UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Zinc-alumino-borosilicate glass with gadolinium dopant (ZABS-Gd), (60-x)ZnO5Al2O315B2O320SiO2:xGd2O3 where x = 0, 0.5, 1, 2, and 3 mol% was synthesized via conventional fast cooling melt-quenching method. The differential scan calorimetry (DSC) findings showed that the glass transition temperature (Tg) had various thermal trends as the Gd3+ content rose. X-ray diffraction (XRD) analysis proves the absence of crystalline in the glass samples. With the increment of Gd3+ concentration, the ZABS-Gd glasses density climbs noticeably from 3.775 to 4.109 g/cm3, and the molar volume likewise grows from 20.234 to 20.642 cm3/mol. The values for experimental elastic moduli were attained from non-destructive ultrasonic measurement by using wave pulse-echo method, show an increasing trend from 4285.121 to 5482.091 ms?1 for VL and 2296.5383418.128 ms?1 for VS. Following that, the experimental elastic moduli including shear modulus (G), Young's modulus (E), bulk modulus (K), and Poisson's ratio (?) were contrasted to the elastic theoretical simulation computed by the Makishima-Mackenzie model. 2023 Elsevier GmbH |
References |
Alahmad, B., Vicedo-Cabrera, A. M., Chen, K., Garshick, E., Bernstein, A. S., Schwartz, J., & Koutrakis, P. (2022). Climate change and health in Kuwait: Temperature and mortality projections under different climatic scenarios. Environmental Research Letters, 17(7). https://doi.org/10.1088/1748-9326/ac7601 Al-Awadhi, J. M. (2001). Impact of gravel quarrying on the desert environment of Kuwait. Environmental Geology, 41(3–4), 365–371. https://doi.org/10.1007/s002540100398 AlDousari, A. E., Kafy, A.-A., Saha, M., Fattah, M. A., Almulhim, A. I., Faisal, A.-A., al Rakib, A., Jahir, D. M. A., Rahaman, Z. A., Bakshi, A., Shahrier, M., & Rahman, M. M. (2022). Modelling the impacts of land use/land cover changing pattern on urban thermal characteristics in Kuwait. Sustainable Cities and Society, 86. https://doi.org/10.1016/j.scs.2022.104107 Al-Nakeeb, Y., Lyons, M., Dodd, L. J., & Al-Nuaim, A. (2015). An investigation into the lifestyle, health habits and risk factors of young adults. International Journal of Environmental Research and Public Health, 12(4), 4380–4394. https://doi.org/10.3390/ijerph120404380 Al-sharif, A. A. A., & Pradhan, B. (2015). A novel approach for predicting the spatial patterns of urban expansion by combining the chi-squared automatic integration detection decision tree, Markov chain and cellular automata models in GIS. Geocarto International, 30(8), 858–881. https://doi.org/10.1080/10106049.2014.997308 Amit, S., Kafy, A.-A., & Barua, L. (2022). Systemic Barriers to Financial Inclusion in the Banking Sector of Bangladesh. In Business and Management in Asia: Digital Innovation and Sustainability. https://doi.org/10.1007/978-981-19-6418-3_8 Ashtiani, A., Mirzaei, P. A., & Haghighat, F. (2014). Indoor thermal condition in urban heat island: Comparison of the artificial neural network and regression methods prediction. Energy and Buildings, 76, 597–604. https://doi.org/10.1016/j.enbuild.2014.03.018 Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1(1), 23–34. https://doi.org/10.1080/10556789208805504 Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009 Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). Training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 144–152. Caballero, C. B., Ruhoff, A., & Biggs, T. (2022). Land use and land cover changes and their impacts on surface-atmosphere interactions in Brazil: A systematic review. Science of the Total Environment, 808. https://doi.org/10.1016/j.scitotenv.2021.152134 Camargo, F. F., Sano, E. E., Almeida, C. M., Mura, J. C., & Almeida, T. (2019). A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sensing, 11(13). https://doi.org/10.3390/rs11131600 Carranza-García, M., García-Gutiérrez, J., & Riquelme, J. C. (2019). A framework for evaluating land use and land cover classification using convolutional neural networks. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030274 Chen, F., Kusaka, H., Bornstein, R., Ching, J., Grimmond, C. S. B., Grossman-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Wyszogrodzki, A. A., & Zhang, C. (2011). The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. International Journal of Climatology, 31(2), 273–288. https://doi.org/10.1002/joc.2158 Chen, Y., Yang, J., Yang, R., Xiao, X., & Xia, J. C. (2022). Contribution of urban functional zones to the spatial distribution of urban thermal environment. Building and Environment, 216. https://doi.org/10.1016/j.buildenv.2022.109000 de Jong, S. M., Shen, Y., de Vries, J., Bijnaar, G., van Maanen, B., Augustinus, P., & Verweij, P. (2021). Mapping mangrove dynamics and colonization patterns at the Suriname coast using historic satellite data and the LandTrendr algorithm. International Journal of Applied Earth Observation and Geoinformation, 97. https://doi.org/10.1016/j.jag.2020.102293 Dissanayake, D. M. S. L. B., Morimoto, T., Ranagalage, M., & Murayama, Y. (2019). Land-use/land-cover changes and their impact on surface urban heat islands: Case study of Kandy City, Sri Lanka. Climate, 7(8). https://doi.org/10.3390/cli7080099 Elmahdy, S., Mohamed, M., & Ali, T. (2020). Land use/land cover changes impact on groundwater level and quality in the northern part of the United Arab Emirates. Remote Sensing, 12(11). https://doi.org/10.3390/rs12111715 Eniolorunda, N. B., Mashi, S. A., & Nsofor, G. N. (2017). Toward achieving a sustainable management: characterization of land use/land cover in Sokoto Rima floodplain, Nigeria. Environment, Development and Sustainability, 19(5), 1855–1878. https://doi.org/10.1007/s10668-016-9831-6 Faisal, A.-A., Kafy, A.-A., al Rakib, A., Akter, K. S., Jahir, D. M. A., Sikdar, M. S., Ashrafi, T. J., Mallik, S., & Rahman, M. M. (2021). Assessing and predicting land use/land cover, land surface temperature and urban thermal field variance index using Landsat imagery for Dhaka Metropolitan area. Environmental Challenges, 4. https://doi.org/10.1016/j.envc.2021.100192 Feng, L., Zhao, M., Zhou, Y., Zhu, L., & Tian, H. (2020). The seasonal and annual impacts of landscape patterns on the urban thermal comfort using Landsat. Ecological Indicators, 110. https://doi.org/10.1016/j.ecolind.2019.105798 Gumma, M. K., Thenkabail, P. S., Teluguntla, P. G., Oliphant, A., Xiong, J., Giri, C., Pyla, V., Dixit, S., & Whitbread, A. M. (2020). Agricultural cropland extent and areas of South Asia derived using Landsat satellite 30-m time-series big-data using random forest machine learning algorithms on the Google Earth Engine cloud. GIScience and Remote Sensing, 57(3), 302–322. https://doi.org/10.1080/15481603.2019.1690780 Gunawardena, K. R., Wells, M. J., & Kershaw, T. (2017). Utilising green and bluespace to mitigate urban heat island intensity. Science of the Total Environment, 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M., & Frank, S. D. (2017). Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biology Letters, 13(6). https://doi.org/10.1098/rsbl.2017.0125 Hauschild, T., & Jentschel, M. (2001). Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 457(1–2), 384–401. https://doi.org/10.1016/S0168-9002(00)00756-7 Heimhuber, V., Tulbure, M. G., & Broich, M. (2018). Addressing spatio-temporal resolution constraints in Landsat and MODIS-based mapping of large-scale floodplain inundation dynamics. Remote Sensing of Environment, 211, 307–320. https://doi.org/10.1016/j.rse.2018.04.016 Hussein, K., Alkaabi, K., Ghebreyesus, D., Liaqat, M. U., & Sharif, H. O. (2020). Land use/land cover change along the Eastern Coast of the UAE and its impact on flooding risk. Geomatics, Natural Hazards and Risk, 11(1), 112–130. https://doi.org/10.1080/19475705.2019.1707718 Imran, H. M., Hossain, A., Shammas, M. I., Das, M. K., Islam, M. R., Rahman, K., & Almazroui, M. (2022). Land surface temperature and human thermal comfort responses to land use dynamics in Chittagong city of Bangladesh. Geomatics, Natural Hazards and Risk, 13(1), 2283–2312. https://doi.org/10.1080/19475705.2022.2114384 Jamali, A. (2019). Evaluation and comparison of eight machine learning models in land use/land cover mapping using Landsat 8 OLI: a case study of the northern region of Iran. SN Applied Sciences, 1(11). https://doi.org/10.1007/s42452-019-1527-8 Kafy, A.-A., Faisal, A.-A., Rahman, M. S., Islam, M., al Rakib, A., Islam, M. A., Khan, M. H. H., Sikdar, M. S., Sarker, M. H. S., Mawa, J., Mawa, J., & Sattar, G. S. (2021). Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities and Society, 64. https://doi.org/10.1016/j.scs.2020.102542 Kafy, A.-A., Naim, M. N. H., Subramanyam, G., Faisal, A.-A., Ahmed, N. U., Rakib, A. A., Kona, M. A., & Sattar, G. S. (2021). Cellular Automata approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environmental Challenges, 4. https://doi.org/10.1016/j.envc.2021.100084 Kafy, A.-A., Saha, M., Faisal, A.-A., Rahaman, Z. A., Rahman, M. T., Liu, D., Fattah, M. A., al Rakib, A., AlDousari, A. E., Rahaman, S. N., Hasan, M. Z., & Ahasan, M. A. K. (2022). Predicting the impacts of land use/land cover changes on seasonal urban thermal characteristics using machine learning algorithms. Building and Environment, 217. https://doi.org/10.1016/j.buildenv.2022.109066 Kusumawardani, K. P., & Hidayati, I. N. (2022). Analysis of urban heat island and urban ecological quality based on remote sensing imagery transformation in semarang city. IOP Conference Series: Earth and Environmental Science, 1089(1). https://doi.org/10.1088/1755-1315/1089/1/012037 Li, X., Chen, W., Cheng, X., & Wang, L. (2016). A comparison of machine learning algorithms for mapping of complex surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sensing, 8(6). https://doi.org/10.3390/rs8060514 Li, Y., & Zhao, X. (2012). An empirical study of the impact of human activity on long-term temperature change in China: A perspective from energy consumption. Journal of Geophysical Research Atmospheres, 117(17). https://doi.org/10.1029/2012JD018132 Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 277–293. https://doi.org/10.1016/j.isprsjprs.2017.06.001 Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91. https://doi.org/10.1016/j.landusepol.2019.104414 Mondal, M. S., Sharma, N., Garg, P. K., & Kappas, M. (2016). Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egyptian Journal of Remote Sensing and Space Science, 19(2), 259–272. https://doi.org/10.1016/j.ejrs.2016.08.001 Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001 Naim, M. N. H., & Kafy, A.-A. (2021). Assessment of urban thermal field variance index and defining the relationship between land cover and surface temperature in Chattogram city: A remote sensing and statistical approach. Environmental Challenges, 4. https://doi.org/10.1016/j.envc.2021.100107 Nugroho, N. Y., Triyadi, S., & Wonorahardjo, S. (2022). Effect of high-rise buildings on the surrounding thermal environment. Building and Environment, 207. https://doi.org/10.1016/j.buildenv.2021.108393 Onilude, O. O., & Vaz, E. (2021). Urban Sprawl and Growth Prediction for Lagos Using GlobeLand30 Data and Cellular Automata Model. Sci, 3(2). https://doi.org/10.3390/sci3020023 Pontius Jr., R. G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923 Ren, Z., Fu, Y., Dong, Y., Zhang, P., & He, X. (2022). Rapid urbanization and climate change significantly contribute to worsening urban human thermal comfort: A national 183-city, 26-year study in China. Urban Climate, 43. https://doi.org/10.1016/j.uclim.2022.101154 Saha, M., Kafy, A.-A., Bakshi, A., Faisal, A.-A., Almulhim, A. I., Rahaman, Z. A., al Rakib, A., Fattah, M. A., Akter, K. S., Rahman, M. T., Zhang, M., & Rathi, R. (2022). Modelling microscale impacts assessment of urban expansion on seasonal surface urban heat island intensity using neural network algorithms. Energy and Buildings, 275. https://doi.org/10.1016/j.enbuild.2022.112452 Sailor, D. J. (2011). A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. International Journal of Climatology, 31(2), 189–199. https://doi.org/10.1002/joc.2106 Sánchez-Espinosa, A., & Schröder, C. (2019). Land use and land cover mapping in wetlands one step closer to the ground: Sentinel-2 versus landsat 8. Journal of Environmental Management, 247, 484–498. https://doi.org/10.1016/j.jenvman.2019.06.084 Saputra, M. H., & Lee, H. S. (2019). Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability (Switzerland), 11(11). https://doi.org/10.3390/su11113024 Shastri, S., Singh, P., Verma, P., Kumar Rai, P., & Singh, A. P. (2020). Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India. Journal of Landscape Ecology(Czech Republic), 13(2), 1–13. https://doi.org/10.2478/jlecol-2020-0007 Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustainable Cities and Society, 32, 100–114. https://doi.org/10.1016/j.scs.2017.02.018 Solecki, W. D., Rosenzweig, C., Parshall, L., Pope, G., Clark, M., Cox, J., & Wiencke, M. (2005). Mitigation of the heat island effect in urban New Jersey. Environmental Hazards, 6(1), 39–49. https://doi.org/10.1016/j.hazards.2004.12.002 Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations-A review. Remote Sensing, 12(7). https://doi.org/10.3390/rs12071135 Uddin, S., al Ghadban, A. N., al Dousari, A., al Murad, M., & al Shamroukh, D. (2010). A remote sensing classification for land-cover changes and micro-climate in Kuwait. International Journal of Sustainable Development and Planning, 5(4), 367–377. https://doi.org/10.2495/SDP-V5-N4-367-377 Ullah, S., Tahir, A. A., Akbar, T. A., Hassan, Q. K., Dewan, A., Khan, A. J., & Khan, M. (2019). Remote sensing-based quantification of the relationships between land use land cover changes and surface temperature over the lower Himalayan region. Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195492 Vinayak, B., Lee, H. S., & Gedem, S. (2021). Prediction of land use and land cover changes in Mumbai city, India, using remote sensing data and a multilayer perceptron neural network-based Markov Chain model. Sustainability (Switzerland), 13(2), 1–22. https://doi.org/10.3390/su13020471 Wang, M., Zhang, Z., Hu, T., Wang, G., He, G., Zhang, Z., Li, H., Wu, Z., & Liu, X. (2020). An Efficient Framework for Producing Landsat-Based Land Surface Temperature Data Using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4689–4701. https://doi.org/10.1109/JSTARS.2020.3014586 Yeneneh, N., Elias, E., & Feyisa, G. L. (2022). Detection of land use/land cover and land surface temperature change in the Suha Watershed, North-Western highlands of Ethiopia. Environmental Challenges, 7. https://doi.org/10.1016/j.envc.2022.100523 Zhang, Z., He, G., Wang, M., Long, T., Wang, G., Zhang, X., & Jiao, W. (2016). Towards an operational method for land surface temperature retrieval from Landsat 8 data. Remote Sensing Letters, 7(3), 279–288. https://doi.org/10.1080/2150704X.2015.1130877 Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land surface temperatures. Landscape Ecology, 29(1), 153–167. https://doi.org/10.1007/s10980-013-9950-5 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |