UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Rapid urbanization accelerates the rate of carbon emissions (CE), resulting in unfavorable fluctuating in climatic conditions of urban settings. One of the prominent reasons behind these climatic anomalies is the direct result of CO2 emission and heat-trapping gasses from industries and urban built-up areas. This study addresses the ongoing CE issues in Khulna City by analyzing CE from residential, commercial, and industrial land use. Moreover, the study explores diverse sources of CE from intense energy consumption using electricity, gas, fuel, and wood. Consequently, the carbon footprint (CF) has been estimated using specific CE coefficients for each landuse category. Specific concentration of CE for each landuse category is demonstrated on maps using geospatial and kernel density applications. Results suggested Khulna City’s monthly CE have been estimated 55,536,435 kg from residential, 14,612,942 kg from commercial and 2,606,823 kg from industrial land use. From residential landuse, each household has an average CF of 355.51 kg CO2/ month. The restaurants and roadside hotels have the highest contribution from commercial landuse, average CF of 1231.64 kg and 4150.82 kg CO2/ month, respectively. Meanwhile, the jute and food industries are responsible for 38,016 kg and 14,036 kg CO2/ month, respectively. Compared to the sources of CE, industrial and residential landuse have a consumption pattern of 99% and 83% of electricity, respectively, rather than other sources. This study’s results may help policymakers understand CE patterns from each sector to generate future urban growth and planning decisions. |
References |
Afrin, S., Gupta, A., Farjad, B., Razu Ahmed, M., Achari, G., & Hassan, Q. (2019). Development of land-use/land-cover maps using landsat-8 and MODIS data, and their integration for hydro-ecological applications. Sensors (Switzerland), 19(22). https://doi.org/10.3390/s19224891 Alam, M. J., Ahmed, M., & Begum, I. A. (2017). Nexus between non-renewable energy demand and economic growth in Bangladesh: Application of Maximum Entropy Bootstrap approach. Renewable and Sustainable Energy Reviews, 72, 399–406. https://doi.org/10.1016/j.rser.2017.01.007 Almulhim, A. I. (2022). Understanding public awareness and attitudes toward renewable energy resources in Saudi Arabia. Renewable Energy, 192, 572–582. https://doi.org/10.1016/j.renene.2022.04.122 Almulhim, A. I., Bibri, S. E., Sharifi, A., Ahmad, S., & Almatar, K. M. (2022). Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013195 Amit, S., & Kafy, A.-A. (2022). A content-based analysis to identify the influence of COVID-19 on sharing economy activities. Spatial Information Research, 30(2), 321–333. https://doi.org/10.1007/s41324-022-00433-w Bokaie, M., Zarkesh, M. K., Arasteh, P. D., & Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran. Sustainable Cities and Society, 23, 94–104. https://doi.org/10.1016/j.scs.2016.03.009 Chuai, X., Huang, X., Lu, Q., Zhang, M., Zhao, R., & Lu, J. (2015). Spatiotemporal Changes of Built-Up Land Expansion and Carbon Emissions Caused by the Chinese Construction Industry. Environmental Science and Technology, 49(21), 13021–13030. https://doi.org/10.1021/acs.est.5b01732 Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P., & Seto, K. C. (2015). Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6283–6288. https://doi.org/10.1073/pnas.1315545112 de Jong, M., Joss, S., Schraven, D., Zhan, C., & Weijnen, M. (2015). Sustainable-smart-resilient-low carbon-eco-knowledge cities; Making sense of a multitude of concepts promoting sustainable urbanization. Journal of Cleaner Production, 109, 25–38. https://doi.org/10.1016/j.jclepro.2015.02.004 Dewan, A., Kiselev, G., Botje, D., Mahmud, G. I., Bhuian, M. H., & Hassan, Q. K. (2021). Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustainable Cities and Society, 71. https://doi.org/10.1016/j.scs.2021.102926 Dhar, R. B., Chakraborty, S., Chattopadhyay, R., & Sikdar, P. K. (2019). Impact of Land-Use/Land-Cover Change on Land Surface Temperature Using Satellite Data: A Case Study of Rajarhat Block, North 24-Parganas District, West Bengal. Journal of the Indian Society of Remote Sensing, 47(2), 331–348. https://doi.org/10.1007/s12524-019-00939-1 Dolf, M., & Teehan, P. (2015). Reducing the carbon footprint of spectator and team travel at the University of British Columbia’s varsity sports events. Sport Management Review, 18(2), 244–255. https://doi.org/10.1016/j.smr.2014.06.003 Dong, H., Fujita, T., Geng, Y., Dong, L., Ohnishi, S., Sun, L., Dou, Y., & Fujii, M. (2016). A review on eco-city evaluation methods and highlights for integration. Ecological Indicators, 60, 1184–1191. https://doi.org/10.1016/j.ecolind.2015.08.044 Fattah, A., & Riad Morshed, S. (2021). Assessing the sustainability of transportation system in a developing city through estimating CO2 emissions and bio-capacity for vehicular activities. Transportation Research Interdisciplinary Perspectives, 10. https://doi.org/10.1016/j.trip.2021.100361 Fattah, M. A., Morshed, S. R., & Morshed, S. Y. (2021). Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Applied Sciences, 3(3). https://doi.org/10.1007/s42452-021-04351-8 Fry, J., Lenzen, M., Jin, Y., Wakiyama, T., Baynes, T., Wiedmann, T., Malik, A., Chen, G., Wang, Y., Geschke, A., Geschke, A., & Schandl, H. (2018). Assessing carbon footprints of cities under limited information. Journal of Cleaner Production, 176, 1254–1270. https://doi.org/10.1016/j.jclepro.2017.11.073 Fu, Y., & Zhang, X. (2017). Trajectory of urban sustainability concepts: A 35-year bibliometric analysis. Cities, 60, 113–123. https://doi.org/10.1016/j.cities.2016.08.003 Gao, T., Liu, Q., & Wang, J. (2014). A comparative study of carbon footprint and assessment standards. International Journal of Low-Carbon Technologies, 9(3), 237–243. https://doi.org/10.1093/ijlct/ctt041 Goldstein, B., Gounaridis, D., & Newell, J. P. (2020). The carbon footprint of household energy use in the United States. Proceedings of the National Academy of Sciences of the United States of America, 117(32), 19122–19130. https://doi.org/10.1073/pnas.1922205117 Hanif, I. (2018). Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: A panel investigation. Energy Strategy Reviews, 21, 16–24. https://doi.org/10.1016/j.esr.2018.04.006 Hassan, M. M. (2017). Monitoring land use/land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society and Environment, 7, 69–83. https://doi.org/10.1016/j.rsase.2017.07.001 Hossen, M. A., Chowdhury, M. A., Hans, A., Tagoe, C. A., Allan, A., Nelson, W., Patel, A., Mondal, M. S., Salehin, M., Quaye, R. M., Quaye, R. M., & Das, S. (2019). Governance challenges in addressing climatic concerns in coastal asia and Africa. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/su11072148 Hsu, A., Tan, J., Ng, Y. M., Toh, W., Vanda, R., & Goyal, N. (2020). Performance determinants show European cities are delivering on climate mitigation. Nature Climate Change, 10(11), 1015–1022. https://doi.org/10.1038/s41558-020-0879-9 Islam, K. M. N. (2017). Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh. Science of the Total Environment, 580, 755–769. https://doi.org/10.1016/j.scitotenv.2016.12.022 Ivanova, D., Vita, G., Steen-Olsen, K., Stadler, K., Melo, P. C., Wood, R., & Hertwich, E. G. (2017). Mapping the carbon footprint of EU regions. Environmental Research Letters, 12(5). https://doi.org/10.1088/1748-9326/aa6da9 Jacobson, M. Z. (2010). Enhancement of local air pollution by urban CO2 domes. Environmental Science and Technology, 44(7), 2497–2502. https://doi.org/10.1021/es903018m Kafy, A.-A., Faisal, A.-A., al Rakib, A., Fattah, M. A., Rahaman, Z. A., & Sattar, G. S. (2022). Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh. Building and Environment, 208. https://doi.org/10.1016/j.buildenv.2021.108573 Kamruzzaman, M., Hine, J., & Yigitcanlar, T. (2015). Investigating the link between carbon dioxide emissions and transport-related social exclusion in rural Northern Ireland. International Journal of Environmental Science and Technology, 12(11), 3463–3478. https://doi.org/10.1007/s13762-015-0771-8 Kennedy, S., & Sgouridis, S. (2011). Rigorous classification and carbon accounting principles for low and Zero Carbon Cities. Energy Policy, 39(9), 5259–5268. https://doi.org/10.1016/j.enpol.2011.05.038 Kumar, M. K., & Shiva Nagendra, S. M. (2016). Quantification of anthropogenic CO2 emissions in a tropical urban environment. Atmospheric Environment, 125, 272–282. https://doi.org/10.1016/j.atmosenv.2015.11.024 Laine, J., Ottelin, J., Heinonen, J., & Junnila, S. (2017). Consequential implications of municipal energy system on city carbon footprints. Sustainability (Switzerland), 9(10). https://doi.org/10.3390/su9101801 Larsen, H. N., & Hertwich, E. G. (2010). Implementing Carbon-Footprint-Based Calculation Tools in Municipal Greenhouse Gas Inventories: The Case of Norway. Journal of Industrial Ecology, 14(6), 965–977. https://doi.org/10.1111/j.1530-9290.2010.00295.x le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., van der Werf, G. R., Ahlström, A., Zaehle, S., & Zeng, N. (2013). The global carbon budget 1959-2011. Earth System Science Data, 5(1), 165–185. https://doi.org/10.5194/essd-5-165-2013 le Quéré, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., Conway, T. J., Doney, S. C., Feely, R. A., Foster, P., van der Werf, G. R., & Woodward, F. I. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2(12), 831–836. https://doi.org/10.1038/ngeo689 Leibowicz, B. D. (2017). Effects of urban land-use regulations on greenhouse gas emissions. Cities, 70, 135–152. https://doi.org/10.1016/j.cities.2017.07.016 Leya, R. S., Jodder, P. K., Rahaman, K. R., Chowdhury, M. A., Parida, D., & Islam, M. S. (2022). Spatial Variations of Urban Heat Island Development in Khulna City, Bangladesh: Implications for Urban Planning and Development. Earth Systems and Environment, 6(4), 865–884. https://doi.org/10.1007/s41748-022-00309-x Li, W., Sun, W., Li, G., Cui, P., Wu, W., & Jin, B. (2017). Temporal and spatial heterogeneity of carbon intensity in China’s construction industry. Resources, Conservation and Recycling, 126, 162–173. https://doi.org/10.1016/j.resconrec.2017.07.043 Lin, J., Liu, Y., Meng, F., Cui, S., & Xu, L. (2013). Using hybrid method to evaluate carbon footprint of Xiamen City, China. Energy Policy, 58, 220–227. https://doi.org/10.1016/j.enpol.2013.03.007 Liu, C., Wang, T., Lin, X., & Zhao, R. (2016). Allocating and mapping carbon footprint at the township scale by correlating industry sectors to land uses. Geographical Review, 106(3), 441–464. https://doi.org/10.1111/j.1931-0846.2016.12159.x Lombardi, M., Laiola, E., Tricase, C., & Rana, R. (2017). Assessing the urban carbon footprint: An overview. Environmental Impact Assessment Review, 66, 43–52. https://doi.org/10.1016/j.eiar.2017.06.005 Mancini, M. S., Galli, A., Niccolucci, V., Lin, D., Bastianoni, S., Wackernagel, M., & Marchettini, N. (2016). Ecological Footprint: Refining the carbon Footprint calculation. Ecological Indicators, 61, 390–403. https://doi.org/10.1016/j.ecolind.2015.09.040 Matioli, L. C., Santos, S. R., Kleina, M., & Leite, E. A. (2018). A new algorithm for clustering based on kernel density estimation. Journal of Applied Statistics, 45(2), 347–366. https://doi.org/10.1080/02664763.2016.1277191 Mehmood, U., & Mansoor, A. (2021). CO2 emissions and the role of urbanization in East Asian and Pacific countries. Environmental Science and Pollution Research, 28(41), 58549–58557. https://doi.org/10.1007/s11356-021-14838-x Mezősi, G., Bata, T., Meyer, B. C., Blanka, V., & Ladányi, Z. (2014). Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin. International Journal of Disaster Risk Science, 5(2), 136–146. https://doi.org/10.1007/s13753-014-0016-3 Minx, J., Baiocchi, G., Wiedmann, T., Barrett, J., Creutzig, F., Feng, K., Förster, M., Pichler, P.-P., Weisz, H., & Hubacek, K. (2013). Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters, 8(3). https://doi.org/10.1088/1748-9326/8/3/035039 Moniruzzaman, Md., Roy, A., Bhatt, C. M., Gupta, A., An, N. T. T., & Hassan, M. R. (2018). Impact analysis of urbanization on land use land cover change for Khulna city, Bangladesh using temporal Landsat imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(5), 757–760. Ohnishi, S., Dong, H., Geng, Y., Fujii, M., & Fujita, T. (2017). A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods—Case of Kawasaki, Japan. Ecological Indicators, 73, 315–324. https://doi.org/10.1016/j.ecolind.2016.10.016 Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015 Ooi, G. L., & Yuen, B. (2009). World cities: Achieving liveability and vibrancy. In World Cities: Achieving Liveability and Vibrancy. https://doi.org/10.1142/7398 Ottelin, J., Ala-Mantila, S., Heinonen, J., Wiedmann, T., Clarke, J., & Junnila, S. (2019). What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environmental Research Letters, 14(9). https://doi.org/10.1088/1748-9326/ab2212 Ottelin, J., Heinonen, J., & Junnila, S. (2018). Carbon footprint trends of metropolitan residents in Finland: How strong mitigation policies affect different urban zones. Journal of Cleaner Production, 170, 1523–1535. https://doi.org/10.1016/j.jclepro.2017.09.204 Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: Current methods of estimation. Environmental Monitoring and Assessment, 178(1–4), 135–160. https://doi.org/10.1007/s10661-010-1678-y Peters, G. P. (2010). Carbon footprints and embodied carbon at multiple scales. Current Opinion in Environmental Sustainability, 2(4), 245–250. https://doi.org/10.1016/j.cosust.2010.05.004 Rahaman, Z. A., Kafy, A.-A., Faisal, A.-A., al Rakib, A., Jahir, D. M. A., Fattah, M. A., Kalaivani, S., Rathi, R., Mallik, S., & Rahman, M. T. (2022). Predicting Microscale Land Use/Land Cover Changes Using Cellular Automata Algorithm on the Northwest Coast of Peninsular Malaysia. Earth Systems and Environment, 6(4), 817–835. https://doi.org/10.1007/s41748-022-00318-w Rahaman, Z. A., Kafy, A.-A., Saha, M., Rahim, A. A., Almulhim, A. I., Rahaman, S. N., Fattah, M. A., Rahman, M. T., S, K., Faisal, A.-A., Faisal, A.-A., & al Rakib, A. (2022). Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Building and Environment, 222. https://doi.org/10.1016/j.buildenv.2022.109335 Rahman, M. S., Mohiuddin, H., Kafy, A.-A., Sheel, P. K., & Di, L. (2019). Classification of cities in Bangladesh based on remote sensing derived spatial characteristics. Journal of Urban Management, 8(2), 206–224. https://doi.org/10.1016/j.jum.2018.12.001 Rahman, S., & Amit, S. (2022). Growth in Telehealth Use in Bangladesh from 2019-2021-A Difference-in-Differences Approach. Journal of Medicine (Bangladesh), 23(1), 42–47. https://doi.org/10.3329/jom.v23i1.57936 Razu Ahmed, M., Rahaman, K. R., Kok, A., & Hassan, Q. K. (2017). Remote sensing-based quantification of the impact of flash flooding on the rice production: A case study over Northeastern Bangladesh. Sensors (Switzerland), 17(10). https://doi.org/10.3390/s17102347 |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |