UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :Q Science (General)
ISSN :2473-6988
Main Author :Fauzi Mohamed Yusof
Title :Dynamic analysis and optimal control of Zika virus transmission with immigration
Place of Production :Tanjung Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2023
Notes :AIMS Mathematics
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
In this paper, a type of Zika virus model with immigration is considered. Additionally based on the risk of infected immigrants, we propose a control measure of screening for immigrants and a three-measure control model of combined mosquito prevention and killing. The existence and stability of the equilibrium in the Zika virus model are analyzed. The necessary conditions for the existence of the optimal solution are given using Pontryagins maximum principle. We focused on testing screening of the immigrating population to ensure a reduction in the transmission of the virus. Models have demonstrated that in combination with routine mosquito control measures and the appropriate use of mosquitoicides, the transmission of Zika virus in the population can be effectively reduced. 2023 the Author(s), licensee AIMS Press.

References

G.W. Dick, S. F. Kitchen, A. J. Haddow, Zika virus (I). Isolations and serological specificity, Trans. Roy. Soc. Trop. Med. H., 46 (1952), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4

G. W. Dick, Zika virus (II). Pathogenicity and physical properties, Trans. Roy. Soc. Trop. Med. H., 46 (1952), 521–534. http://dx.doi.org/10.1016/0035-9203(52)90043-6

D. Musso, C. Roche, E. Robin, T. Nhan, A. Teissier, V. M. Cao-Lormeau, Potential sexual transmission of Zika virus, Emerg. Infect. Dis., 21 (2015), 359–360. http://dx.doi.org/10.3201/eid2102.141363

Y. S. Yan, Y. Q. Deng, Y. W. Weng, Zika virus infections in pregnant women are associated with microcephaly in newbowns, Chinese J. Zoonoses, 32 (2016), 107–108.

B. Rome, H. Laura, T. Butsaya, R. Wiriya, K. Chonticha, C. Piyawan, et al., Detection of Zika virus infection in Thailand, 2012–2014, Am. J. Trop. Med. Hyg., 93 (2015), 380–383. http://dx.doi.org/10.4269/ajtmh.15-0022

J. Tognarelli, S. Ulloa, E. Villagra, J. Lagos, C. Aguayo, R. Fasce, et al., A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014, Arch. Virol., 161 (2016), 665–668. http://dx.doi.org/10.1007/s00705-015-2695-5

D. Diallo, A. A. Sall, C. T. Diagne, O. Faye, O. Faye, Y. Ba, et al., Zika virus emergence in mosquitoes in southeastern Senegal, 2011, PloS One, 9 (2014), e109442. http://dx.doi.org/10.1371/journal.pone.0109442

F. Brauer, P. Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143–154. http://dx.doi.org/10.1016/S0025-5564(01)00057-8

M. Ayana, R. Koya. The Impact of infective immigrants on the spread and dynamics of Zika viruss, Am. J. Appl. Math., 5 (2017), 145–153. http://dx.doi.org/10.11648/j.ajam.20170506.11

A. Traor´e, Analysis of a vector-borne disease model with human and vectors immigration, J. Appl. Math. Comput., 64 (2020), 411–428. http://dx.doi.org/10.1007/s12190-020-01361-4

A. Kouidere, O. Balatif, M. Rachik, Analysis and optimal control of a mathematical modeling of the spread of African swine fever virus with a case study of South Korea and cost-e ectiveness, Chaos Soliton. Fract., 146 (2021), 110867. http://dx.doi.org/10.1016/j.chaos.2021.110867

A. Kouidere, O. Balatif, M. Rachik, Cost-e ectiveness of a mathematical modeling with optimal control approach of spread of COVID-19 pandemic: A case study in Peru, Chaos Soliton. Fract., 10 (2023), 100090. http://dx.doi.org/10.1016/J.CSFX.2022.100090

A. M. Abdulfatai, A. F¨ugenschuh, Optimal control of intervention strategies and cost-e ectiveness analysis for a Zika virus model, Oper. Res. Health Care, 18 (2018), 99–111. http://dx.doi.org/10.1016/j.orhc.2017.08.004

T. Y. Miyaoka, S. Lenhart, J. F. C. A. Meyer, Optimal control of vaccination in a vectorborne reaction-di usion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077–1104. http://dx.doi.org/10.1007/s00285-019-01390-z

E. Bonyah, M. A. Khan. K. O. Okosun, S. Islam, A theoretical model for Zika virus transmission, PloS One, 12 (2017), 1–18. http://dx.doi.org/10.1371/journal.pone.0185540

E. O. Alzahrani, W. Ahmad, M. A. Khan, S. J. Malebary, Optimal control strategies of Zika virus model with mutant, Commun. Nonlinear Sci., 93 (2021), 105532. http://dx.doi.org/10.1016/j.cnsns.2020.105532

X. C. Duan, H. Jung, X. Z. Li, M. Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, Math. Method. Appl. Sci., 43 (2020), 1–18. http://dx.doi.org/10.1002/mma.6190

M. A. Khan, S. W. Shah, S. Ulah, J. F. G´omez-Aguilar, A dynamical model of asymptomatic carrier zika virus with optimal control strategies, Nonlinear Anal.-Real, 50 (2019), 144–170. http://dx.doi.org/10.1016/j.nonrwa.2019.04.006

Z. M. Yue, F. M. Yusof, S. Shafie, Transmission dynamics of Zika virus incorporating harvesting, Math. Biosci. Eng., 17 (2020), 6181–6202. http://dx.doi.org/ 10.3934/mbe.2020327

J. Lasalle, The stability of dynamical systems, Society for Industrial and Appiled Mathematics, Philadelphia, 1976. http://dx.doi.org/10.1137/1021079

J. Karrakchou, M. Rachik, S. Gourari, Optimal control and infectiology: Application to an hiv/aids model, Appl. Math. Comput., 177 (2006), 807–818. http://dx.doi.org/10.1016/j.amc.2005.11.092

K. S. Lee, K. S. Lashari, Stability analysis and optimal control of pine wilt disease with horizontal transmission in vector population, Appl. Math. Comput., 226 (2014), 793–804. http://dx.doi.org/10.1016/j.amc.2013.09.061

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mishchenko, The mathematical theory of optimal processes, Wiley, New York, 1962.

W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control, Bull. Am. Math. Soc., 82 (1976), 997–998.

N. M. Ferguson, Z. M. Cucunub´a, I. Dorigatti, G. L. Nedjati-Gilani, C. A. Donnelly, M. G. Bas´a˜nez, et al., Countering the Zika epidemic in Latin America, Science, 353 (2016), 6297. http://dx.doi.org/10.1126/science.aag0219

Y. Li, L. Wang, L. Pang, S. Liu, The data fitting and optimal control of a hand, foot and mouth disease (HFMD) model with stage structure, Appl. Math. Comput., 276 (2016), 61–74. http://dx.doi.org/10.1016/j.amc.2015.11.090

WHO, Global vector control response 2017–2030. Available from: https://www.who.int/publications/i/item/9789241512978.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.