UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Various efforts can be made to obtain clean water in the environment by utilizing semiconductor technology. This study aims to inform the synthesis and characterization of MnO2/CuO/Fe2O3 photocatalyst for crystal violet degradation in wastewater. Nanocomposite was synthesized through a sol-gel process with three semiconductor materials doped. X-ray diffraction (XRD) was employed to analyze the nanocomposite structure and determine crystal size. Fourier transform infrared (FTIR) was used to provide functional groups in the nanocomposite. A scanning electron microscope (SEM) can characterize surface morphology and particle size. The results of the SEM show that an increase in sintering temperature causes the smallest particle sizes to be 54.79 nm. The result of characterization using the ultraviolet-visible (Uv-Vis) spectrophotometry analysis the most effective band gap value in photocatalyst activity was 1.36 eV. The optimum percent of degradation MnO2/CuO/Fe2O3 catalyst was 50.40% for the sample at a temperature of 400 C under irradiation with sunlight for six hours. Test results show that increased sintering temperature increased the photocatalytic activity. 2023, Polskie Towarzystwo Inzynierii Ekologicznej (PTIE). All rights reserved. |
References |
Abid, N., Khan, A. M., Shujait, S., Chaudhary, K., Ikram, M., Imran, M., Haider, J., Khan, M., Khan, Q., & Maqbool, M. (2022). Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300(December 2021), 102597. https://doi.org/10.1016/j.cis.2021.102597 Alagiri, M., & Hamid, S.B.A. (2015). Sol–gel synthesis of α-Fe2O3 nanoparticles and its photocatalytic application. Journal of Sol-Gel Science and Technology, 74(3), 783–789. https://doi.org/10.1007/s10971-015-3663-y Alp, E., Halil, E., Kür, M., & Genç, A. (2019). Synergetic activity enhancement in 2D CuO-Fe2O3 nanocomposites for the photodegradation of rhodamine B. Ceramics International, 45, 9174–9178. https://doi.org/10.1016/j.ceramint.2019.01.258 Amin, N.H., Ali, L.I., El-molla, S.A., Ebrahim, A.A., & Mahmoud, H.R. (2016). Effect of Fe2O3 precursors on physicochemical and catalytic properties of CuO/Fe2O3 system. Arabian Journal of Chemistry, 9, S678–S684. https://doi.org/10.1016/j.arabjc.2011.07.026 Ani, I.J., Akpan, U.G., Olutoye, M.A., & Hameed, B.H. (2018). Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2 and ZnO-based photocatalysts : Recent development. Journal of Cleaner Production, 205, 930–954. https://doi.org/10.1016/j.jclepro.2018.08.189 Anisa, K., Ratnawulan, R., Fauzi, A., Rahmadhani, D., Steven, A., & Azleen, F. (2023). Effect of Temperature Variation on Band Gap Value in Thin Layers of Nano Photocatalyst Fe2O3/CuO/MnO2. IOP Conf. Series: Earth and Environmental Science, 1228(012037). https://doi.org/10.1088/1755-1315/1228/1/012037 Aroob, S., Carabineiro, S.A.C., Taj, M.B., Bibi, I., Raheel, A., Javed, T., Yahya, R., Alelwani, W., Verpoort, F., Kamwilaisak, K., Al-Farraj, S., & Sillanpää, M. (2023). Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts, 13(3), 502. https://doi.org/10.3390/catal13030502 Azleen, F., Ratnawulan, R., Fauzi, A., Rahmadhani, D., Steven, A., & Anisa, K. (2023). Effect of Composition Variation on The Crystal Size and Band Gap of Thin Film Nano Photocatalyst Fe2 O3/CuO/MnO2. IOP Conference Series: Earth and Environmental Science, 1228(1), 012017. https://doi.org/10.1088/1755-1315/1228/1/012017 Becker, H., Güttel, R., & Turek, T. (2019). Performance of diffusion-optimized Fischer-Tropsch catalyst layers in microchannel reactors at integral operation. Catalysis Science and Technology, 9(9), 2180–2195. https://doi.org/10.1039/c9cy00457b Chen, H., You, S., Ma, Y., Zhang, C., Jing, B., Cai, Z., Tang, B., Ren, N., & Zou, J. (2018). Carbon ThinLayer-Protected Active Sites for ZIF-8-Derived Nitrogen-Enriched Carbon Frameworks/Expanded Graphite as Metal-Free Catalysts for Oxygen Reduction in Acidic Media. Chemistry of Materials, 30(17), 6014–6025. https://doi.org/10.1021/acs.chemmater.8b02275 Chiam, S.L., Pung, S.Y., & Yeoh, F.Y. (2020). Recent developments in MnO2-based photocatalysts for organic dye removal: a review. In Environmental Science and Pollution Research (Vol. 27, Issue 6, pp. 5759–5778). Springer. https://doi.org/10.1007/s11356-019-07568-8 Fardood, S.T., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterization of ZnMn2 O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro & Nano Letters, 14, 986–991. https://doi.org/10.1049/mnl.2019.0071 Fufa, T.O., Mengesha, A.T., & Yadav, O.P. (2014). Synthesis, Characterization and Photocatalytic Activity of MnO2/Al2O3/Fe2O3 Nanocomposite For Phenol Degradation. Chemistry and Materials Research, 6(10), 73–87. Gayatri, R., Agustina, T.E., Bahrin, D., Moeksin, R., & Gustini, G. (2021). Preparation and Characterization of ZnO-Zeolite Nanocomposite for Photocatalytic Degradation by Ultraviolet Light. Journal of Ecological Engineering, 22(2), 178–186. https://doi.org/10.12911/22998993/131031 Karimi, R., Yousefi, F., Ghaedi, M., & Rezaee, Z. (2019). Comparison of the behavior of ZnO – NP – AC and Na , K doped ZnO – NP – AC for simultaneous removal of Crystal Violet and Quinoline Yellow dyes : Modeling and optimization. Polyhedron, 170, 60–69. https://doi.org/10.1016/j.poly.2019.05.038 Le, V.T., Doan, V.D., Le, T.T.N., Dao, M.U., Vo, T.T.T., Do, H.H., Viet, D.Q., & Tran, V.A. (2021). Efficient photocatalytic degradation of crystal violet under natural sunlight using Fe3O4/ZnO nanoparticles embedded carboxylate-rich carbon. Materials Letters, 283, 128749. https://doi.org/10.1016/j.matlet.2020.128749 Liu, J., Wu, P., Yang, S., Rehman, S., Ahmed, Z., Zhu, N., Dang, Z., & Liu, Z. (2020). Applied Catalysis B : Environmental A photo-switch for peroxydisulfate non-radical/radical activation over layered CuFe oxide: Rational degradation pathway choice for pollutants. Catalysis, 261, 118232. https://doi.org/10.1016/j.apcatb.2019.118232 Mamiyev, Z., & Balayeva, N.O. (2022). Metal Sulfide Photocatalysts for Hydrogen Generation: A Review of Recent Advances. Catalysts, 12, 1–36. https://doi.org/https://doi.org/10.3390/catal12111316 Academic Mandrekar, P.P., & D’souza, A. (2023). Green Synthesis of Copper Oxide Nanoparticles Using Coffe, Piper Nigrum, and Coriandrum Sativum and its Application in Photocatalytic Degradation of Methylene Blue Dye. Rasayan Journal of Chemistry, 16(1), 276–283. https://doi.org/10.31788/RJC.2023.1616889 Mesrar, M., Elbasset, A., Mrabet, I. El, Zaitan, H., Abdi, F., Echatoui, N., & Lamcharfi, T. (2023). Hydrothermal Synthesis and Characterization of Sodium Bismuth Titanate for Photocatalytic Applications. Journal of Ecological Engineering, 24(10), 185–197. Mondal, D., Das, S., Kumar, B., & Bhattacharya, D. (2019). Size-engineered Cu-doped α-MnO2 nanoparticles for exaggerated photocatalytic activity and energy storage application. Materials Research Bulletin, 115, 159–169. https://doi.org/10.1016/j.materresbull.2019.03.023 Neeti, K., Singh, R., & Ahmad, S. (2023). The role of green nanomaterials as effective adsorbents and applications in wastewater treatment. Materials Today: Proceedings, 77, 269–276. https://doi.org/10.1016/j.matpr.2022.11.300 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |