UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :Q Science (General)
ISSN :1385-2728
Main Author :Mohd Azlan Nafiah
Title :Synthesis, cytotoxic potential, and molecular docking studies of ortho-carboxamidostilbene analogs
Hits :101
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :Current Organic Chemistry
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
A total of eleven ortho-carboxamidostilbene derivatives were synthesized through Heck coupling with a different type of amide derivatives. These compounds were characterized by FTIR, 1D-and 2D-NMR as well as mass spectroscopy analysis (HRESIMS). The synthesized compounds were tested for their cytotoxic potential against four human cancer cell lines (MCF-7, MDA-MB-231, MCF-7/TAMR-1, and A549), as well as two human normal cell lines (MCF-10A and BEAS-2B) using tamoxifen and cisplatin as a positive control. The active compound has proceeded with molecular docking on the colchicine binding site of tubulin protein using AutoDock Vi-na and Biovia Discovery Studio. Compounds 6a, 6d-6k exhibited selective cytotoxic activity against A549 cells rather than breast cancer cell lines. Compounds 6d, 6f, and 6g showed moderate cytotoxicity to A549 cells after 72 hours, with IC50 values of 10.4 M, 6.47 M, and 8.99 M, respectively. Interestingly, these compounds had a high selective index (SI) value against A549 lung cancer cells, ranging from 8.87 to 15.4 M. Molecular docking studies for compounds 6d, 6f, and 6g on the colchicine binding site of tubulin protein, ?-and ?-subunits were done to comprehend and research ligand-receptor interactions. 2023 Bentham Science Publishers.

References

Azmi, M. N., Md Din, M. F., Kee, C. H., Suhaimi, M., Ping, A. K., Ahmad, K., Nafiah, M. A., Thomas, N. F., Mohamad, K., Hoong, L. K., Hoong, L. K., & Awang, K. (2013). Design, synthesis and cytotoxic evaluation of o-carboxamido stilbene analogues. International Journal of Molecular Sciences, 14(12), 23369–23389. https://doi.org/10.3390/ijms141223369

Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493–506. https://doi.org/10.1038/nrd2060

Bendas, G., & Borsig, L. (2012). Cancer cell adhesion and metastasis: Selectins, integrins, and the inhibitory potential of heparins. International Journal of Cell Biology. https://doi.org/10.1155/2012/676731

Borys, F., Joachimiak, E., Krawczyk, H., & Fabczak, H. (2020). Intrinsic and Extrinsic Factors Affecting Microtubule Dynamics in Normal and Cancer Cells. Molecules, 25(16). https://doi.org/10.3390/molecules25163705

Borys, F., Tobiasz, P., Poterała, M., & Krawczyk, H. (2021). Development of novel derivatives of stilbene and macrocyclic compounds as potent of anti-microtubule factors. Biomedicine and Pharmacotherapy, 133. https://doi.org/10.1016/j.biopha.2020.110973

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

Cao, T. M., Durrant, D., Tripathi, A., Liu, J., Tsai, S., Kellogg, G. E., Simoni, D., & Lee, R. M. (2008). Stilbene derivatives that are colchicine site microtubule inhibitors have antileukemic activity and minimal systemic toxicity. American Journal of Hematology, 83(5), 390–397. https://doi.org/10.1002/ajh.21104

Cushman, M., Nagarathnam, D., Gopal, D., Chakraborti, A. K., Lin, C. M., & Hamel, E. (1991). Synthesis and Evaluation of Stilbene and Dihydrostilbene Derivatives as Potential Anticancer Agents That Inhibit Tubulin Polymerization. Journal of Medicinal Chemistry, 34(8), 2579–2588. https://doi.org/10.1021/jm00112a036

Dai, L.-M., Huang, R.-Z., Zhang, B., Hua, J., Wang, H.-S., & Liang, D. (2017). Cytotoxic triterpenoid saponins from Lysimachia foenum-graecum. Phytochemistry, 136, 165–174. https://doi.org/10.1016/j.phytochem.2017.01.021

de Filippis, B., Ammazzalorso, A., Fantacuzzi, M., Giampietro, L., Maccallini, C., & Amoroso, R. (2017). Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem, 12(8), 558–570. https://doi.org/10.1002/cmdc.201700045

Giacomini, E., Rupiani, S., Guidotti, L., Recanatini, M., & Roberti, M. (2016). The use of stilbene scaffold in medicinal chemistry and multi-target drug design. Current Medicinal Chemistry, 23(23), 2439–2489.

