UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimers disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 0.80 M and 2.90 0.56 M, respectively. The LineweaverBurk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD. 2023 by the authors. |
References |
Da Silva Barbosa, D.C.; Holanda, V.N.; de Assis, C.R.D.; de Oliveira Farias de Aguiar, J.C.R.; doNascimento, P.H.; da Silva, W.V.; do Amaral Ferraz Navarro, D.M.; Silva, M.V.d.; de Menezes Lima, V.L.; dos Santos Correia, M.T. Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H.West exWilld.) O. Berg fruit peel essential oil. Ind. Crops Prod. 2020, 151, 112372. [CrossRef] Marzouk, M.M.; Ibrahim, L.F.; El-Hagrassi, A.M.; Fayed, D.B.; Elkhateeb, A.; Abdel-Hameed, E.-S.S.; Hussein, S.R. Phenolic profiling and anti-Alzheimer’s evaluation of Eremobium aegyptiacum. Adv. Trad. Med. 2020, 20, 233–241. [CrossRef] Mishra, P.; Kumar, A.; Panda, G. Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg. Med. Chem. 2019, 27, 895–930. [CrossRef] Masondo, N.A.; Stafford, G.I.; Aremu, A.O.; Makunga, N.P. Acetylcholinesterase inhibitors from southern African plants: An overview of ethnobotanical, pharmacological potential and phytochemical research including and beyond Alzheimer’s disease treatment. S. Afr. J. Bot. 2019, 120, 39–64. [CrossRef] Dizdar, M.; Vidic, D.; Požgan, F.; Štefane, B.; Maksimovi´c, M. Acetylcholinesterase Inhibition and Antioxidant Activity of N-trans-Caffeoyldopamine and N-trans-Feruloyldopamine. Sci. Pharm. 2018, 86, 11. [CrossRef] Santos, M.A.; Chand, K.; Chaves, S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coord. Chem. Rev. 2016, 327–328, 287–303. [CrossRef] Zhao, T.; Ding, K.; Zhang, L.; Cheng, X.; Wang, C.; Wang, Z. Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities of b-Carboline and Quinoline Alkaloids Derivatives from the Plants of Genus Peganum. J. Chem. 2013, 2013, 717232. [CrossRef] Agatonovic-Kustrin, S.; Kustrin, E.; Morton, D.W. Essential oils and functional herbs for healthy aging. Neural Regen. Res. 2019, 14, 441–445. [CrossRef] [PubMed] Konrath, E.L.; Passos Cdos, S.; Klein, L.C., Jr.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013, 65, 1701–1725. [CrossRef] [PubMed] Dall’Acqua, S. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease. Bot. Targets Ther. 2013, 3, 19–28. [CrossRef] Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem. 2016, 24, 4464–4469. [CrossRef] Wan Othman, W.N.N.; Sivasothy, Y.; Liew, S.Y.; Mohamad, J.; Nafiah, M.A.; Ahmad, K.; Litaudon, M.; Awang, K. Alkaloids from Cryptocarya densiflora Blume (Lauraceae) and their cholinesterase inhibitory activity. Phytochem. Lett. 2017, 21, 230–236. [CrossRef] Mollataghi, A.; Coudiere, E.; Hadi, A.H.A.; Mukhtar, M.R.; Awang, K.; Litaudon, M.; Ata, A. Anti-acetylcholinesterase, anti- -glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia 2012, 83, 298–302. [CrossRef] [PubMed] Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Looi, C.Y.; Wong, Y.L.; Mustafa, M.R.; Litaudon, M.; Awang, K. Natural indole butyrylcholinesterase inhibitors from Nauclea officinalis. Phytomedicine 2015, 22, 45–48. [CrossRef] [PubMed] Thakur, K.B.; Anthwal, A.; Rawat, S.D.; Rawat, B.; Rashmi; Rawat, M.S.M. A Review on Genus Alseodaphne: Phytochemistry and Pharmacology. Mini-Rev. Org. Chem. 2012, 9, 433–445. [CrossRef] Nafiah, M.A. Alkaloids Isolated From Alseodaphne Species (Lauraceae) and Their Bioactivities. Ph.D. Thesis, Unversity of Malaya, Kuala Lumpur, Malaysia, 2009. Rachmatiah, T.; Mukhtar, M.R.; Nafiah, M.A.; Hanafi, M.; Kosela, S.; Morita, H.; Litaudon, M.; Awang, K.; Omar, H.; Hadi, A.H. (+)-N-(2-hydroxypropyl)lindcarpine: A new cytotoxic aporphine isolated from Actinodaphne pruinosa Nees. Molecules 2009, 14, 2850–2856. [CrossRef] Böhlke, M.; Guinaudeau, H.; Angerhofer, C.K.; Wongpanich, V.; Soejarto, D.D.; Farnsworth, N.R.; Mora, G.A.; Poveda, L.J. Costaricine, a New Antiplasmodial Bisbenzylisoquinoline Alkaloid from Nectandra salicifolia Trunk Bark. J. Nat. Prod. 1996, 59, 576–580. [CrossRef] [PubMed] Phan, B.H.; Seguin, E.; Tillequin, F.; Koch, M. Aporphine alkaloids from Lindera myrrha. Phytochemistry 1994, 35, 1363–1365. [CrossRef] Yakushijin, K.; Sugiyama, S.; Mori, Y.; Murata, H.; Furukawa, H. Hernagine, a new aporphine alkaloid, and 3-cyano-4- methoxypyridine from Hernandia nymphaefolia. Phytochemistry 1980, 19, 161–162. [CrossRef] Nazimuddin, M.M.; Husna Hasnan, M.H.; Ahmad, K.; Awang, K.; Nafiah, M.A. Hernagine type of Aporphine Alkaloids from Alseodaphne perakensis. EJSMT 2014, 1, 1–7. Lin,W.-h.; Fu, H.-z.; Li, J.; Cheng, G.; Barnes, R.A. The Alkaloids from Leaves of Croton hemiargyerius var. gymnodiscus. J. Chin. Pharm. Sci. 2003, 12, 117–122. Zahari, A.; Ablat, A.; Sivasothy, Y.; Mohamad, J.; Choudhary, M.I.; Awang, K. In vitro antiplasmodial and antioxidant activities of bisbenzylisoquinoline alkaloids from Alseodaphne corneri Kosterm. Asian Pac. J. Trop. Med. 2016, 9, 328–332. [CrossRef] Mukhtar, M.R.; Zahari, A.; Nafiah, M.A.; Hadi, A.H.; Thomas, N.F.; Arai, H.; Morita, H.; Litaudon, M.; Awang, K. 30,40- Dihydronorstephasubine, a New Bisbenzylisoquinoline from the Bark of Alseodaphne corneri. Heterocycles 2009, 78, 2571–2578. [CrossRef] Mukhtar, M.R.; Nafiah, M.A.; Awang, K.; Thomas, N.F.; Zaima, K.; Morita, H.; Litaudon, M.; Hadi, H.A. ’-Oxoperakensimines A-C, new bisbenzylisoquinoline alkaloids from Alseodaphne perakensis (Gamble) Kosterm. Heterocycles 2009, 78, 2085–2092. Wang, R.; Liu, Y.; Shi, G.; Zhou, J.; Li, J.; Li, L.; Yuan, J.; Li, X.; Yu, D. Bioactive bisbenzylisoquinoline alkaloids from the roots of Stephania tetrandra. Bioorg. Chem. 2020, 98, 103697. [CrossRef] Gan, L.; Zhao, X.; Yao, W.; Wu, L.; Li, L.; Zhou, C. A Novel Bisbenzylisoquinoline Alkaloid from Lindera Aggregata. J. Chem. Res. 2008, 2008, 285–286. [CrossRef] Kozuka, M.; Inada, A.; Konoshima, T. Aporphine Alkaloids from Parabenzoin praecox (SIEB. et ZUCC.) NAKAI. Chem. Pharm. Bull. 1984, 32, 5055–5058. [CrossRef] Wei, J.; Wang, Y.; Zhang, Y.; Zheng, Y.; Shao, J.; Cheng, W.; Li, Y. Rapid identification of chemical components in vitro and in vivo of Menispermi Rhizoma by integrating UPLC-Q-TOF-MS with data post-processing strategy. Phytochem. Anal. 2023, 34, 347–362. [CrossRef] Eric, D.J.M.; Siomenan, C.; Prévost, K.B.K.F.; Claude, K.A.L.; Charles, K.; Doumade, Z.; Aminata, A.; Marcelline, A.; Sandrine, A.A.- G.; Jean-François, K.R.; et al. A new natural indole and three aporphine alkaloids from Monodora bevipes Benth. (Annonaceae). Int. Curr. Pharm. J. 2017, 6, 40–43. [CrossRef] |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |