UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :0925-3467
Main Author :Mohd Azlan Nafiah
Title :Role of Ag nanoparticles embedded on optical, photoluminescence and elastic properties of samarium magnesium borotellurite glass system
Hits :101
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Optical Materials
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
This paper reports the effect of silver nanoparticle (Ag NPs) on the optical, photoluminescence and elastic properties of samarium magnesium borotellurite (TBMSm) glass system with nominal composition of (58-x) TeO230B2O310MgO-2Sm2O3-xAg NPs, where x = 0.0, 0.1, 0.3, 0.5, 1.0 and 2.0 mol% synthesized via melt quenching method. To achieve the goals, the glasses are analyzed using densitometer, X-Ray Diffraction, Transmission Electron Microscopy, UVVisible Spectroscopy, Photoluminescence, CIE Chromaticity analysis and ultrasonic testing. The density is decreased from 4.162 to 4.310 g/cm3 with the incorporation of Ag NPs. The absence of a prominent peak in the XRD area demonstrated that the glasses were amorphous. TEM shows that the diameter size of Ag NPs is increasing from 40.94 nm to 367.70 nm with the rise of Ag NPs concentration. The indirect transitions have an optical band gap of 2.6182.800 eV, while direct transitions have an optical band gap of 2.8392.897 eV. The refractive index is ranging between 2.453 and 2.508 while the Urbach energy, ?E, is in the range of 0.3380.391 eV. Photoluminescence measurement shows the occurrence of four emission intensity at different wavelength, with the highest red emission intensity at 605 nm. The analysis of colour chromaticity indicated that the colour coordinates were situated in the red-orange region. When Ag NPs were incorporated into the glass sample, there was an inconsistent pattern observed in the values of the longitudinal, shear, Young's, and bulk moduli, which ranged from 59.17 to 70.84 GPa, 20.7024.21 GPa, 50.9760.02 GPa, and 31.5741.77 GPa, respectively. 2023 Elsevier B.V.

References

Al-Hadeethi, Y., & Sayyed, M. I. (2020). X-ray attenuation features of some tellurite glasses evaluated at medical diagnostic energies. Applied Mathematics and Computation, 365. https://doi.org/10.1016/j.amc.2019.124712

Alvarez-Ramos, M. E., Carrillo-Torres, R. C., Sánchez-Zeferino, R., Caldiño, U., & Alvarado-Rivera, J. (2019). Co-emission and energy transfer of Sm3+ and/or Eu3+ activated zinc-germanate- tellurite glass as a potential tunable orange to reddish-orange phosphor. Journal of Non-Crystalline Solids, 521. https://doi.org/10.1016/j.jnoncrysol.2019.119462

Ami Hazlin, M. N., Halimah, M. K., Muhammad, F. D., & Faznny, M. F. (2017). Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion. Physica B: Condensed Matter, 510, 38–42. https://doi.org/10.1016/j.physb.2017.01.012

Azlan, M. N., Halimah, M. K., Suriani, A. B., Azlina, Y., Umar, S. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82–88. https://doi.org/10.1016/j.optcom.2019.05.022

Boonin, K., Yasaka, P., Yamchumporn, P., Triamnak, N., Kothan, S., & Kaewkhao, J. (2021). Scintillation respond and orange emission from Sm3+ ion doped tellurite and fluorotellurite glasses: A comparative study. Radiation Physics and Chemistry, 189. https://doi.org/10.1016/j.radphyschem.2021.109754

Chandrappa, V., Basavapoornima, C., Kesavulu, C. R., Babu, A. M., Depuru, S. R., & Jayasankar, C. K. (2022). Spectral studies of Dy3+:zincphosphate glasses for white light source emission applications: A comparative study. Journal of Non-Crystalline Solids, 583. https://doi.org/10.1016/j.jnoncrysol.2022.121466

Culea, E. N., Pascuta, P., Pustan, M., Tamas-Gavrea, D. R., Pop, L., & Vida-Simiti, I. (2015). Effects of Eu:Ag codoping on structural, magnetic and mechanical properties of lead tellurite glass ceramics. Journal of Non-Crystalline Solids, 408, 18–25. https://doi.org/10.1016/j.jnoncrysol.2014.10.002

Davis, E. A., & Mott, N. F. (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22(179), 903–922. https://doi.org/10.1080/14786437008221061

Dimitrov, V., & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics, 79(3), 1736–1740. https://doi.org/10.1063/1.360962

Effendy, N., Ab Aziz, S. H., Mohamed Kamari, H., Mohd Zaid, M. H., & Abdul Wahab, S. A. (2020). Ultrasonic and artificial intelligence approach: Elastic behavior on the influences of ZnO in tellurite glass systems. Journal of Alloys and Compounds, 835. https://doi.org/10.1016/j.jallcom.2020.155350

Elazoumi, S. H., Sidek, H. A. A., Rammah, Y. S., El-Mallawany, R., Halimah, M. K., Matori, K. A., & Zaid, M. H. M. (2018). Effect of PbO on optical properties of tellurite glass. Results in Physics, 8, 16–25. https://doi.org/10.1016/j.rinp.2017.11.010

Elkhoshkhany, N., Mohamed, H. M., & Sayed Yousef, E. (2019). UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO 2 -B 2 O 3 -SrCl 2 -LiF-Bi 2 O 3 for optical application. Results in Physics, 13. https://doi.org/10.1016/j.rinp.2019.102222

Gandhi, Y., Kityk, I. V., Brik, M. G., Rao, P. R., & Veeraiah, N. (2010). Influence of tungsten on the emission features of Nd3+, Sm 3+ and Eu3+ ions in ZnF2-WO3- TeO2 glasses. Journal of Alloys and Compounds, 508(2), 278–291. https://doi.org/10.1016/j.jallcom.2010.08.137

Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6–7), 1242–1247. https://doi.org/10.1016/j.physb.2011.01.006

Halimah, M. K., Azuraida, A., Ishak, M., & Hasnimulyati, L. (2019). Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. Journal of Non-Crystalline Solids, 512, 140–147. https://doi.org/10.1016/j.jnoncrysol.2019.03.004

Hanfi, M. Y., Sayyed, M. I., Lacomme, E., Akkurt, I., & Mahmoud, K. A. (2021). The influence of MgO on the radiation protection and mechanical properties of tellurite glasses. Nuclear Engineering and Technology, 53(6), 2000–2010. https://doi.org/10.1016/j.net.2020.12.012

Himamaheswara Rao, V., Syam Prasad, P., Mohan Babu, M., Venkateswara Rao, P., Satyanarayana, T., Luís F., S., & Veeraiah, N. (2018). Spectroscopic studies of Dy3 + ion doped tellurite glasses for solid state lasers and white LEDs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 188, 516–524. https://doi.org/10.1016/j.saa.2017.07.013

Hua, C., Shen, L., Pun, E. Y. B., Li, D., & Lin, H. (2018). Dy3+ doped tellurite glasses containing silver nanoparticles for lighting devices. Optical Materials, 78, 72–81. https://doi.org/10.1016/j.optmat.2018.02.006

Jlassi, I., Elhouichet, H., & Ferid, M. (2011). Thermal and optical properties of tellurite glasses doped erbium. Journal of Materials Science, 46(3), 806–812. https://doi.org/10.1007/s10853-010-4820-x

Kaur, A., Khanna, A., González-Barriuso, M., & González, F. (2021). Thermal and light emission properties of rare earth (Eu3+, Dy3+ and Er3+), alkali (Li+, Na+ and K+) and Al3+-doped barium tellurite and boro-tellurite glasses. Journal of Materials Science: Materials in Electronics, 32(13), 17266–17281. https://doi.org/10.1007/s10854-021-06228-3

Krishna, V. M., Mahamuda, S., Rani, P. R., Swapna, K., Venkateswarlu, M., & Rao, A. S. (2020). Effect of samarium ions concentration on physical, optical and photoluminescence properties of Oxy-Fluoro Boro Tellurite glasses. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110368

Lee, W. E., Ojovan, M. I., Stennett, M. C., & Hyatt, N. C. (2006). Immobilisation of radioactive waste in glasses, glass composite materials and ceramics. Advances in Applied Ceramics, 105(1), 3–12. https://doi.org/10.1179/174367606X81669

Li, C., Zhu, L., Zhao, D., & Zhou, Y. (2022). Luminescence property in Er3+/Tm3+/Ag NPs doped tellurite glass applied for broadband amplifier. Infrared Physics and Technology, 127. https://doi.org/10.1016/j.infrared.2022.104381

Mawlud, S. Q. (2019). A comparative enhancement of Au and Ag NPs role on radiative properties in Sm3+ doped zinc-sodium tellurite glass: Judd-Ofelt parameter. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 209, 78–84. https://doi.org/10.1016/j.saa.2018.10.032

Mirdda, J. N., Mukhopadhyay, S., Sahu, K. R., & Goswami, M. N. (2022). Enhancement of optical properties and dielectric nature of Sm3+doped Na2O–ZnO–TeO2Glass materials. Journal of Physics and Chemistry of Solids, 167. https://doi.org/10.1016/j.jpcs.2022.110776

Naresh, P., Kavitha, B., Inamdar, H. K., Sreenivasu, D., Narsimlu, N., Srinivas, C., Sathe, V., & Kumar, K. S. (2019). Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses. Journal of Non-Crystalline Solids, 514, 35–45. https://doi.org/10.1016/j.jnoncrysol.2019.03.042

Qi, Y., Zhou, Y., Wu, L., Yang, F., Peng, S., Zheng, S., & Yin, D. (2014). Silver nanoparticles enhanced 1.53 μm band fluorescence of Er 3+/Yb3+ codoped tellurite glasses. Journal of Luminescence, 153, 401–407. https://doi.org/10.1016/j.jlumin.2014.03.069

Sahar, M. R., & Yusoff, N. M. (2015). The Influence of Silver Nanoparticles on Optical Properties of Samarium Doped Magnesium Tellurite Glasses. Materials Today: Proceedings, 2(10), 5117–5121. https://doi.org/10.1016/j.matpr.2015.11.007

Sajna, M. S., Sanu, M. S., Vimal, G., Prakashan, V. P., Biju, P. R., Joseph, C., Pillai, V. P. M., & Unnikrishnan, N. V. (2022). SPR coupled luminescence enhancement of Er3+/Au NPs -doped multicomponent tellurite glasses. Optical Materials, 131. https://doi.org/10.1016/j.optmat.2022.112637

Shen, X., Xia, L., Zhang, Y., Li, J., Yang, G., & Zhou, Y. (2020). Structural, thermal and broadband NIR emission properties of Nd3+/Pr3+/Ag NPs co-doped tellurite glass. Optics Express, 28(10), 14186–14197. https://doi.org/10.1364/OE.386800

Shen, X., Zhang, Y., Xia, L., Li, J., Yang, G., & Zhou, Y. (2020). Broadband flat near-infrared emission from tellurite glass doped with Tm3+, Er3+ and Ag NPs. Optics and Laser Technology, 129. https://doi.org/10.1016/j.optlastec.2020.106264

Swetha, B. N., Keshavamurthy, K., Pramod, A. G., Devarajulu, G., Roopa, K. P., Rajeshree Patwari, D., Kebaili, I., Ahmed, S. B., Sayyed, M. I., Khan, S., Annapurna, K., & Jagannath, G. (2022). Improved photoluminescence and spectroscopic features of Sm3+‒doped alkali borate glasses by embedding silver nanoparticles. Journal of Non-Crystalline Solids, 579. https://doi.org/10.1016/j.jnoncrysol.2021.121371

Tafida, R. A., Halimah, M. K., Muhammad, F. D., Chan, K. T., Onimisi, M. Y., Usman, A., Hamza, A. M., & Umar, S. A. (2020). Structural, optical and elastic properties of silver oxide incorporated zinc tellurite glass system doped with Sm3+ ions. Materials Chemistry and Physics, 246. https://doi.org/10.1016/j.matchemphys.2020.122801

Tafida, R. A., Thakur, S., Onimisi, M. Y., Adamu, S. B., & Lakin, I. I. (2023). Samarium nanoparticle-doped silver oxide-incorporated zinc tellurite glass system: Structural, elastic, and Judd-Offelt intensity parameters. Materials Chemistry and Physics, 296. https://doi.org/10.1016/j.matchemphys.2023.127319

Tamam, N., Alrowaili, Z. A., Hammoud, A., Lebedev, A. V., Boukhris, I., Olarinoye, I. O., & Al-Buriahi, M. S. (2022). Mechanical, optical, and gamma-attenuation properties of a newly developed tellurite glass system. Optik, 266. https://doi.org/10.1016/j.ijleo.2022.169355

Teresa, P. E., Divina, R., Naseer, K. A., & Marimuthu, K. (2022). Study on the luminescence behavior of Dy3+ ions activated, modifier dependent alkali boro-tellurite glasses for white LED application. Optik, 259. https://doi.org/10.1016/j.ijleo.2022.169024

Udaya Kumar, K., Babu, P., Basavapoornima, C., Praveena, R., Rani, D. S., & Jayasankar, C. K. (2022). Spectroscopic properties of Nd3+-doped boro-bismuth glasses for laser applications. Physica B: Condensed Matter, 646. https://doi.org/10.1016/j.physb.2022.414327

Wahab, S. A. A., Matori, K. A., Aziz, S. H. A., Zaid, M. H. M., Kechik, M. M. A., Azman, A. Z. K., Khaidir, R. E. M., Khiri, M. Z. A., & Effendy, N. (2020). Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source. Journal of Materials Research and Technology, 9(5), 11013–11021. https://doi.org/10.1016/j.jmrt.2020.08.005

Xia, L., Zhang, Y., Ding, J., Li, C., Shen, X., Li, J., & Zhou, Y. (2021). Enhanced ultra-wide NIR fluorescence in tellurite glass doped with Er3+-Tm3+-Nd3+-Ag NPs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 261. https://doi.org/10.1016/j.saa.2021.120075

Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020). Spectroscopic properties of neodymium doped magnesium zinc sulfophosphate glass: Synergistic effects of titanium and silver nanoparticles embedment. Optical Materials, 109. https://doi.org/10.1016/j.optmat.2020.110266

Yusoff, N. M., & Sahar, M. R. (2015). Effect of silver nanoparticles incorporated with samarium-doped magnesium tellurite glasses. Physica B: Condensed Matter, 456, 191–196. https://doi.org/10.1016/j.physb.2014.08.039

Yusoff, N. M., Sahar, M. R., & Ghoshal, S. K. (2015). Sm3+:Ag NPs assisted modification in absorption features of magnesium tellurite glass. Journal of Molecular Structure, 1079, 167–172. https://doi.org/10.1016/j.molstruc.2014.09.039

Zanotto, E. D., & Mauro, J. C. (2017). The glassy state of matter: Its definition and ultimate fate. Journal of Non-Crystalline Solids, 471, 490–495. https://doi.org/10.1016/j.jnoncrysol.2017.05.019

Zhao, D., Zhu, L., Li, C., Ding, J., Li, J., & Zhou, Y. (2023). Broadband near-infrared luminescence property in Nd3+/Tm3+ co-doped tellurite glass. Journal of Alloys and Compounds, 937. https://doi.org/10.1016/j.jallcom.2022.168384


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.