UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :article
Subject :T Technology (General)
ISSN :1437-4781
Main Author :Al-Obaidi, Jameel R.
Title :Rigidoporus microporus and the white root rot disease of rubber
Place of Production :Tanjung Malim
Publisher :Fakulti Komputeran dan Meta Teknologi
Year of Publication :2023
Notes :Forest Pathology
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link :Click to view web link

Abstract : Universiti Pendidikan Sultan Idris
Rigidoporus microporus is an economically important plant pathogenic fungus causing particularly severe losses to the rubber industry worldwide. The pathogen is responsible for white root rot (WRR) disease, infecting the host roots via white fibrous mycelia, causing vascular disfunction, and visible symptoms including leaf discolouration and dieback in severely infected trees. The final stage of the disease is characterized by the appearance of basidiocarps at the tree collar. The development of WRR in rubber plantations is dependent on fungal diversity in the soil, pH, temperature, and cation levels. Several -omics approaches have been undertaken to understand how R.microporus functions with the objective, ultimately, to control WRR. Unfortunately, no resistant rubber clone has been identified to date. The disease is managed through physical and chemical methods that are laborious and negatively impact the environment, respectively. Recent developments in research on R.microporus shed light on potential sustainable routes to WRR disease control using beneficial microorganisms and natural compounds. This review discusses the characteristics of R.microporus isolates from different geographical origins, the pathogenicity and virulence mechanisms of the necrotrophic fungal pathogen, factors that influence the development of WRR, recent findings from the multi-omics studies, and control methods that are available to combat this economically important pathogen. 2023 Wiley-VCH GmbH.

References

Ali, M. F., Akber, M. A., Smith, C., & Aziz, A. A. (2021). The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions. Forest Policy and Economics, 127. https://doi.org/10.1016/j.forpol.2021.102449

Aylward, J., Steenkamp, E. T., Dreyer, L. L., Roets, F., Wingfield, B. D., & Wingfield, M. J. (2017). A plant pathology perspective of fungal genome sequencing. IMA Fungus, 8(1), 1–15. https://doi.org/10.5598/imafungus.2017.08.01.01

Azmi, I., Mohd Ariffin, M., Abd Razak, S. B., Wei, O. C., Ahmad, F. T., & Mubarak, A. (2018). Determination of polyphenol contents in Hevea brasiliensis and rubber-processing effluent | Penentuan kandungan polifenol dalam hevea brasiliensis dan sisa pemprosesan getah. Malaysian Journal of Analytical Sciences, 22(2), 185–196. https://doi.org/10.17576/mjas-2018-2202-03

Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton, R. P., & Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506(7486), 85–88. https://doi.org/10.1038/nature12911

Banerjee, D. (2011). Endophytic fungal diversity in tropical and subtropical plants. Research Journal of Microbiology, 6(1), 54–62. https://doi.org/10.3923/jm.2011.54.62

Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., de Bellis, L., Luvisi, A., & Maruccio, G. (2021). Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. Sensors, 21(6), 1–22. https://doi.org/10.3390/s21062129

Chadoeuf, J., Joannes, H., Nandris, D., & Pierrat, J. C. (1988). Mathematical analysis and modeling of epidemics of rubber tree root diseases: probability of infection of an individual tree. Forest Science, 34(4), 831–845.

Chaiharn, M., Sujada, N., Pathom-Aree, W., & Lumyong, S. (2019). Biological control of rigidoporus microporus the cause of white root disease in rubber using PGPRs in vivo. Chiang Mai Journal of Science, 46(5), 850–866.

Dalimunthe, C. I., Tistama, R., & Wahyuni, S. (2017). Detection of White Root Disease (Rigidoporus Microporus) in Various Soil Types in the Rubber Plantations Based on the Serological Reaction. IOP Conference Series: Earth and Environmental Science, 97(1). https://doi.org/10.1088/1755-1315/97/1/012043

Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42(9), 881–895. https://doi.org/10.1139/m96-114

Fatin Farhana, A. H. K., Shamsul Bahri, A. R., Vu Thanh, T. A., & Zakaria, L. (2017). Morphological features of Rigidoporus microporus isolated from infected malaysian rubber clones. Malaysian Journal of Microscopy, 13(1), 17–23.

Fisol, A. F. B. C., Saidi, N. B., Al-Obaidi, J. R., Lamasudin, D. U., Atan, S., Razali, N., Sajari, R., Rahmad, N., Hussin, S. N. I. S., & Mr, N. H. (2022). Differential Analysis of Mycelial Proteins and Metabolites From Rigidoporus Microporus During In Vitro Interaction With Hevea Brasiliensis. Microbial Ecology, 83(2), 363–379. https://doi.org/10.1007/s00248-021-01757-0

Geiger, J. ‐P., Nicole, M., Nandris, D., & Rio, B. (1986). Root rot diseases of Hevea brasiliensis: I. Physiological and biochemical aspects of host aggression. European Journal of Forest Pathology, 16(1), 22–37. https://doi.org/10.1111/j.1439-0329.1986.tb01049.x

Geiger, J. ‐P., Rio, B., Nicole, M., & Nandris, D. (1986). Biodegradation of Hevea brasiliensis wood by Rigidoporus lignosus and Phellinus noxius. European Journal of Forest Pathology, 16(3), 147–159. https://doi.org/10.1111/j.1439-0329.1986.tb01055.x

Go, W. Z., Chin, K. L., H’ng, P. S., Wong, M. Y., Luqman, C. A., Surendran, A., Tan, G. H., Lee, C. L., Khoo, P. S., & Kong, W. J. (2021). Virulence of rigidoporus microporus isolates causing white root rot disease on rubber trees (Hevea brasiliensis) in Malaysia. Plants, 10(10). https://doi.org/10.3390/plants10102123

Go, W. Z., H’ng, P. S., Wong, M. Y., Chin, K. L., Ujang, S., & Noran, A. S. (2019). Evaluation of Trichoderma asperellum as a potential biocontrol agent against Rigidoporus microporus Hevea brasiliensis. Archives of Phytopathology and Plant Protection, 52(7–8), 639–666. https://doi.org/10.1080/03235408.2019.1587821

Go, W. Z., H’Ng, P. S., Wong, M. Y., Tan, G. H., Luqman Chuah, A., Salmiah, U., Toczyłowska-Mamińska, R., Soni, O., Wong, W. Z., Chin, K. L., Chin, K. L., & Chai, E. W. (2015). Occurrence and characterisation of mycoflora in soil of different health conditions associated with white root rot disease in Malaysian rubber plantation. Journal of Rubber Research, 18(3), 159–170.

Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5(2), 54–72.

Gomes-Silva, A. C., de Medeiros, P. S., Soares, A. M. S., Sotão, H. M. P., Ryvarden, L., & Gibertoni, T. B. (2014). Two new species of Rigidoporus (Agaricomycetes) from Brazil and new records from the Brazilian Amazonia. Phytotaxa, 156(4), 191–200. https://doi.org/10.11646/phytotaxa.156.4.1

Gonzalez-Fernandez, R., & Jorrin-Novo, J. V. (2012). Contribution of proteomics to the study of plant pathogenic fungi. Journal of Proteome Research, 11(1), 3–16. https://doi.org/10.1021/pr200873p

Guyot, J., & Flori, A. (2002). Comparative study for detecting Rigidoporus lignosus on rubber trees. Crop Protection, 21(6), 461–466. https://doi.org/10.1016/S0261-2194(01)00132-6

Habib, M. A. H., Yuen, G. C., Othman, F., Zainudin, N. N., Latiff, A. A., & Ismail, M. N. (2017). Proteomics analysis of latex from Hevea brasiliensis (clone RRIM 600). Biochemistry and Cell Biology, 95(2), 232–242. https://doi.org/10.1139/bcb-2016-0144

Hadi, S. M. H. S. A., Nasir, M. S., Md Noh, N. A., Mohd Yahya, A. R., & Mohamed Nor, N. M. I. (2022). The Potential of Rhamnolipid as Biofungicide against Rigidoporus microporus Isolated from Rubber Tree (Hevea brasiliensis). Pertanika Journal of Tropical Agricultural Science, 45(1), 285–299. https://doi.org/10.47836/pjtas.45.1.17

Hadi, S. M. H. S. A., Zakaria, L., Sidique, S. N. M., Mahyudin, M. M., & Nor, N. M. I. M. (2021). The potential of soluble silicon for managing white root disease in rubber (Hevea brasiliensis). Australian Journal of Crop Science, 15(10), 1346–1354. https://doi.org/10.21475/ajcs.21.15.10.p3343

He, C. P., Fan, L. Y., Wu, W. H., Liang, Y. Q., Li, R., Tang, W., Zheng, X. L., Xiao, Y. N., Liu, Z. X., & Zheng, F. C. (2017). Identification of lipopeptides produced by Bacillus subtilis Czk1 isolated from the aerial roots of rubber trees. Genetics and Molecular Research, 16(1). https://doi.org/10.4238/gmr16018710

Heklau, H., Schindler, N., Buscot, F., Eisenhauer, N., Ferlian, O., Prada Salcedo, L. D., & Bruelheide, H. (2021). Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecology and Evolution, 11(10), 5424–5440. https://doi.org/10.1002/ece3.7437

Herzog, S., Brinkmann, H., Vences, M., & Fleißner, A. (2020). Evidence of repeated horizontal transfer of sterol C-5 desaturase encoding genes among dikarya fungi. Molecular Phylogenetics and Evolution, 150. https://doi.org/10.1016/j.ympev.2020.106850

Holiday, P. (1980). Fungus diseases of tropical crops. Australasian Plant Pathology, 9(4), 120. https://doi.org/10.1007/BF03213662

Hori, C., Gaskell, J., Igarashi, K., Samejima, M., Hibbett, D., Henrissat, B., & Cullen, D. (2013). Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia, 105(6), 1412–1427. https://doi.org/10.3852/13-072

Kapoore, R. V., & Vaidyanathan, S. (2016). Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2079). https://doi.org/10.1098/rsta.2015.0363

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00845

Kumar, M., & Ashraf, S. (2017). Role of trichoderma spp. As a biocontrol agent of fungal plant pathogens. In Probiotics and Plant Health. https://doi.org/10.1007/978-981-10-3473-2_23

Lieberei, R. (2007). South American leaf blight of the rubber tree (Hevea spp.): New steps in plant domestication using physiological features and molecular markers. Annals of Botany, 100(6), 1125–1142. https://doi.org/10.1093/aob/mcm133

Lim, T. K., Hamm, R. T., & Mohamad, R. B. (1990). Persistency and volatile behaviour of selected chemicals in treated soil against three basidiomycetous root disease pathogens. Tropical Pest Management, 36(1), 23–26. https://doi.org/10.1080/09670879009371430

Liu, C. L. C., Kuchma, O., & Krutovsky, K. V. (2018). Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 15. https://doi.org/10.1016/j.gecco.2018.e00419

Louanchi, M., Robin, P., Michels, T., Balesdent, M. H., & Despréaux, D. (1996). In vitro characterization and in vivo detection of Rigidoporus lignosus, the causal agent of white root disease in Hevea brasiliensis, by ELISA techniques. European Journal of Plant Pathology, 102(1), 33–44. https://doi.org/10.1007/BF01877113

Lundell, T. K., Mäkelä, M. R., de Vries, R. P., & Hildén, K. S. (2014). Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. In Advances in Botanical Research (Vol. 70). https://doi.org/10.1016/B978-0-12-397940-7.00011-2

Mahendran, T. R., Thottathil, G. P., Surendran, A., Nagao, H., & Sudesh, K. (2021). Biocontrol potential of Aspergillus terreus, endophytic fungus against Rigidoporus microporus and Corynespora cassiicola, pathogens of rubber tree. Archives of Phytopathology and Plant Protection, 54(15–16), 1014–1032. https://doi.org/10.1080/03235408.2021.1884952

Maiden, N. A., Noran, A. S., Fauzi, M. A. F. A., & Atan, S. (2017). Screening and characterisation of chitinolytic microorganisms with potential to control white root disease of Hevea brasiliensis. Journal of Rubber Research, 20(3), 182–202. https://doi.org/10.1007/bf03449151

Mäkelä, M., Galkin, S., Hatakka, A., & Lundell, T. (2002). Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology, 30(4), 542–549. https://doi.org/10.1016/S0141-0229(02)00012-1

Martin, M. N. (1991). The latex of Hevea brasiliensis contains high levels of both chitinases and chitinases/lysozymes. Plant Physiology, 95(2), 469–476. https://doi.org/10.1104/pp.95.2.469

Mattila, H. K., Mäkinen, M., & Lundell, T. (2020). Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus. Biotechnology for Biofuels, 13(1). https://doi.org/10.1186/s13068-020-01677-0

Mohammed, C. L., Rimbawanto, A., & Page, D. E. (2014). Management of basidiomycete root- and stem-rot diseases in oil palm, rubber and tropical hardwood plantation crops. Forest Pathology, 44(6), 428–446. https://doi.org/10.1111/efp.12140

Möller, M., & Stukenbrock, E. H. (2017). Evolution and genome architecture in fungal plant pathogens. Nature Reviews Microbiology, 15(12), 756–771. https://doi.org/10.1038/nrmicro.2017.76

Monkai, J., Hyde, K. D., Xu, J., & Mortimer, P. E. (2017). Diversity and ecology of soil fungal communities in rubber plantations. Fungal Biology Reviews, 31(1), 1–11. https://doi.org/10.1016/j.fbr.2016.08.003

Mubarak, A., Ismun, A., Razak, S. B. A., & Ariffin, M. M. (2018). Antifungal activity of Hevea brasiliensis fresh latex and rubber processing effluent in relation to polyphenol composition and polyphenol oxidase activity as a possible protection approach against fungal disease. Malaysian Applied Biology, 47(4), 127–133.

Nakaew, N., Rangjaroen, C., & Sungthong, R. (2015). Utilization of rhizospheric Streptomyces for biological control of Rigidoporus sp. causing white root disease in rubber tree. European Journal of Plant Pathology, 142(1), 93–105. https://doi.org/10.1007/s10658-015-0592-0

Nandris, D., Chadoeuf, J., Pierrat, J. C., Joannes, H., Geiger, J. P., & Nicole, M. (1996). Modelling rubber-tree root diseases, simulations of various inoculum rates and methods of control. European Journal of Forest Pathology, 26(1), 25–44. https://doi.org/10.1111/j.1439-0329.1996.tb00707.x

Nandris, D., Nicole, M., & Geiger, J. P. (1987). Variation in virulence among Rigidoporus lignosus and Phellinus noxius isolates from West Africa. European Journal of Forest Pathology, 17(4–5), 271–281. https://doi.org/10.1111/j.1439-0329.1987.tb01026.x

Nicole, M., Geiger, J. P., & Nandris, D. (1986a). Root rot diseases of Hevea brasiliensis: II. Some host reactions. European Journal of Forest Pathology, 16(1), 37–55. https://doi.org/10.1111/j.1439-0329.1986.tb01050.x

Nicole, M., Geiger, J. P., & Nandris, D. (1986b). Ultrastructure of Laticifers Modifications in Hevea brasiliensis Infected with Root Rot Fungi. Journal of Phytopathology, 116(3), 259–268. https://doi.org/10.1111/j.1439-0434.1986.tb00919.x

Nicole, M., Geiger, J. P., & Nandris, D. (1987). Ultrastructural aspects of rubber tree root rot diseases. European Journal of Forest Pathology, 17(1), 1–11. https://doi.org/10.1111/j.1439-0329.1987.tb00722.x

Nicole, M., Nandris, D., Geiger, J. P., & Rio, B. (1985). Variability among African populations of Rigidoporus lignosus and Phellinus noxius. European Journal of Forest Pathology, 15(5–6), 293–300. https://doi.org/10.1111/j.1439-0329.1985.tb01102.x

Nicole, M. R., & Benhamou, N. (1991). Ultrastructural localization of chitin in cell walls of Rigidoporus lignosus, the white-rot fungus of rubber tree roots. Physiological and Molecular Plant Pathology, 39(6), 415–431. https://doi.org/10.1016/0885-5765(91)90008-6

Nussinov, R., Tsai, C.-J., & Jang, H. (2019). Protein ensembles link genotype to phenotype. PLoS Computational Biology, 15(6). https://doi.org/10.1371/journal.pcbi.1006648

Oghenekaro, A. O., Daniel, G., & Asiegbu, F. O. (2015). The saprotrophic wood-degrading abilities of rigidoporus microporus. Silva Fennica, 49(4). https://doi.org/10.14214/sf.1320

Oghenekaro, A. O., Kovalchuk, A., Raffaello, T., Camarero, S., Gressler, M., Henrissat, B., Lee, J., Liu, M., Martínez, A. T., Miettinen, O., Martin, F., & Asiegbu, F. O. (2020). Genome sequencing of Rigidoporus microporus provides insights on genes important for wood decay, latex tolerance and interspecific fungal interactions. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-62150-4

Oghenekaro, A. O., Miettinen, O., Omorusi, V. I., Evueh, G. A., Farid, M. A., Gazis, R., & Asiegbu, F. O. (2014). Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis). Fungal Biology, 118(5–6), 495–506. https://doi.org/10.1016/j.funbio.2014.04.001

Oghenekaro, A. O., Raffaello, T., Kovalchuk, A., & Asiegbu, F. O. (2016). De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2574-9


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.