UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :thesis
Subject :LB Theory and practice of education
Main Author :Nurul Nadia Hassan
Title :The impact of MoSTMaT on computing students motivated strategies for learning and metacognitive awareness
Place of Production :Tanjong Malim
Publisher :Fakulti Komputeran dan META-Teknologi
Year of Publication :2023
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file

Abstract : Perpustakaan Tuanku Bainun
This study aims to develop and evaluate a learning tool: Motivated Strategies Thinking Map Tool (MoSTMaT) on motivated strategies for learning (MSL) and metacognitive awareness (MA) among computing students. The MoSTMaT tool was developed based on the principles of multimedia message design by combining multimedia elements and thinking maps. The research design consists of a survey and quasi-experimental study with pre-post test. The survey study sample involved 209 students, while 128 students from a public university were selected as participants in the experimental study using cluster random sampling. The experimental study involved three groups namely MoSTMaT group with 37 students, printed module group with 40 students, and control group with 51 students. Assessment was done using the Metacognitive Awareness Inventory (MAI) and the Motivated Strategies for Learning Questionnaire (MSLQ). The data were analyzed using descriptive statistics and inferential statistics including Pearson correlation test, Analysis of Covariance (ANCOVA), Analysis of Variance (ANOVA), and linear regression to answer the research questions. The findings of the survey study showed that the level of MA among students was high (M=5.11, SD= .61), while the level of MSL was moderate (M=5.10, SD=.68). The analysis of correlation between MA and MSL showed a strong and significant relationship, r(209) = .81, p

References

Abesadze, S. , Nozadze, D. (2020). Make 21st Century Education: The Importance of Teaching Programming in Schools. International Journal of Learning and Teaching Vol. 6, No. 3. 

Abd Ghaffar, Mohd Najib (2003). Reka Bentuk Tinjauan Soal Selidik Pendidikan. Penerbit Universiti Teknologi Malaysia. 

Abdulrahaman, M.D., Faruk, N., Oloyede, A.A., Surajudeen-Bakinde, N.T., Olawoyin, L.A., Mejabi, O.V., Imam-Fulani, Y.O., Fahm, A.O., Azeez, A.L. (2020). Multimedia tools in the teaching and learning processes: A systematic review, Heliyon, Volume 6, Issue 11 

Adesola, A.S., & Li, Yongmin (2018). The relationship between self-regulation, self-efficacy, test anxiety and motivation. International Journal of Information and Education Technology, Vol. 8, No. 10, October 2018. 

Agarwal, P. K., Nunes, L. D., & Blunt, J. R. (2021). Retrieval practice consistently benefits student learning: A systematic review of applied research in schools and classrooms. Educational Psychology Review, 33(4), 1409– 1453. https://doi.org/10.1007/s10648-021-09595-9 

Agensi Inovatif Malaysia official website (2014). I-Think. Retrieved from http://innovation.my/initiatives.php?page=ithink retrieved on 5th May 2014 

Alemdag, E., Cagiltay, K. (2018). A systematic review of eye tracking research on multimedia learning. Comput. Educ. 125, 413-428.  

Alakeel, Ali. (2015). Investigating Difficulties of Learning Computer Programming in Saudi Arabia. Universal Journal of Educational Research. 3. 567-577. 10.13189/ujer.2015.030901. 

Ambrosio, P. A., Almeida, da Silva, L., Macedo, J., Franco, A., (2014). Exploring core cognitive skills of computational thinking. www.ppig.org. 

Antonietti, A., and B. Colombo. (2014). “Learning from Multimedia Artifacts: The Role of Metacognition.” In Reflective Thinking in Educational Settings: A Cultural Framework, edited by A. Antonietti, E. Confalonieri, and A. Marchetti, 55–101. New York: Cambridge University Press 

Ary, Donald, Jacobs, C. L., Sorensen, K. C., Walker, A. D. (2014). Introduction to research in Education. Edition 9. Wadsworth Cengage Learning. 

Astriani, Dyah & Susilo, Herawati & Suwono, Hadi & Lukiati, Betty & Purnomo, Aris. (2020). Mind Mapping in Learning Models: A Tool to Improve Student Metacognitive Skills. International Journal of Emerging Technologies in Learning (iJET). 15. 4. 10.3991/ijet.v15i06.12657. 

Azevedo, R. (2014). Multimedia Learning of Meracognitive Strategies in R.Mayer (Ed), The Cambridge Handbook of Multimedia Learning (Cambridge handbooks in Psychology, pp. 647-672). Cambridge University Press. 

Azevedo , R. , Moos , D. , Johnson , A. , & Chauncey , A. ( 2010 ). Measuring cognitive and metacognitive regulatory processes used during hypermedia learning: Issues and challenges. Educational Psychologist , 45 (4), 210–223 . 

Baddeley, A. (1998). Human Memory.Allyn and Bacon. Boston 

Bahri, A., & Corebima, A. D. (2015). The contribution of learning motivation and metacognitive skill on cognitive learning outcome of students within different learning strategies. Journal of Baltic Science Education, 14(4), 487–500. http://www.scientiasocialis.lt/jbse/?q=node/448 

Baist, Abdul & Pamungkas, Aan. (2017). Analysis of Student Difficulties in Computer Programming. VOLT : Jurnal Ilmiah Pendidikan Teknik Elektro. 2. 81. 10.30870/volt.v2i2.2211. 

Bandura, A. (1999). A social cognitive theory of personality. In L. Pervin & O.  John Hnadbook of personality. New York,  Guildford Publications:  154-196. Psychological review 106(4), 676. 

Bandura, A. (2008). Toward an agentic theory of the self. In H. W. Marsh, R. G. Craven, & D. M. McInerney (Eds.), Self-processes, learning, and enabling human potential (pp. 15–49). Charlotte, NC: Information Age. 

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173– 1182. https://doi.org/10.1037/0022-3514.51.6.1173 

Basu, Rupa. (2018). Instructional Design Models: Benefits and Challenges. UGC Approval Journal. Volume 41. 31-36. 

