UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Introduction: Goat's milk thought to be a good substitute for cow's milk protein allergic (CMPA) individuals. However, there is growing evidence that their proteins have cross-reactivities with cow's milk allergens. This study aimed to profile and compare milk proteins from different goat breeds that have cross-reactivity to cow's milk allergens. Methodology: Proteomics was used to compare protein extracts of skim milk from Saanen, Jamnapari, and Toggenburg. Cow's milk was used as a control. IgE-immunoblotting and mass spectrometry were used to compare and identify proteins that cross-reacted with serum IgE from CMPA patients (n = 10). Results: The analysis of IgE-reactive proteins revealed that the protein spots identified with high confidence were proteins homologous to common cow's milk allergens such as ?-S1-casein (?S1-CN), ?-casein (?-CN), ?-casein (?-CN), and beta-lactoglobulin (?-LG). Jamnapari's milk proteins were found to cross-react with four major milk allergens: ?-S1-CN, ?-CN, ?-CN, and ?-LG. Saanen goat's milk proteins, on the other hand, cross-reacted with two major milk allergens, ?-S1-CN and ?-LG, whereas Toggenburg goat's milk proteins only react with one of the major milk allergens, ?-CN. Conclusion: These findings may help in the development of hypoallergenic goat milk through cross-breeding strategies of goat breeds with lower allergenic milk protein contents. 2023 Elsevier Ltd |
References |
Ah-Leung, S., Bernard, H., Bidat, E., Paty, E., Rancé, F., Scheinmann, P., & Wal, J. M. (2006). Allergy to goat and sheep milk without allergy to cow’s milk. Allergy: European Journal of Allergy and Clinical Immunology, 61(11), 1358–1365. https://doi.org/10.1111/j.1398-9995.2006.01193.x Al-Obaidi, J. R., Rahmad, N., Hanafi, N. M., Halabi, M. F., & Al-Soqeer, A. A. (2017). Comparative proteomic analysis of male and female plants in Jojoba (Simmondsia chinensis) leaves revealed changes in proteins involved in photosynthesis, metabolism, energy, and biotic and abiotic stresses. Acta Physiologiae Plantarum, 39(8). https://doi.org/10.1007/s11738-017-2485-7 Anagnostopoulos, A. K., Katsafadou, A. I., Pierros, V., Kontopodis, E., Fthenakis, G. C., Arsenos, G., Karkabounas, S. C., Tzora, A., Skoufos, I., & Tsangaris, G. T. (2016). Milk of Greek sheep and goat breeds; characterization by means of proteomics. Journal of Proteomics, 147, 76–84. https://doi.org/10.1016/j.jprot.2016.04.008 Ballabio, C., Chessa, S., Rignanese, D., Gigliotti, C., Pagnacco, G., Terracciano, L., Fiocchi, A., Restani, P., & Caroli, A. M. (2011). Goat milk allergenicity as a function of α Bellioni-Businco, B., Paganelli, R., Lucenti, P., Giampietro, P. G., Perborn, H., & Businco, L. (1999). Allergenicity of goat’s milk in children with cow’s milk allergy. Journal of Allergy and Clinical Immunology, 103(6), 1191–1194. https://doi.org/10.1016/S0091-6749(99)70198-3 Bernard, H., Ah-Leung, S., Tilleul, S., Drumare, M.-F., Paty, E., Bidat, E., Wal, J.-M., & Hazebrouck, S. (2012). Specificity of IgE antibodies from patients allergic to goat’s milk and tolerant to cow’s milk determined with plasmin-derived peptides of bovine and caprine β-caseins. Molecular Nutrition and Food Research, 56(10), 1532–1540. https://doi.org/10.1002/mnfr.201200229 Bernard, H., Creminon, C., Negroni, L., Peltre, G., & Wal, J.-M. (1999). IgE cross-reactivity with caseins from different species in humans allergic to cow’s milk. Food and Agricultural Immunology, 11(1), 101–111. https://doi.org/10.1080/09540109999960 Bleasdale, M., Richter, K. K., Janzen, A., Brown, S., Scott, A., Zech, J., Wilkin, S., Wang, K., Schiffels, S., Desideri, J., Goldstein, S. T., & Boivin, N. (2021). Ancient proteins provide evidence of dairy consumption in eastern Africa. Nature Communications, 12(1). https://doi.org/10.1038/s41467-020-20682-3 Carrera, M., Cañas, B., & Gallardo, J. M. (2018). Advanced proteomics and systems biology applied to study food allergy. Current Opinion in Food Science, 22, 9–16. https://doi.org/10.1016/j.cofs.2017.12.001 Carrera, M., Pazos, M., & Gasset, M. (2020). Proteomics-based methodologies for the detection and quantification of seafood allergens. Foods, 9(8). https://doi.org/10.3390/foods9081134 Cebo, C., Lopez, C., Henry, C., Beauvallet, C., Ménard, O., Bevilacqua, C., Bouvier, F., Caillat, H., & Martin, P. (2012). Goat α Clark, S., & Mora García, M. B. (2017). A 100-Year Review: Advances in goat milk research. Journal of Dairy Science, 100(12), 10026–10044. https://doi.org/10.3168/jds.2017-13287 Cunsolo, V., Fasoli, E., Saletti, R., Muccilli, V., Gallina, S., Righetti, P. G., & Foti, S. (2015). Zeus, Aesculapius, Amalthea and the proteome of goat milk. Journal of Proteomics, 128, 69–82. https://doi.org/10.1016/j.jprot.2015.07.009 Currò, S., Manuelian, C. L., de Marchi, M., Claps, S., Rufrano, D., & Neglia, G. (2019). Effects of breed and stage of lactation on milk fatty acid composition of Italian goat breeds. Animals, 9(10). https://doi.org/10.3390/ani9100764 de Asís Ruiz Morales, F., Genís, J. M. C., & Guerrero, Y. M. (2019). — Special Issue — Current status, challenges and the way forward for dairy goat production in Europe. Asian-Australasian Journal of Animal Sciences, 32(8), 1256–1265. https://doi.org/10.5713/ajas.19.0327 El-Agamy, E. I., Nawar, M., Shamsia, S. M., Awad, S., & Haenlein, G. F. W. (2009). Are camel milk proteins convenient to the nutrition of cow milk allergic children? Small Ruminant Research, 82(1), 1–6. https://doi.org/10.1016/j.smallrumres.2008.12.016 Goodman, R. E., Taylor, S. L., Yamamura, J., Kobayashi, T., Kawakami, H., Kruger, C. L., & Thompson, G. P. (2007). Assessment of the potential allergenicity of a Milk Basic Protein fraction. Food and Chemical Toxicology, 45(10), 1787–1794. https://doi.org/10.1016/j.fct.2007.03.014 Gustavsson, F., Buitenhuis, A. J., Johansson, M., Bertelsen, H. P., Glantz, M., Poulsen, N. A., Lindmark Månsson, H., Stålhammar, H., Larsen, L. B., Bendixen, C., Paulsson, M., & Andrén, A. (2014). Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. Journal of Dairy Science, 97(6), 3866–3877. https://doi.org/10.3168/jds.2013-7312 Hazebrouck, S., Ah-Leung, S., Bidat, E., Paty, E., Drumare, M.-F., Tilleul, S., Adel-Patient, K., Wal, J.-M., & Bernard, H. (2014). Goat’s milk allergy without cow’s milk allergy: Suppression of non-cross-reactive epitopes on caprine β-casein. Clinical and Experimental Allergy, 44(4), 602–610. https://doi.org/10.1111/cea.12261 Hinz, K., O’Connor, P. M., Huppertz, T., Ross, R. P., & Kelly, A. L. (2012). Comparison of the principal proteins in bovine, caprine, buffalo, equine and camel milk. Journal of Dairy Research, 79(2), 185–191. https://doi.org/10.1017/S0022029912000015 Hlavackova, K., Dvorak, V., Chaskopoulou, A., Volf, P., & Halada, P. (2019). A novel MALDI-TOF MS-based method for blood meal identification in insect vectors: A proof of concept study on phlebotomine sand flies. PLoS Neglected Tropical Diseases, 13(9). https://doi.org/10.1371/journal.pntd.0007669 Hogarth, C. J., Fitzpatrick, J. L., Nolan, A. M., Young, F. J., Pitt, A., & Eckersall, P. D. (2004). Differential protein composition of bovine whey: A comparison of whey from healthy animals and from those with clinical mastitis. Proteomics, 4(7), 2094–2100. https://doi.org/10.1002/pmic.200300723 