Gupta, G. P., & Massagué, J. (2006). Cancer Metastasis: Building a Framework. Cell, 127(4), 679–695. https://doi.org/10.1016/j.cell.2006.11.001

Horio, T., Murata, T., & Murata, T. (2014). The role of dynamic instability in microtubule organization. Frontiers in Plant Science, 5(OCT). https://doi.org/10.3389/fpls.2014.00511

Huang, C. C., Meng, E. C., Morris, J. H., Pettersen, E. F., & Ferrin, T. E. (2014). Enhancing UCSF Chimera through web services. Nucleic Acids Research, 42(W1). https://doi.org/10.1093/nar/gku377

Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275(5297), 218–220. https://doi.org/10.1126/science.275.5297.218

Janke, C., & Magiera, M. M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nature Reviews Molecular Cell Biology, 21(6), 307–326. https://doi.org/10.1038/s41580-020-0214-3

Jordan, V. C., & Brodie, A. M. H. (2007). Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids, 72(1), 7–25. https://doi.org/10.1016/j.steroids.2006.10.009

McLoughlin, E. C., & O’boyle, N. M. (2020). Colchicine-binding site inhibitors from chemistry to clinic: A review. Pharmaceuticals, 13(1). https://doi.org/10.3390/ph13010008

Mikstacka, R., Stefański, T., & Różański, J. (2013). Tubulin-interactive stilbene derivatives as anticancer agents. Cellular and Molecular Biology Letters, 18(3), 368–397. https://doi.org/10.2478/s11658-013-0094-z

Mikstacka, R., Zielińska-Przyjemska, M., Dutkiewicz, Z., Cichocki, M., Stefański, T., Kaczmarek, M., & Baer-Dubowska, W. (2018). Cytotoxic, tubulin-interfering and proapoptotic activities of 4′-methylthio-trans-stilbene derivatives, analogues of trans-resveratrol. Cytotechnology, 70(5), 1349–1362. https://doi.org/10.1007/s10616-018-0227-3

Mohamad, N., Phua, Y. H., Abu Bakar, M. H., Che Omar, M. T., Wahab, H. A., Supratman, U., Awang, K., & Azmi, M. N. (2021). Synthesis, Biological Evaluation of ortho-Carboxamidostilbenes as Potential Inhibitors of Hyperglycemic Enzymes, and Molecular Docking Study. Journal of Molecular Structure, 1245. https://doi.org/10.1016/j.molstruc.2021.131007

Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256

Parida, P. K., Mahata, B., Santra, A., Chakraborty, S., Ghosh, Z., Raha, S., Misra, A. K., Biswas, K., & Jana, K. (2018). Inhibition of cancer progression by a novel trans-stilbene derivative through disruption of microtubule dynamics, driving G2/M arrest, and p53-dependent apoptosis. Cell Death and Disease, 9(5). https://doi.org/10.1038/s41419-018-0476-2

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084

Prassanawar, S. S., & Panda, D. (2019). Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochemical Journal, 476(9), 1359–1376. https://doi.org/10.1042/BCJ20190123

Roman, B. I., de Coen, L. M., Mortier, S. T. F. C., de Ryck, T., Vanhoecke, B. W. A., Katritzky, A. R., Bracke, M. E., & Stevens, C. V. (2013). Design, synthesis and structure-activity relationships of some novel, highly potent anti-invasive (E)- and (Z)-stilbenes. Bioorganic and Medicinal Chemistry, 21(17), 5054–5063. https://doi.org/10.1016/j.bmc.2013.06.048

Ruhfel, B. R., Bittrich, V., Bove, C. P., Gustafsson, M. H. G., Philbrick, C. T., Rutishauser, R., Xi, Z., & Davis, C. C. (2011). Phylogeny of the clusioid clade (Malpighiales): Evidence from the plastid and mitochondrial genomes. American Journal of Botany, 98(2), 306–325. https://doi.org/10.3732/ajb.1000354

Sirerol, J. A., Rodríguez, M. L., Mena, S., Asensi, M. A., Estrela, J. M., & Ortega, A. L. (2016). Role of natural stilbenes in the prevention of cancer. Oxidative Medicine and Cellular Longevity, 2016. https://doi.org/10.1155/2016/3128951

Steinmetz, M. O., & Prota, A. E. (2018). Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends in Cell Biology, 28(10), 776–792. https://doi.org/10.1016/j.tcb.2018.05.001

Tripathi, A., Durrant, D., Lee, R. M., Baruchello, R., Romagnoli, R., Simoni, D., & Kellogg, G. E. (2009). Hydropathic analysis and biological evaluation of stilbene derivatives as colchicine site microtubule inhibitors with anti-leukemic activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(6), 1237–1244. https://doi.org/10.3109/14756360902787055

Tripathi, P., Siddiqui, S. S., Sharma, A., Johri, P., & Singh, A. (2018). Molecular docking studies of Curcuma longa and aloe vera for their potential anticancer effects. Asian Journal of Pharmaceutical and Clinical Research, 11(4), 314–318. https://doi.org/10.22159/ajpcr.2018.v11i4.23995

Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

Zaragoza Dörwald, F. (2012). Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of Functional Groups and Organic Compounds. In Lead Optimization for Medicinal Chemists: Pharmacokinetic Properties of Functional Groups and Organic Compounds. https://doi.org/10.1002/9783527645640


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.