Batahong, Ronald & Justin, Donatus & Teo, Lydia & Naiman, Raiti. (2017). Hubungan Kejeleketan, Penglibatan Pelajar Dan Sokongan Pensyarah Terhadap Motivasi Pelajar Pismp. 

Bataineh, Ruba & Alqatanani, Alaeddin. (2017). How effective is Thinking Maps® instruction in improving Jordanian EFL learners’ creative reading skills?. TESOL Journal. 10.1002/tesj.360. 

Betz, N. E. (2007). Career self-efficacy: Exemplary recent research and emerging directions. Journal of Career Assessment, 15(4), 403-422. 

Berney, S., & Bétrancourt, M. (2016). Does animation enhance learning? A meta-analysis. Computers & Education, 101, 150–167. https://doi.org/10.1016/j.compedu.2016. 06.005. 

Budak, C. E., Gecer, K. A., Topal, D. A. (2019). The Effect of programming with scratch course on reflective thinking skills of students towards problem solving. Journal of Learning and Teaching in Digital Age, 2019, 6(1), 72-80 

Bosse, Y., & Gerosa, M. A. (2016). Why is programming so difficult to learn? Patterns of Difficulties Related to Programming Learning Mid-Stage. ACM SIGSOFT Software Engineering Notes, 41(6), 1-6. https://doi.org/10.1145/3011286.3011301 

Borit, M., Stangvaltaite-Mouhat, L. (2021). GoDental! Enhancing flipped classroom experience with game-based learning. European Journal of Dental Education/Volume 24, Issue 4/p. 763-772 

Breed, B., Mentz, E., & van der Westhuizen, G. (2014). A Metacognitive Approach to Pair Programming: Influence on Metacognitive Awareness. Electronic Journal Of Research In Educational Psychology, 12(1), 33-59. doi:10.14204/ejrep.32.13104 

Brophy, J. E. (2008). Developing students’ appreciation for what is taught in school. Educational Psychologist, 43, 132–141. 

Cakiroglu, Unal and Er, Betul (2020). Effect of using metacognitive strategies to enhance programming performances. Informatics in education, Vol. 19, No. 2, 181-200. DOI: 10.15388/infedu.2020.09 

Caliskan, M., & Sunbul, A. (2011). The Effects of Learning Strategies Instruction on Metacognitive Knowledge, Using Metacognitive Skills and Academic Achievement (Primary Education Sixth Grade Turkish Course Sample). Educational Sciences: Theory And Practice, 11(1), 148-153 

Cassata, E. Amy & French, Lucia (2006). Using concept mapping to facilitate metacognitive control in preschool children. Proceeding Of the second International Conference on Concept Mapping. 

Chaiprasurt, C., & Esichaikul, V. (2013). Enhancing Motivation in Online Courses with Mobile Communication Tool Support: A Comparative Study. International Review Of Research In Open & Distance Learning, 14(3), 377-400 

Cheung, L. (2016). Using the ADDIE Model of nstructional Design to teach chest radiograph interpretation. Journal of Biomedical Education. 

Chevron, Marie-Pierre (2014). A metacognitive tool: Theoretical and operational analysis of skills exercised in structured concept maps. Perspectives in Science (2014), 46-54. www.sciencedirect.com 

Che Soh Said (2012). Multimedia interaktif dengan perisian realiti maya dalam pembelajaran Biologi Sel. Disertasi Doktor Falsafah Tidak Diterbitkan. Universiti Sains Malaysia, Pulau Pinang. 

Cho, Moon-Heum (2004). The Effects of Design Strategies for Promoting Students' Self-Regulated Learning Skills on Students' Self-Regulation and Achievements in Online Learning Environments. Association for Educational Communications and Technology, 27th, Chicago, IL, October 19-23 

Cho, Moon-Heum., & Shen, D. (2013). Self-regulation in online learning. Distance Education, 34, 290–301. doi:10.1080/01587919.2013.835770 

Cegielski C. and Hall D. (2006) “What makes a good Programmer?,” Commun. ACM, vol. 49, no. 10, pp. 73–75, 2006.  

Clarebout, Geraldine & Elen, Jan & Juarez Collazo, Norma & Lust, Griet & Jiang, Lai. (2013). Metacognition and the Use of Tools. 10.1007/978-1-4419-5546-3_13. 

Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. John Wiley & Sons. 

Clark R, Nguyen F, Sweller J (2006) Learning in efficiency. San Francisco: John Wiley & sons, Inc. 

Cleary, T. J., & Zimmerman, B. J. (2004). Self-regulation empowerment program: A school-based program to enhance self-regulated and self-motivated cycles of student learning. Psychology In The Schools, 41(5), 537-550 

Chowdhary, K.R. (2020). On the Evolution of Programming Languages. Dept. of Computer Science and Engineering. Jodhpur Institute of Engineering and Technology, Jodhpur 

Chimuma, Lilian & Johnson, Iris. (2016). Assessing Students' Use of Metacognition during Mathematical Problem Solving Using Smartpens. Educational Research: Theory and Practice. 28. 22-36. 

Chua, Yan Piaw (2020). Mastering Research Statistics, 2nd Edition. McGraw-Hill Education (Malaysia) Sdn. Bhd.Selangor, Malaysia. 

Cohen.L , Manion, Lawrence, Morrison, Keith (2017). Research Methods in Education (8th Edition). Routledge Taylor & Francis Group. Taylor & Francis e-Library 

Cooper, G., & Sweller, J. (1987). Efects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79, 347–362. 

Creswell, W. John. (2012). Educational Research Fourth Edition. Planning, Conducting and Evaluating Quantitative and Qualitative Research. Pearson Education Inc. 

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative and Mixed Methods Approaches (4th ed.). Thousand Oaks, CA: Sage. 