Jensen, H. B., Holland, J. W., Poulsen, N. A., & Larsen, L. B. (2012). Milk protein genetic variants and isoforms identified in bovine milk representing extremes in coagulation properties. Journal of Dairy Science, 95(6), 2891–2903. https://doi.org/10.3168/jds.2012-5346 Lisson, M., Lochnit, G., & Erhardt, G. (2013). Genetic variants of bovine β- and κ-casein result in different immunoglobulin E-binding epitopes after in vitro gastrointestinal digestion. Journal of Dairy Science, 96(9), 5532–5543. https://doi.org/10.3168/jds.2013-6684 Lisson, M., Novak, N., & Erhardt, G. (2014). Immunoglobulin E epitope mapping by microarray immunoassay reveals differences in immune response to genetic variants of caseins from different ruminant species. Journal of Dairy Science, 97(4), 1939–1954. https://doi.org/10.3168/jds.2013-7355 Mansor, M., Al-Obaidi, J. R., Jaafar, N. N., Ismail, I. H., Zakaria, A. F., Abidin, M. A. Z., Selamat, J., Radu, S., & Jambari, N. N. (2020). Optimization of protein extraction method for 2DE proteomics of goat’s milk. Molecules, 25(11). https://doi.org/10.3390/molecules25112625 Mari, A., Rasi, C., Palazzo, P., & Scala, E. (2009). Allergen databases: Current status and perspectives. Current Allergy and Asthma Reports, 9(5), 376–383. https://doi.org/10.1007/s11882-009-0055-9 Mohsin, A. Z., Sukor, R., Selamat, J., Hussin, A. S. M., & Ismail, I. H. (2019). Chemical and mineral composition of raw goat milk as affected by breed varieties available in Malaysia. International Journal of Food Properties, 22(1), 815–824. https://doi.org/10.1080/10942912.2019.1610431 Rubio, A., Vivinus-Nébot, M., Bourrier, T., Saggio, B., Albertini, M., & Bernard, A. (2011). Benefit of the basophil activation test in deciding when to reintroduce cow’s milk in allergic children. Allergy: European Journal of Allergy and Clinical Immunology, 66(1), 92–100. https://doi.org/10.1111/j.1398-9995.2010.02432.x Salleh, N. A., Selamat, J., Meng, G. Y., Abas, F., Jambari, N. N., & Khatib, A. (2019). Fourier transform infrared spectroscopy and multivariate analysis of milk from different goat breeds. International Journal of Food Properties, 22(1), 1673–1683. https://doi.org/10.1080/10942912.2019.1668803 Sampson, H. A., O’Mahony, L., Burks, A. W., Plaut, M., Lack, G., & Akdis, C. A. (2018). Mechanisms of food allergy. Journal of Allergy and Clinical Immunology, 141(1), 11–19. https://doi.org/10.1016/j.jaci.2017.11.005 Savilahti, E. M., Rantanen, V., Lin, J. S., Karinen, S., Saarinen, K. M., Goldis, M., Mäkelä, M. J., Hautaniemi, S., Savilahti, E., & Sampson, H. A. (2010). Early recovery from cow’s milk allergy is associated with decreasing IgE and increasing IgG4 binding to cow’s milk epitopes. Journal of Allergy and Clinical Immunology, 125(6). https://doi.org/10.1016/j.jaci.2010.03.025 Selvaggi, M., Laudadio, V., Dario, C., & Tufarelli, V. (2014). Major proteins in goat milk: An updated overview on genetic variability. Molecular Biology Reports, 41(2), 1035–1048. https://doi.org/10.1007/s11033-013-2949-9 Shahudin, M. S., Ghani, A. A. A., Zamri-Saad, M., Zuki, A. B., Abdullah, F. F. J., Wahid, H., & Hassim, H. A. (2018). The necessity of a herd health management programme for dairy goat farms in Malaysia. Pertanika Journal of Tropical Agricultural Science, 41(1), 1–18. Skripak, J. M., Matsui, E. C., Mudd, K., & Wood, R. A. (2007). The natural history of IgE-mediated cow’s milk allergy. Journal of Allergy and Clinical Immunology, 120(5), 1172–1177. https://doi.org/10.1016/j.jaci.2007.08.023 Sun, Z., Wang, M., Han, S., Ma, S., Zou, Z., Ding, F., Li, X., Li, L., Tang, B., Wang, H., Che, H., & Dai, Y. (2018). Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-32024-x Thesbjerg, M. N., Johansen, M., Larsen, L. B., & Poulsen, N. A. (2022). Differences in post-translational modifications of proteins in milk from early and mid-lactation dairy cows as studied using total ion chromatograms from LC-ESI/MS. International Dairy Journal, 130. https://doi.org/10.1016/j.idairyj.2021.105262 Torres-Vázquez, J. A., Flores, F. V., Montaldo, H. H., Ulloa-Arvizu, R., Posadas, M. V., Vázquez, A. G., & Morales, R. A. A. (2008). Genetic polymorphism of the αs1-casein locus in five populations of goats from Mexico. Electronic Journal of Biotechnology, 11(3). https://doi.org/10.2225/vol11-issue3-fulltext-11 Usuldin, S. R. A., Al-Obaidi, J. R., Razali, N., Junit, S. M., Ajang, M. J., Hussin, S. N. I. S., Hamid, S. S., Hanafi, N. M., Roni, A. N. H. M., & Saleh, N. M. (2017). Molecular investigation of carrageenan production in Kappaphycus alvarezii in different culture conditions: a proteomic approach. Journal of Applied Phycology, 29(4), 1989–2001. https://doi.org/10.1007/s10811-017-1119-1 Vacca, G. M., Stocco, G., Dettori, M. L., Pira, E., Bittante, G., & Pazzola, M. (2018). Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. Journal of Dairy Science, 101(8), 7236–7247. https://doi.org/10.3168/jds.2017-14111 Villa, C., Costa, J., Oliveira, M. B. P. P., & Mafra, I. (2018). Bovine Milk Allergens: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 17(1), 137–164. https://doi.org/10.1111/1541-4337.12318 Vincent, D., Ezernieks, V., Elkins, A., Nguyen, N., Moate, P. J., Cocks, B. G., & Rochfort, S. (2016). Milk bottom-up proteomics: Method optimization. Frontiers in Genetics, 6(JAN). https://doi.org/10.3389/fgene.2015.00360 Vojdani, A., Turnpaugh, C., & Vojdani, E. (2018). Immune reactivity against a variety of mammalian milks and plant-based milk substitutes. Journal of Dairy Research, 85(3), 358–365. https://doi.org/10.1017/S0022029918000523 Walczyk, N. E., Smith, P. M. C., Tovey, E., Wright, G. C., Fleischfresser, D. B., & Roberts, T. H. (2013). Analysis of Crude Protein and Allergen Abundance in Peanuts (Arachis hypogaea cv. Walter) from Three Growing Regions in Australia. Journal of Agricultural and Food Chemistry, 61(15), 3714–3725. https://doi.org/10.1021/jf305347r Yang, F., Zou, L., Wu, Y., Wu, Z., Yang, A., Chen, H., & Li, X. (2020). Structure and allergenicity assessments of bovine β-lactoglobulin treated by sonication-assisted irradiation. Journal of Dairy Science, 103(5), 4109–4120. https://doi.org/10.3168/jds.2019-17070 Yao, S., & Udenigwe, C. C. (2018). Peptidomics of potato protein hydrolysates: Implications of post-translational modifications in food peptide structure and behaviour. Royal Society Open Science, 5(7). https://doi.org/10.1098/rsos.172425 Yu, W., Freeland, D. M. H., & Nadeau, K. C. (2016). Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nature Reviews Immunology, 16(12), 751–765. https://doi.org/10.1038/nri.2016.111 Zenker, H. E., Raupbach, J., Boeren, S., Wichers, H. J., & Hettinga, K. A. (2020). The effect of low vs. high temperature dry heating on solubility and digestibility of cow’s milk protein. Food Hydrocolloids, 109. https://doi.org/10.1016/j.foodhyd.2020.106098 Zhang, K., Liu, J., Truong, T., Zukin, E., Chen, W., & Saxon, A. (2017). Blocking allergic reaction through targeting surface-bound IgE with low-affinity anti-IgE antibodies. Journal of Immunology, 198(10), 3823–3834. https://doi.org/10.4049/jimmunol.1602022 Zhu, K., Zhao, J., Lubman, D. M., Miller, F. R., & Barder, T. J. (2005). Protein pI shifts due to posttranslational modifications in the separation and characterization of proteins. Analytical Chemistry, 77(9), 2745–2755. https://doi.org/10.1021/ac048494w |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |