UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2352-4928
Main Author :Suriani Abu Bakar
Additional Authors :Azmi Mohamed
Title :Methylene blue rejection and antifouling properties of different carbonaceous additives-based polyvinylidene fluoride membrane
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Materials Today Communications
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In the present study, various polyvinylidene fluoride (PVDF)-based membranes were successfully fabricated via non-solvent induced phase separation (NIPS) method utilising different carbon-based materials as additive. The incorporation of reduced graphene oxide (rGO), multi-walled carbon nanotubes (MWCNTs) and GO-MWCNTs hybrid along with titanium dioxide (TiO2) definitely affect the fabricated membrane's morphology, hydrophilicity, porosity, filtration performance and antifouling properties. Based on dead-end filtration measurement, rGO-based PVDF/TiO2 membrane presented excellent pure water flux (2446.887 L/m2h) with membrane permeability of 1143.850 L/m2hMPa compared to other membranes. Furthermore, the inclusion of rGO and TiO2 also resulted in the highest methylene blue (MB) dye rejection rate (?92%) compared to MWCNTs (62.22%) and GO-MWCNTs (86.69%). It was believed that steric hindrance effect played a major role in enhancing dye rejection performance of PVDF@rGO/TiO2 membrane. Interestingly, in terms of antifouling properties, PVDF@GO-MWCNTs/TiO2 possessed better antifouling properties as indicated by its higher flux recovery ratio (FRR) value of 95.30%. The existence of hydration layer on membrane surface endowed by oxygen-functional groups prevents the contaminant accumulation thus resulted high FRR value. 2023

References

M.S. Salem, A.H. El-shazly, N. Nady, M.R. Elmarghany, PES/PVDF blend membrane and its composite with graphene nanoplates: preparation, characterization, and water desalination via membrane distillation, Desalin. Water Treat. 166 (2019) 9–23, https://doi.org/10.5004/dwt.2019.24611.

J. Babu, Z.V.P. Murthy, Treatment of textile dyes containing wastewaters with PES/PVA thin film composite nanofiltration membranes, Sep. Purif. Technol. 183 (2017) 66–72, https://doi.org/10.1016/j.seppur.2017.04.002.

M. Yang, C. Zhao, S. Zhang, P. Li, D. Hou, Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property, Appl. Surf. Sci. 394 (2017) 149–159, https://doi.org/10.1016/j.apsusc.2016.10.069.

M. Arshadi, M.J. Amiri, S. Mousavi, Kinetic, equilibrium and thermodynamic investigations of Ni(II), Cd(II), Cu(II) and Co(II) adsorption on barley straw ash, Elsevier,, 2014, https://doi.org/10.1016/j.wri.2014.06.001.

V. Dhand, S.K. Hong, L. Li, J.M. Kim, S.H. Kim, K.Y. Rhee, H.W. Lee, Fabrication of robust, ultrathin and light weight, hydrophilic, PVDF-CNT membrane composite for salt rejection, Compos. Part B Eng. 160 (2019) 632–643, https://doi.org/10.1016/j.compositesb.2018.12.106.

X.T. Yuan, C.X. Xu, H.Z. Geng, Q. Ji, L. Wang, B. He, Y. Jiang, J. Kong, J. Li, Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection, J. Hazard. Mater. 384 (2020), https://doi.org/10.1016/j.jhazmat.2019.120978.

Y. Subasi, B. Cicek, Recent advances in hydrophilic modification of PVDF ultrafiltration membranes – a review: part I, Membr. Technol. 2017 (2017) 7–12, https://doi.org/10.1016/S0958-2118(17)30191-X.

M. Cao, Y. Zhang, B. Zhang, Z. Liu, X. Ma, C. Chen, The preparation of a modified PVDF hollow fiber membrane by coating with multiwalled carbon nanotubes for high antifouling performance, RSC Adv. 10 (2020) 1848–1857, https://doi.org/10.1039/c9ra07542a.

Q. Zhang, H. Wang, X. Fan, F. Lv, S. Chen, X. Quan, Fabrication of TiO2 nanofiber membranes by a simple dip-coating technique for water treatment, Surf. Coat. Technol. 298 (2016) 45–52, https://doi.org/10.1016/j.surfcoat.2016.04.054.

S. Sakarkar, S. Muthukumaran, V. Jegatheesan, Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes, Chemosphere 257 (2020), 127144, https://doi.org/10.1016/j.chemosphere.2020.127144.

N.K.O. Cruz, G.U. Semblante, D.B. Senoro, S.J. You, S.C. Lu, Dye, Degrad. antifouling Prop. polyvinylidene Fluoride/Titan. oxide Membr. Prep. Sol. -gel Method, J. Taiwan Inst. Chem. Eng. 45 (2014) 192–201, https://doi.org/10.1016/j.jtice.2013.04.011.

X. Huang, W. Wang, Y. Liu, H. Wang, Z. Zhang, W. Fan, L. Li, Treatment of oily waste water by PVP grafted PVDF ultrafiltration membranes, Chem. Eng. J. 273 (2015) 421–429, https://doi.org/10.1016/j.cej.2015.03.086.

G. Zheng, Y. He, Z. Yu, Y. Zhan, L. Ma, L. Zhang, Preparation and characterization of a novel PVDF ultrafiltration membrane by blending with TiO2-HNTs nanocomposites, Appl. Surf. Sci. 371 (2016) 624–632, https://doi.org/10.1016/j.apsusc.2016.02.211.

Z. Zhu, L. Wang, Y. Xu, Q. Li, J. Jiang, X. Wang, Preparation and characteristics of graphene oxide-blending PVDF nanohybrid membranes and their applications for hazardous dye adsorption and rejection, J. Colloid Interface Sci. 504 (2017) 429–439, https://doi.org/10.1016/j.jcis.2017.05.068.

J. Zhang, Z. Wang, Q. Wang, J. Ma, J. Cao, W. Hu, Z. Wu, Relationship between polymers compatibility and casting solution stability in fabricating PVDF/PVA membranes, J. Memb. Sci. 537 (2017) 263–271, https://doi.org/10.1016/j.memsci.2017.05.041.

K.H. Shobana, M.S. Kumar, K.S. Radha, D. Mohan, Preparation and characterization of pvdf/ps blend ultrafiltration membranes, Sch. J. Eng. Res. Vol.1 (2012) 37–44.

Y.H. Teow, A.L. Ahmad, J.K. Lim, B.S. Ooi, Preparation and characterization of PVDF/TiO2 mixed matrix membrane via in situ colloidal precipitation method, Desalination 295 (2012) 61–69, https://doi.org/10.1016/j.desal.2012.03.019.

H.P. Ngang, B.S. Ooi, A.L. Ahmad, S.O. Lai, Preparation of PVDF-TiO2 mixedmatrix membrane and its evaluation on dye adsorption and UV-cleaning properties, Chem. Eng. J. 197 (2012) 359–367, https://doi.org/10.1016/j.cej.2012.05.050.

B.A. Abdelkader, M.A. Antar, T. Laoui, Z. Khan, Development of graphene oxidebased membrane as a pretreatment for thermal seawater desalination, Desalination 465 (2019) 13–24, https://doi.org/10.1016/j.desal.2019.04.028.

J. Wang, Y. Wang, J. Zhu, Y. Zhang, J. Liu, B. Van der Bruggen, Construction of TiO2@graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance, J. Memb. Sci. 533 (2017) 279–288, https://doi.org/10.1016/j.memsci.2017.03.040.

H.H. Huang, R.K. Joshi, K.K.H. De Silva, R. Badam, M. Yoshimura, Fabrication of reduced graphene oxide membranes for water desalination, J. Memb. Sci. 572 (2019) 12–19, https://doi.org/10.1016/j.memsci.2018.10.085.

M.O. Mavukkandy, Q. Zaib, H.A. Arafat, CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent, J. Environ. Chem. Eng. 6 (2018) 6733–6740, https://doi.org/10.1016/j.jece.2018.10.029.

J. Wang, W.Z. Lang, H.P. Xu, X. Zhang, Y.J. Guo, Improved poly(vinyl butyral) hollow fiber membranes by embedding multi-walled carbon nanotube for the ultrafiltrations of bovine serum albumin and humic acid, Chem. Eng. J. 260 (2015) 90–98, https://doi.org/10.1016/j.cej.2014.08.082.

M. Goodarzi, G. Pircheraghi, H.A. Khonakdar, Tailoring the graphene polarity through the facile and one-step electrochemical exfoliation in low concentration of exfoliation agents, FlatChem 22 (2020), 100181, https://doi.org/10.1016/j.flatc.2020.100181.

H. Karimipour, A. Shahbazi, V. Vatanpour, Fouling decline and retention increase of polyethersulfone membrane by incorporating melamine-based dendrimer amine functionalized graphene oxide nanosheets (GO/MDA, ), J. Environ. Chem. Eng. 9 (2021), 104849, https://doi.org/10.1016/j.jece.2020.104849.

S.W. Chong, C.W. Lai, S.B. Abd Hamid, F.W. Low, W.W. Liu, Simple preparation of exfoliated graphene oxide sheets via simplified Hummer’s Method, Adv. Mater. Res 1109 (2015) 390–394, https://doi.org/10.4028/www.scientific.net/AMR.1109.390.

A.B. Suriani, Muqoyyanah, A. Mohamed, M.H.D. Othman, R. Rohani, I.I. Yusoff, M. H. Mamat, N. Hashim, M.N. Azlan, M.K. Ahmad, P. Marwoto, Suhaldi, H. H. Kusuma, M.D. Birowosuto, H.P.S.

Abdul Khalil, Incorporation of electrochemically exfoliated graphene oxide and TiO2 into polyvinylidene fluoridebased nanofiltration membrane for dye rejection, Water Air Soil Pollut. 230 (2019) 176, https://doi.org/10.1007/s11270-019-4222-x.

R. Mohamat, A.B. Suriani, A. Mohamed, Muqoyyanah, M.H.D. Othman, R. Rohani, M.H. Mamat, M.K. Ahmad, M.N. Azlan, M.A. Mohamed, M.D. Birowosuto, T. Soga, Effect of Surfactants’ Tail Number on the PVDF/GO/TiO2-Based nanofiltration membrane for dye rejection and antifouling performance improvement, Int. J. Environ. Res. 15 (2021) 149–161, https://doi.org/10.1007/s41742-020-00299-6.

A. Mohamed, A.K. Anas, S. Abu Bakar, A.A. Aziz, M. Sagisaka, P. Brown, J. Eastoe, A. Kamari, N. Hashim, I.M. Isa, Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in https://doi.org/10.1007/s00396-014-3354-1.

A.B. Suriani, M.D. Nurhafizah, A. Mohamed, I. Zainol, A.K. Masrom, A facile onestep method for graphene oxide/natural rubber latex nanocomposite production for supercapacitor applications, Mater. Lett. 161 (2015) 665–668, https://doi.org/10.1016/j.matlet.2015.09.050


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.