Davies, M. (2011). Concept mapping, mind mapping and argument mapping: what are the differences and do they matter?. Higher Education, 62(3), 279-301. doi:10.1007/s10734-010-9387-6 

D’Antoni V. Anthony (2009). Relationship between the mind map learning strategy and critical thinking in medical students. Doctor of Philosophy Thesis. Seton Hall University. 

Dedic, R. Z., (2014). Metacognitive knowledge in relation to inquiry skills and knowlwdge acquisition within a computer-supported inquiry learning environment. Psychological Topics 23 .1.115-141. 

Delen, E., & Liew, J. (2016). The Use of Interactive Environments to Promote Self-Regulation in Online Learning: A Literature Review. European Journal of Contemporary Education, 15(1), 24-33.  

Derus, S.R.M., Ali, A.Z.M. (2012). Difficulties in learning programming: Views of students.Conference Paper. ResearchGate.net. https ://www.researchgate. net/publication/ 267338258 

Dobbyn,C. and Chetwynd, F. (2014). Transforming retention and progression in a new Level 1 course. Retrieved August 29, 2019 from http://www.open.ac.uk/about/teaching­andlearning/esteem/sites/www.open.ac.uk.about.teaching-and­learning.esteem/files/ files/ecms/ web-content/2014- 05-C-Dobbyn-and-F­Chetwynd-final-report-May-14.pdf eSTEeM project Final Report.  

Domagk, S., et al. (2010). Interactivity in multimedia learning: An integrated model. Computers in Human Behavior , doi:10.1016/j.chb.2010.03.003 

Dunlosky , J. , & Metcalfe , J. ( 2008 ). Metacognition . Thousand Oaks, CA : Sage. 

Erdem, A. (2017). Mind Maps as a Lifelong Learning Tool. Universal Journal of Educational Research 5(12A): 1-7, 2017.org DOI: 10.13189/ujer.2017.051301 

Erhan, Delen., Jeffrey, Liewb.,Victor, Willson (2014).Effects of interactivity and instructional scaffolding on learning: Self-regulation in online video-based environments. Computers & Education, Volume 78, 2014, pp. 312-320 

Fabbri, Ferraz, S., Felizardo, K., Ferrari, F., Montoro Hernandes, E., Octaviano, F., Nakagawa, E., & Maldonado, J. (2013). Externalising tacit knowledge of the systematic review process. IET Software, 7(6), 298-307. doi:10.1049/iet­sen.2013.0029 

Fan, S. Yu. (2016). Thinking Maps in writing Project in English for Taiwanese Elementary School Students. Universal Journal of education Research 4(1): 36­57, DOI: 10.13189/ujer.2016.040106 

Fiorella, Logan and Mayer,E. Richard (2015). Learning as a generative activity. Eight learning strategies that promote understanding. Cambridge University Press. 

Figueiredo, J., & García-Peñalvo, F. J. (2020). Intelligent Tutoring Systems approach to Introductory Programming Courses. In Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 34-39). 

Flavell, J. (1979). Metacognition and cognitive monitoring: A new era of cognitive-developmental inquiry. American Psychologist, 34,906-911 

Gavin T. L. Brown, Stephen Earl Irving, Peter J. Keegan. (2008). An Introduction to Educational Assessment, Measurement and Evaluation ,2nd Edition. Pearson Prentice Hall. ISBN: 978-1-4425-0069-30. 

Gbollie, C. & Keamu, P. H. (2017). Student Academic Performance: The Role of Motivation, Strategies, and Perceived Factors Hindering Liberian Junior and Senior High School Students LearningEducation Research International Volume 2017, Article ID 1789084, 11 pages https://doi.org/10.1155/2017/1789084 

Glogger-Frey, I., Fleischer, C., Grueny, L., Kappich, J., & Renkl, A. (2015). Inventing a solution and studying a worked solution prepare diferently for learning from direct instruction. Learning and Instruction, 39, 72–87. https://doi.org/10.1016/j.learninstruc.2015.05.001. 

Gomes, A., & Mendes, A. J. (2007, September). Learning to program-difficulties and solutions. In International Conference on Engineering Education–ICEE (Vol. 7). 

Guner, P. & Erbay, H. N. (2021). Metacognitive skills and problem-solving. International Journal of Research in Education and Science (IJRES), 7(3), 715­734. https://doi.org/10.46328/ijres.1594 

Greene, B. A., Miller, R. B., Crowson, H. M., Duke, B. L., & Akey, K. L. (2004). Predicting high school students' cognitive engagement and achievement: Contributions of classroom perceptions and motivation. Contemporary Educational Psychology, 29(4), 462-482. doi:10.1016/j.cedpsych.2004.01.006 

Hamiddin, H. & Saukah, A. (2020). Investigating metacognitive knowledge in reading comprehension: The case of Indonesian undergraduate students. Indonesian Journal of Applied Linguistics, 9, 608-615. doi: 10.17509/ijal.v9i3.23211 

Harimurti, Rina, Ekohariadi, Munoto, Asto B, I Gusti Putu, Winanti, T. E. (2019). Analysis of programming skills concept in developing problem solving skills. Jurnal Pendidikan teknologi dan Kejuruan, Vol. 25, No 1. DOI: 10.21831/jptk.v25i1.22638 

Harini, H., D.H., Haenilah, E. Y., Rini., & Suparman, U. (2021). Motivation and learning strategies: student motivation affects student learning strategies. European Journal of Education Research, 10(1), 39-49. https://doi.org/10.12973/eu-jer.10.1.39 

Hashemyolia, Shayesteh (2015). Relationships between Putralms successful factors, motivation to learn, and self-regulated learning strategies among undergraduate students in Malaysian Public University. [Doctoral dissertation, Universiti Putra Malaysia].http://psasir.upm.edu.my/id/eprint/65650/ 

Haviz, M., Novita, N., & Helmitha, R. (2018). Designing and developing teaching material of human anatomy with thinking map: what is internal relevance and consistency?. EDUSAINS, 10(1), 38-45. doi:https://doi.org/10.15408/es.v10i1.7206 

Hui, T., & Umar, I. (2011). Does a Combination of Metaphor and Pairing Activity Help Programming Performance of Students with Different Self-Regulated Learning Level?. Turkish Online Journal Of Educational Technology -TOJET, 10(4), 121­129. 

Hyerle, D. (1995). Thinking maps: Seeing is understanding. Educational Leadership, 53(4), 85. Retrieved from http://search.ebscohost.com.ezproxy.utm.my 

Hyerle, D., Gray Matter Software. (2007). Thinking Maps (Version 1.0) [Computer software]. Raleigh, NC: Innovative Sciences. 

Hyerle, D. & Okada, Alexandra & Buckingham Shum, Simon & Sherborne, Tony. (2008). Thinking Maps®: A Visual Language for Learning. 10.1007/978-1­84800-149-7_4. 

Hyerle, D. (2009). Thinking Maps: Visual Tools for Activating Habits of Mind. In Costa, A. L. & Kallick, B.(Eds) Learning and Leading with Habits of Mind: 16 Essential Characteristics for Success (pp. 153) 

Hyerle, D. (2011). Student successes with Thinking Maps, Second edition. Thousand Oaks: Corwin Press 

Hyerle, D. (2012). A common visual language for learning. Educational Impact Module 6. Visual Tools and Graphic Organizer. Retrieved from www.educationalimpact.com 

Ifenthaler, D., & Lehmann, T. (2012). Preactional Self-Regulation as a Tool for Successful Problem Solving and Learning. Technology, Instruction, Cognition & Learning, 9(1/2), 97-110. 

Imaya, I & Budiyono, & Nurhasanah, Farida. (2020). Analysis of students’ metacognition in solving mathematics problems. Journal of Physics: Conference Series. 1613. 012040. 10.1088/1742-6596/1613/1/012040. 

In D. J. Hacker , J. Dunlosky , & A. C. Graesser (2009). Handbook of metacognition in education (pp. 319–339 ). Mahwah, NJ : Lawrence Erlbaum/Taylor & Francis 

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2006). Instructional strategy in the teaching of computer programming: What exactly is the problem? Proceedings of the Malaysian Educational Technology Association (META) 19th Convention, 1, 267-273 

Ismail, M. N., Ngah, N. A., & Umar, I. N. (2010). The Effects Of Mind Mapping with cooperative learning on programming performance, problem solving skill and metacognitive knowledge among computer science students. J. EDUCATIONAL COMPUTING RESEARCH, Vol. 42(1) 35-61, 2010 

Jaafar, Shuhaimi, Awaludin S.N., Bakar, S.N. (2016). Motivational and self-regulated Learning Components of Classroom academic Performance. E-proceedings of the Conference on Management and Muamalah (CoMM 2014), 26-27 May 2014 Synergizing Knowledge on Management and Muamalah (E-ISBN: 978­983-3048-92-2) 

Jenkins, Tony (2002). On the Difficulty of Learning to Program. In Proceedings of the 3rd Annual HEA Conference for the ICS Learning and Teaching Support Network. 1–8. 

Jiang, D., Renandya, W. A., & Zhang, L. J. (2017). Evaluating ELT multimedia courseware from the perspective of cognitive theory of multimedia learning. Computer Assisted Language Learning, 30(7), 726– 744. doi:10.1080/09588221.2017.1359187 

Kalelioglu F. and Gülbahar Y. (2014) “The effects of teaching programming via Scratch on problem solving skills: A discussion from learners’ perspective,” Informatics Educ., vol. 13, no. 1, pp. 33–50. 

Kauffman, D.F. (2004) Self-regulated learning in web-based environments: instructional tools designed to facilitate cognitive strategy use, metacognitive processing, and motivational beliefs. Journal of Educational Computing Research, 30 (2004), pp. 139-161, 10.2190/AX2D-Y9VM-V7PX-0TAD 

Kim, C., & Hodges, C. B. (2012). Effects of an emotion control treatment on academic emotions, motivation and achievement in an online mathematics course. Instructional Science, 40, 173–192. doi:10.1007/s11251-011-9165-6 

Kolencik, Patricia Liotta & Hillwig, Shelia A. (2011). Encouraging metacognition. Educational Psychology: Critical Pedagogical Perspectives. Vol. 12 

Konrad, C. S. (2015). “How and why should I study?”: Metacognitive learning strategies and motivational beliefs as important predictors of academic performance of student teachers. The New Educational Review. 

Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610. 

Lai, E. R. (2011). Metacognition: a literature review. Retrieved January 15, 2012, from http://www.pearsonassessments.com/hai/images/tmrs/Metacognition_Literature _ Review_Final.pdf 

Lawan, A. Abdulmalik & Abdi, Abdo & Abuhassan, Anas & Khalid, Mohammed. (2019). What is Difficult in Learning Programming Language Based on Problem-Solving Skills?. 18-22. 10.1109/ICOASE.2019.8723740. 

Lee, M.Y.(2013).The Effects Of Self-Regulated Learning Intervention On Students’ Motivation In Learning History. [Doctoral dissertation, Universiti Teknologi Malaysia] 

Leutner, D.. & Leopold, C. (2003). Selbstreguliertcs Lemen als Selbstregulation von Lemstrategien. Ein Trainingsexperiment mit Berufstätigen zum Lemen von Sachtexten. Unterricht.swissen-.schaft. 31, 38-56. 

Lewis, James. (2002). Psychometric Evaluation of the PSSUQ Using Data from Five Years of Usability Studies. Int. J. Hum. Comput. Interaction. 14. 463-488. 10.1080/10447318.2002.9669130. 

Lim, Balqis (2014). Creating knowledgeable students through critical thinking. Retrieved from http://www.ithink.org.my/Home/Media/Newspaper 

Linn, M.C. (1985). The cognitive consequences of programming instruction in classrooms. Educational Researchers.14(5), 14-16, 25-29 

Linn, M.C., Clancy, M.J. (1992). The case for case studies of programming problems. Communication of the ACM, 35(3), 121-132 

Liu, Min, Olhamson, J., Horton, L. , Toprac, P. (2011). Motivational multimedia: examining students’ learning and motivation as they use a multimedia enriched learning environment. American Educational Research Association 2011 

Long, D., & Carlson, D. (2011). Mind the Map: How Thinking Maps Affect Student Achievement. Networks. Online Journal For Teacher Research, 13(2), 1-7. 

Lou, S., Shih, R., Tseng, K., Diez, C., & Tsai, H. (2010). How to Promote Knowledge Transfer through a Problem-Based Learning Internet Platform for Vocational High School Students. European Journal Of Engineering Education, 35(5), 539-551 

Malallah, Safia & Weese, Joshua. (2020). The Effects of Mind Maps on Computational Thinking. 10.18260/1-2--35312. 

Malaysian Qualification Agency MQA, (2015). Programme standards: Computing Second Edition 2015. ISBN: 978-967-0996-01-1. Retrieved from https://www2.mqa.gov.my/qad/garispanduan/2017/PS%20Computing.%20upl oad%20website%2013.10.17.pdf 

Mangaroska, K., Sharma, K., Gasevic, D., Giannakos, M. (2021). Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning. Wiley Online Library 

Masodi, M. (2019). An investigation into Metacognitive Awareness Level: a Comparative Study of Iranian and Lithuanian University Students. New Education Review, 56, 148-160. 

May, A. (2018). Instructional design Models. Comparing ADDIE, BLOOM, GAGNE and MERILL. Dashe & Thomson Inc. 

Mayer, R. E., & Moreno, R. (2002). Animation as an Aid to Multimedia Learning. Educational Psychology Review, 14(1), 87-99. 

Mayer, R. E. (2005). The Cambridge Handbook of Multimedia Learning. New York: Cambridge University Press.  

Mayer, R. E. (2009). Multimedia Learning. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511811678 

Mayer, R. E (2010). Applying the science of learning to medical education. Medical Education.44:543-549. 

Mayer, R. E. (2014a). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 43–71). New York, NY: Cambridge University Press. https://doi. org/10.1017/CBO9781139547369.005 

Mayer, R. (2014b). Introduction to Multimedia Learning In R. Mayer (Ed.), The Cambridge Handbook Multimedia Learning (Cambridge Handbooks in Psychology, pp. 1-24). Cambridge: Cambridge University Press. 

Mayer, R. E. (2014c). The cambridge handbook of multimedia learning. Cambridge University Press 

Mayer, R. E. (2014d). Incorporating motivation into multimedia learning. Learning and Instruction, 29, 171–173. doi:10.1016/j.learninstruc.2013.04.003 10.1016/j.learninstruc.2013.04.003 

Mayer, E. Richard (2016). Multimedia Learning Second Edition. Cambridge University Press 

Mayer, R. E. (2017). Using multimedia for e-learning. Journal of Computer Assisted Learning, 33(5), 403–423. https://doi.org/10.1111/jcal.12197. 

Mayer, E. Richard (2020). Multimedia Learning Third Edition. Cambridge University Press 

Mayer, E. Richard & Moreno, Roxana. (2003). Nine Ways to Reduce Cognitive Load in Multimedia Learning. Educational Psychologist -EDUC PSYCHOL. 38. 43­52. 10.1207/S15326985EP3801_6. 

Mazlan, Azlina. (2018). Pembangunan dan penilaian keberkesanan modul pendekatan pengajaran berasaskan otak dengan integrasi i-Think dan Brain GYM untuk meningkatkan kefahaman konseptual dan motivasi belajar Fizik pelajar matrikulasi. Tesis Doktor Falsafah. Universiti Sains Malaysia. 

McDaniel, M. A., & Einstein, G. O. (1989). Material-appropriate processing: A contextualist approach to reading and studying strategies. Educational Psychology Review, 1, 113–145. 

McCrudden, M. T., & Schraw, G. (2007). Relevance and goal-focusing in text processing. Educational Psychology Review, 19, 113–139. 

McDowell, D. Linda (2019) The roles of motivation and metacognition in producing self-regulated learners of college physical science: a review of empirical studies. International Journal of Science Education, 41:17, 2524-2541, DOI: 10.1080/09500693.2019.1689584 

McGrill, T. J. , Volet, S.E. (1997). A conceptual framework for analysing students’ knowledge of programming. Journal of research on Computing in Education, 29(3), 276 

Md Derus, Siti Rosminah & Mohamad Ali, Ahmad Zamzuri. (2012). Difficulties in learning programming: Views of students. 1st International Conference oo Current Issues in Education, ICCIE2012 At: Yogyakarta, Indonesia 10.13140/2.1.1055.7441. 

Meng, D., Meng, C. & Macleod, M. (2020). Multimedia web-based intervention and implementation of motivational factors in incentive strategies on learning motivation. Multimed Tools Appl 79, 10915–10933. https://doi.org/10.1007/s11042-019-07972-9 

Merrienboer JJG, Sweller J (2005) Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions. Educational Psychology Review 17(2), 147–177. Jones EC (2014) Cognitive Load Theory And College Composition: Can worked examples help novice writers learn argumentation. (PhD Dissertation). University of Capella.   

Mešic, Vanes & Dervic, Dževdeta & Gazibegovic-Busuladžic, Azra & Salibašic, D. & Erceg, Nataša. (2015). Comparing the impact of dynamic and static media on students' learning of one-dimensional kinematics. 11. 1119-1140. 10.12973/eurasia.2015.1385a. 

Ministry of Education (2012). Preliminary Report Malaysia Education Blueprint 2013- 2025-Preschool to Post-Secondary Education. Retrieved from https://www.pmo.gov.my /wp-content/uploads/2019/07/Malaysia-Education­Blueprint-2013-2025.pdf 

Ministry of Higher Education (MOHE). Pelan Pembangunan Pendidikan Malaysia 2015-2025 (Pendidikan Tinggi). Retrieved from https://www.mohe.gov.my/ 

Mohd Rum, Siti Nurulain & Zolkepli, Maslina. (2018). Metacognitive Strategies in Teaching and Learning Computer Programming. International Journal of Engineering & Technology. 7. 788. 10.14419/ijet.v7i4.38.27546. Mitsea, Eleni & Drigas, Athanasios. (2019). A Journey into the Metacognitive Learning Strategies. International Journal of Online and Biomedical Engineering (iJOE). 15. 4. 10.3991/ijoe.v15i14.11379. 

Montazemi, A. (2006). The Effect of Video Presentation in a CBT Environment. Journal Of Educational Technology & Society, 9(4), 123-138 

Molenda, M. (2015). In Search of the Elusive ADDIE Model. Performance Improvement, 54(2), 40–42. doi:10.1002/pfi.21461  

Moreno, R. (2005). “Instructional Technology: Promise and Pitfalls.” In Technology-based Education: Bringing Researchers and Practitioners Together, edited by L. Pytlik Zillig, M. Bodvarsson, and R. Bruning, 1–19. Greenwich, CT: Information Age. 

Moreno , R. , & Mayer , R. ( 2007 ). Interactive multimodal learning environments: Special issue on interactive learning environments – contemporary issues and trends . Educational Psychology Review , 19 (3), 309–326 . 

Moreno, L., Brinol, P., Petty, E. R. (2022). Metacognitive confidence can increase but also decrease performance in academic settings. Metacognition and Learning (2022) 17:139–165 

Mubeen, S., & Reid, N. (2015). The measurement of motivation with science student. European Journal of Educational Research, 3(3), 129–144. doi: https://doi.org/10.12973/eu-jer.3.3.129 

Mustopa, N. M., Mustofa, R. F., & Diella, D. (2020). The relationship between self-regulated learning and learning motivation with metacognitive skills in biology subject. JPBI (Jurnal Pendidikan Biologi Indonesia), 6(3), 355-360. doi: https://doi.org/10.22219/jpbi.v6i3.12726 

Nelson, J. (2009). Celebrating Scratch in libraries: creation software helps young people develop 21st century literacy skills. Sch. Libr. J., pp. 20–21. 

Niederhauser, D. S. (2008). Educational hypertext. In J. M. Spector, M. D. Merrill, J. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 199–210). New York: Erlbaum 

Novick, L. R. & Holyoak, K. J. (1991). Mathematical problem solving by analogy. Journal of Experimental Psychology: Learning, Memory, and Cognition. 17(3), 398-415 

Oguz, A., & Ataseven, N. (2016). The relationship between metacognitive skills and motivation of university students. Educational Process: International Journal, 5(1), 54–64. doi: https://doi.org/10.12973/ edupij.2016.51.4 

Oliver, R. (1993). The contextual model: An alternative model for teaching introductory computer programming. Journal of Computers in Mathematics and Science Education, 12(2), 147-167. 

Ormrod, E. J. (2016). Human Learning Seventh Edition. Pearson Education Inc. 

Oz, Huseyin (2016). Metacognitive Awareness and academic motivation: A cross-sectional study in teacher education context of turkey. Procedia – Social and Behaviorial Sciences 232(2016)109-121. 

Ozcan, Z. Ç. (2016). The relationship between mathematical problem-solving skills and self-regulated learning through homework behaviours, motivation, and metacognition, International Journal of Mathematical Education in Science and Technology, 47:3, 408-420 

Paivio, A. (1986). Mental Representations: A Dual Coding Approach. Oxford university Press, Oxford, England 

Pang, K. (2010). Creating Stimulating Learning And Thinking Using New Models Of Activity-Based Learning And Metacognitive-Based Activities. Journal of College Teaching & Learning, 7(4), 29-38 

Piaw, Y. C. (2009). Research methods and statistics book 4: Univariate and multivariate tests. McGraw-Hill Education 

Piaw, Y. C. (2020). Mastering Research Methods, 3rd edition. McGraw-Hill Education 

Pavithra, A. (2018). Multimedia And Its Applications. International Journal for Research & Development in Technology. Volume 10-Issue-5. 271-276. 

Petrová, Gabriela & Kozárová, Nina. (2018). The involvement of neuro-linguistics and mind mapping in the development of a holistic perception of language education. Journal of Language and Cultural Education. 6. 116-125. 10.2478/jolace-2018­0019. 

Pintrich, P. R., & De Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology, 82, 33–40. 

Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). 

Pintrich, P. R.; Anderman, E.; Klobucar, C. (1994). "Intraindividual Differences in Motivation and Cognition in Students With and Without Learning Disabilities." Journal of Learning Disabilities 6(27): 360-370. 

Pintrich, P. R. (1999a). Taking control of research on volitional control: Challenges for future theory and research. Learning and Individual Differences, 11(3), 335–354. doi:10.1016/S1041-6080(99)80007-7. 

Pintrich, P. R. (1999b). The role of motivation in promoting and sustaining self-regulated learning. International Journal of Educational Research, 31(6), 459– 470. doi:10.1016/S0883-0355(99)00015-4 

Pintrich, P. R. (2002). The Role of Metacognitive Knowledge in Learning, Teaching, and Assessing. Theory Into Practice, 41(4), 220 

Ploetzner, R., Berney, S., Betrancourt, M. (2021). When learning from animation is more successful than learning static pictures: learning the specifics of change. Instructional Science. Springer. 49:497–514 https://doi.org/10.1007/s11251-021­09541-w 

Ploetzner, R., Berney, S., & Bétrancourt, M. (2020). A review of learning demands in instructional animations: The educational efectiveness of animations unfolds if the features of change need to be learned. Journal of Computer Assisted Learning, 36, 838–860. https://doi.org/10.1111/jcal.12476 

Pradhan, S., & Das, P. (2021). Influence of metacognitive on academic achievement and learning style of undergraduate students in Tezpur University. European Journal of Educational Research, 10(1), 381-391. https://doi.org/10.12973/eu-jer.10.1.381 

Puustinen, M., & Pulkkinen, L. (2001). Models of Self-regulated Learning: a review. Scandinavian Journal Of Educational Research, 45(3), 269-286. doi:10.1080/00313830120074206 

Puspitarini, Y. D., & Hanif, M. (2019). Using Learning Media to Increase Learning Motivation in Elementary School. Anatolian Journal of Education, 4(2), 53-60. https://doi.org/10.29333/aje.2019.426a 

Rahmat, M.,Shahrani, S., Latih, R., Yatim., N.F.M., Zainal, N.F.A.Z., Rahman, R.A., (2011). Major problems in basic programming that influence student performance.UKM Teaching and Learning Congress 2011 

Rasch, T., & Schnotz, W. (2009). Interactive and non-interactive pictures in multimedia learning environments: Effects on learning outcomes and learning efficiency. Learning and Instruction, 19(5), 411– 422. doi:10.1016/j.learninstruc.2009.02.008 

Rashid, S., Rana, A. R. (2019). Relationship between the levels of motivation and learning strategies of prospective teachers at higher education level. Bulletin of Education and Research.Vol.41, No.1 pp.57-66 

Reed, J. Frazier (2015). Influence of metacognitive awareness on motivation and performance in high school precalculus. Ed.D. Dissertation, University of Phoenix. 

Renkl, A. (2013). Toward an instructionally oriented theory of example-based learning. Cognitive Science, 38, 1–37.  

Renkl, A. (2014). The worked-out examples principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed.). NY: Cambridge University Press. 

Robins, A. V. (2019) Novice programmers and introductory programming. In S. A. Fincher & A. V. Robins (Eds.) The Cambridge Handbook of Computing Education Research. Cambridge, UK: Cambridge University Press, 327 -376 

Robyler, M. D. (2006). Integrating educational technology into teaching. New Jersey: Merril Prentice Hall.(Edisi 4) 

Roeser, R. W., & Peck, S. C. (2009). An Education in Awareness: Self, Motivation, and Self-Regulated Learning in Contemplative Perspective. Educational Psychologist, 44(2), 119-136. doi:10.1080/00461520902832376 

Rowntree, D (1981). Statistics without tears: A primer for non mathematicians. Harmondsworth: Penguin. 

Roslina, Ibrahim, Rasimah Che Mohd Yusoff, Hasiah Mohamed @Omar, Azizah Jaafar (2011). students perceptions on using educational games to learn introductory programming.Vol. 4, No. 1; January 2011www.ccsenet.org/cis  

Rum, Siti & Ismail, Maizatul (2016). Metacognitive assessment and introductory computer programming course achievement at University. The International Arab Journal of Information Technology, Vol. 13, No. 6 

Saraff, Sweta & Tripathi, Malabika & Biswal, Ramakrishna & Saxena, Anupama. (2020). Impact of Metacognitive Strategies on Self-Regulated Learning and Intrinsic Motivation. Journal of Psychosocial Research. 15. 10.32381/JPR.2020.15.01.3. 

Savage, S., & Piwek, P. (2019). Full report on challenges with learning to program and problem solve an analysis of first year undergraduate Open University distance learning students’ online discussions. http://oro.open.ac.uk/68073/1/IOC_TM112_ Python_Help_Forum_Research.pdf 

Schiefele, U. (2005). Prüfungsnahe Erfassung von Lernstrategien und deren Vorhersagewert für nachfolgende Lemleistungen. In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition. Implikationen für Forschung und Praxis (pp. 13^1). Münster: Waxmann. 

Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational Psychologist, 26(3/4), 207-231. doi:10.1080/00461520.1991.9653133  

Schunk, D. H. (2005). Self-Regulated Learning: The Educational Legacy of Paul R. Pintrich. Educational Psychologist, 40, 85-94. http://dx.doi.org/10.1207/s15326985ep4002_3 

Schraw, G. and Dennison R. S. (1994 ).Assessing metacognitive awareness. Contemporary Educational Psychology, vol. 19, pp. 460-475. 

Schraw, G. and Moshman, D. (1995). Metacognitive Theories. Educational Psychology Review, 7(4), 351-371. 

Schwonke, R., A. Ertelt, C. Otieno, A. Renkl, V. Aleven, and R. J. C. M. Salden. (2013). “Metacognitive Support Promotes an Effective Use of Instructional Resources in Intelligent Tutoring.” Learning and Instruction 23 (1): 136–150. 

Schwonke, R. (2015). Metacognitive Load – Useful or Extraneous Concept? Metacognitive and Self-Regulatory Demands in Computer Based Learning. Educational Technology & Society, 18(4), 172-184. 

Shu-Chiao, T. (2012). Integration of Multimedia Courseware into ESP Instruction for Technological Purposes in Higher Technical Education. Journal Of Educational Technology & Society, 15(2), 50-61 

So, W.W., Chen, Y. & Wan, Z. (2019). Multimedia e-Learning and Self-Regulated Science Learning: a Study of Primary School Learners’ Experiences and Perceptions. J Sci Educ Technol 28, 508–522. https://doi.org/10.1007/s10956­019-09782-y 

Sorden, S. D. (2013), ‘The cognitive theory of multimedia learning’. In Irby, B. J., Brown, G., Lara-Alecio, R. and Jackson, S. (Eds.) Handbook of Educational Theories. Charlotte, NC: Information Age Publishing. 

Stark, E. (2019). Examining the role of motivation and learning strategies in student success in online versus face-to-face courses. Online Learning, 23(3), 234-251. doi:10.24059/olj.v23i3.1556 

Sungur, S. (2007). Contribution of motivational beliefs and metacognition to students' performance under consequential and nonconsequential test conditions. Educational Research and Evaluation, 13(2), 127-142. doi:10.1080/13803610701234898 

Sweller, J., Mawer, R. F,, & Ward, M. R. (1983). Development of expertise in mathematical problem solving. Journal of Experimental Psychology. II, 639­661 

Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Educational Psychology Review, 22, 123–138. 

Sweller, J. (2019). Cognitive load theory and educational technology. Educational Technology Research & Development, 68(1), 1–16. https://doi­org.ezpustaka2.upsi.edu.my/10.1007/s11423-019-09701-3 

Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research & Development, 68(1), 1–16. https://doi-org.e zpustaka2.upsi edu.my/10.1007/s11423. -019-09701-3 

Swanson, H.L. (1990). Influence of metacognitive knowledge and aptitude on problem solving. Journal of Education Psychologist, 25, 19-33 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston: Pearson/Allyn & Bacon. 

Tadayon Nabavi, Razieh. (2012). Bandura's Social Learning Theory & Social Cognitive Learning Theory. 

Tabatabaei, Samaneh-Sadat; Ahadi, Hassan; Bani-Jamali, Shokouh-ol-sadat; Bahrami, Hadi; Khamesan, Ahmad (2017). The Effects of Motivated Strategies for Learning Questionnaire (MSLQ) on Students’ Cognitive and Meta-Cognitive Skills. NeuroQuantology, 15(2), –. doi:10.14704/nq.2017.15.2.1068 

Toshalis, E., & Nakkula, M. J. (2012). Motivation, Engagement, and Student Voice. Education Digest: Essential Readings Condensed For Quick Review, 78(1), 29­35 

Tseng, S., & Weng, J. (2010). Finding Trustworthy Experts to Help Problem Solving on the Programming Learning Forum. Interactive Learning Environments, 18(1), 81-99. 

Tuovinen, J. E., & Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of educational psychology, 91(2), 334. 

Wang, S., & Hsu, H. (2009). Using the ADDIE Model to Design Second Life Activities for Online Learners. Techtrends: Linking Research & Practice To Improve Learning, 53(6), 76-81. doi:10.1007/s11528-009-0347-x 

White, G. (2015). Hardware, Software, Humans: Truth, Fiction and Abstraction. History & Philosophy Of Logic, 36(3), 278-301. doi:10.1080/01445340.2015.1059992 

Winarti., Ambaryani, S. E., & Putranta, H. (2022). Improving learners’ metacognitive skills with self-regulated learning based problem-solving. International Journal of Instruction, 15(1), 139- 154. https://doi.org/10.29333/iji.2022.1528a 

Wittrock, M.C (1974). Learning as a generative activity. Educ. Psychol. 11:87-95. 

Vaughan, T.(2014). Multimedia: Making it Work-McGraw-Hill Professional 9th Edition 

Vanichvasin, P. (2021). Effects of visual communication on memory enhancement of Thai undersraduate students, Kasetsart University. Higher Education Studies; Vol. 11, No. 1; 2021 ISSN 1925-4741 E-ISSN 1925-475X Published by Canadian Center of Science and Education 

Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Aftlerbach, P. (2006). Metacognition and leaming: conceptual and methodological considerations. Metacognition and Leaming. I(\), 3-14. 

Volet S. E. (1991). Modeling and coaching of relevant metacognitive strategies for enhancing university students’ learning. Learning and Instruction, 1, 39-336 

Ward, Richard & Butler, Darrell. (2019). An investigation of metacognitive awareness and academic performance in college freshmen. 

Xinogalos, S. (2016). Designing and deploying programming courses: Strategies, tools, difficulties and pedagogy. Education and Information Technologies, 21(3), 559– 588. https://doi.org/10.1007/s10639-014-9341-9 

Yen-Ting, L., & Min, J. (2013). Integrating popular web applications in classroom learning environments and its effects on teaching, student learning motivation and performance. Turkish Online Journal Of Educational Technology, 12(2), 157-165. 

Yot-Domínguez, C., Marcelo, C. (2017). University students’ self-regulated learning using digital technologies. Int J Educ Technol High Educ 14, 38. https://doi.org/10.1186/s41239-017-0076-8 

Yu, C., Jannasch-Pennell, A., DiGangi, S., & Kaprolet, C. (2009). An Exploratory Crossover Study of Learner Perceptions of Use of Audio in Multimedia-Based Tutorials. Journal Of Educational Computing Research, 40(1), 23-46. doi:10.2190/EC.40.1.b 

Yusof, Rohaida, Mahamod, Zamri. (2015). Peta pemikiran (I-Think) dalam meningkatkan pencapaian penulisan Bahasa Melayu murid tahun 6. Jurnal Pendidikan Bahasa Melayu – JPBM (Malay Language Education Journal – MyLEJ. ISSN: 2180-4842. Vol. 5, Bil. 2 (Nov. 2015): 31-37 

Zaharin, N. L., Sharif, S., & Mariappan, M. (2018). Computational Thinking: A Strategy for Developing Problem Solving Skills and Higher Order Thinking Skills (HOTS). International Journal of Academic Research in Business and Social Sciences, 8(10), 1265–1278. 

Zainal, N.F.A, Shahrani, S., Mohd Yatim, N. F., A.R., Rahmat, M., Latih, Rodziah (2012). Students’ perception and motivation towards programming. UKM Teaching and Learning Congress 2011. Procedia -Social and Behavioral Sciences 59 -277 – 286 

Zimmerman, B. J., & Martinez Pons, M. (1986). Development of a structured interview for assessing student use of selfregulated learning strategies. American Educational Research Journal, 23(4), 614–628. doi:10.3102/ 00028312023004614. 

Zimmerman, B. J. (1989). A social cognitive view of self-regulated academic learning. Journal of Educational Psychology, 81(3), 329-339. doi:10.1037/0022­0663.81.3.329 

Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.