zaidan, A. A., Zaidan, B. B., Alsalem, M. A., Albahri, O. S., Albahri, A. S., & Hashim, M. (2018). Comprehensive Insights into the Criteria of Student Performance in Various Educational Domains. IEEE Access, 6, 73245–73264. https://doi.org/10.1109/ACCESS.2018.2881282 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |