UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
Magnesium alloys have been widely used in biodegradable applications due to their
propensity for corroding within the human body and their initial mechanical properties.
However, recent research has shown that the increased rate of magnesium deterioration
inside the human body causes structural stability of the implant to be disturbed and lost
quickly. Electrical discharge machining (EDM) die sinking is a machining technique
used to produce complex forms with high tolerance in magnesium alloy, focusing on
the relationship between process parameters and machining effect. The research aims
to investigate the effect of EDM process parameters on surface roughness, material
removal rate (MRR), and energy consumption to optimize and validate the machining
parameter prone to energy saving and the best machining characteristic. The
experiments were optimized using a design of experiment approach with a full factorial
design and response surface methodology. The relationship models between the
controlled design parameters of pulse-on-time, pulse-off-time, and peak current and the
responses of material removal rate were validated through confirmation runs, and the
average percentage errors between experimental data and predicted values for each
response were within the acceptable range (less than or equal to 10%). Pulse-on-time
was the prominent factor that affects the material removal rate and surface roughness,
while pulse-off-time appeared to be the most influential parameter for energy
consumption. Nonetheless, peak current appeared to be insignificant among all factors
in this study as it depends on the level of pulse-on-time applied. Higher pulse-on-time
caused larger surface roughness. Therefore, surface integrity of the workpiece depends
on the level of pulse-on-time applied. The optimum setting parameter combination to
achieve optimum response MRR (0.041 g/min), surface roughness (3.191 μm) and
energy consumption (0.702 J/g) was high peak current (14.00 A), low pulse-on-time
(2.00 μs), and low pulse off time (10.00 μs). |
References |
Al-Khazraji, A., Amin, S. A., & Ali, S. M. (2016). The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel. Engineering Science and Technology, an International Journal, 19(3), 1400–1415.
Aspinwall, D.K., Soo, S.L., Berrisford, A.E., and Walder, G. (2008). Workpiece Surface Roughness and Integrity after WEDM of Ti-6Al-4V and Inconel 718 Using Minimum Damage Generator Technology. Annals of the CIRP– Manufacturing Technology. 57: 187 – 190.
Atrens, A., Liu, M., & Zainal Abidin, N. I. (2011). Corrosion mechanism applicable to biodegradable magnesium implants. In Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Vol. 176, pp. 1609–1636).
Atrens, A., Liu, M., & Zainal Abidin, N. I. (2011). Corrosion mechanism applicable to biodegradable magnesium implants. In Materials Science and Engineering B: Solid-State Materials for Advanced Technology (Vol. 176, pp. 1609–1636).
Baddar, B.I., Shah, A., Mas Ayu, H., Daud, R., Dambatta, M.S. 2019. Hydroxyapatite and thermal oxidation as intermediate layer on metallic biomaterial for medical implant: A review. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 62(1), pp. 138-150.
Bagaber, S. A., & Yusoff, A. R. (2017). Multi-objective optimization of cutting parameters to minimize power consumption in dry turning of stainless steel 316. Journal of Cleaner Production, 157, 30–46.
Baraskar, S., Banwait, S.S., Laroiya, S.C. (2011). Mathematical Modeling of Electrical Discharge Machining Process through Response Surface Methodology. International Journal of Scientific & Engineering Research, 2(11), pp. 2229-5518.
Bobbili, R., Madhu, V., & Gogia, A. K. (2015). Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials. Engineering Science and Technology, an International Journal, 18(4), 664–668.
Brar, H. S., Platt, M. O., Sarntinoranont, M., Martin, P. I., & Manuel, M. V. (2009). Magnesium as a biodegradable and bioabsorbable material for medical implants. 61(9), 31–34.
Brar, H. S., Platt, M. O., Sarntinoranont, M., Martin, P. I., & Manuel, M. V. (2009). Magnesium as a biodegradable and bioabsorbable material for medical implants. 61(9), 31–34.
Chambolle, C., & Poret, S. (2005). Keywords: 1 Introduction, (December), 1–22.
Chung, D. K., & Chu, C. N. (2015). Effect of inductance in micro EDM using high frequency bipolar pulse generator. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 299–303.
Dhakar, K., Pundir, H., Dvivedi, A., & Kumar, P. (2015). Near-dry electrical discharge machining of stainless steel. International Journal of Machining and Machinability of Materials, 17(2), 127.
El-Hofy H.: Advanced machining processes, Nontraditional and hybrid machining processes, McGraw-Hill Professional, 2005.
Franco, A., Rashed, C. A. A., & Romoli, L. (2016). Analysis of energy consumption in micro-drilling processes. Journal of Cleaner Production, 137, 1260–1269.
Gonza´lez, S., Pellicer, E., Surin~ach, S., Baro´, M. D., & Sort, J. (2013). Biodegradation and Mechanical Integrity of Magnesium and Magnesium Alloys Suitable for Implants.
Guo, K. W. (2010). A Review of Magnesium / Magnesium Alloys Corrosion and its Protection. Recent Patents on Corrosion Science, 2, 13–21.
Guo, Y., Wang, L., Zhang, G., & Hou, P. (2016). Multi-response optimization of the electrical discharge machining of insulating zirconia. Materials and Manufacturing Processes, 32(3), 294–301.
Hamid, B. a. R., & Majid, P. (2011). Corrosion study of metallic biomaterials in simulated body fluid. Metalurgija, 17, 13–22.
Hansen, D. C. (2008). Metal Corrosion in the Human Body: The Ultimate Bio- Corrosion Scenario. Interface, 17, 31–34.
Heckele M., Schomburg W.K.: Review on micro molding of thermoplastic polymers, J. Hermawan, H., & Mantovani, D. (2011). New generation of medical implants: Metallic biodegradable coronary stent. Proceedings - International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering 2011, ICICI-BME 2011, (November), 399–402.
Hermawan, H., Dube´, D., & Mantovani, D. (2010). Developments in metallic biodegradable stents. Acta Biomaterialia, 6(5), 1693–1697.
Hourmand, M., Sarhan, A. A. D., Farahany, S., & Sayuti, M. (2018). Microstructure characterization and maximization of the material removal rate in nano-powder mixed EDM of Al-Mg2Si metal matrix composite—ANFIS and RSM approaches. The International Journal of Advanced Manufacturing Technology, 101(9–12), 2723–2737.
Huang, H., Zhang, Z., Ming, W., et al. (2017). A novel numeri- cal predicting method of electric discharge machining process based on specific discharge energy. The International Journal of Advanced Manufacturing Technology, 88(1–4), 409–424.
Hussain, S.N., Abdullah, A.S., Hassan, M.A., Arafat, A., Ahmad, M.F. 2019. A review on wear and corrosion behavior of thermal oxidation on titanium-based alloy for biomedical application. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 58(2), pp. 153-160.
Islam, M. M., Li, C. P., & Ko, T. J. (2017). Dry electrical dis- charge machining for deburring drilled holes in CFRP composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(2), 149–154.
Izdihar Tharazi (2009). The effect of TI-6AL-4V Surface Integrity using Zinc Coated Wire in WEDM. Universiti Teknologi Malaysia: Master Thesis.
Jinkai Xu, Kui Xia, Zhe Xu, Linshuai Zhang, Zhanjiang Yu, Huadong Yu. (2015). Study on Hardness and Tribological Properties of Highspeed Wire Electrical Discharge Machining Surface. College of Mechanical and Electric Engineering.
Khan, A. A., Mohiuddin, A. K. M., & Latif, M. A. A. (2018). Improvement of MRR and surface roughness during electrical discharge machining (EDM) using aluminum oxide powder mixed dielectric fluid. IOP Conference Series: Materials Science and Engineering, 290, 012063.
Kim, C.-H., & Kruth, J. P. (2001). Influence of the electrical conductivity of dielectric on WEDM of sintered carbide. KSME International Journal, 15(12), 1676–1682.
Kim, K. S. (2009). Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column. Applied Physics Letters, 94(12), 121501.
Kumar, A., Mandal, A., Dixit, A. R., & Das, A. K. (2017). Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825. Materials and Manufacturing Processes, 33(9), 986–995.
Kumar, R., Bilga, P. S., & Singh, S. (2017). Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. Journal of Cleaner Production, 164, 45–57.
Lin, Z. C., & Lin, Y. Y. (2001). A study of oblique cutting for different low cutting speeds. Journal of Materials Processing Technology, 115(3), 313–325.
Liu K., Lauwers B., Reynaerts D.: Process capabilities of Micro-EDM and its applications. J Adv Manuf Technol, Vol. 47, 2010, pp. 11-19.
Maher, I., Sarhan, A. A. D., Barzani, M. M., et al. (2015). Increasing the productivity of the wire-cut electrical discharge machine associated with sustainable production. Journal of Cleaner Pro- duction, 108, 247–255.
Mas-Ayu, H., Izman, S., Abdul-Kadir, M.R., Daud, R., Shah, A., Yusoff, M.F.M., Shamsiah, M.W., Yong, T.M., Kamarul, T. Influence of carbon concentrations in reducing Co and Cr ions release in cobalt based implant: A preliminary report. Advanced Materials Research. Volume 845, 2014, Pages 462-466 Micromech. Microeng., Vol. 14, 2004, pp. 1-14.
Miller, S. F., Kao, C. C., Shih, A. J., et al. (2005). Investigation of wire electrical discharge machining of thin cross-sections and compliant mechanisms. International Journal of Machine Tools and Manufacture, 45(15), 1717–1725.
Mostafapor, A., & Vahedi, H. (2019). Wire electrical discharge machining of AZ91 magnesium alloy, investigation of effect of process input parameters on performance characteristics. Engineering Research Express, 1(1), 015005.
Newell, R. G., Qian, Y., & Raimi, D. (2016). Global energy out- look 2015. Cambridge: National Bureau of Economic Research.
Park, C. W., Kwon, K. S., Kim, W. B., et al. (2009). Energy consumption reduction technology in manufacturing—A selective review of policies, standards, and research. International Journal of Precision Engineering and Manufacturing, 10(5), 151–173.
Peter, B. and Maurus, M. D. (2004). Bioabsorbable Implant Material Review. Operative Techniques in Sports Medicine, 12(3), 158-160.
Prakash, C., Kansal, H. K., Pabla, B. S., & Puri, S. (2015). Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on ß-Ti Implant by Powder Mixed Electric Discharge Machining. Journal of Materials Engineering and Performance, 24(9), 3622–3633.
Rao R.V.: Advanced modeling and optimization of manufacturing processes, Springer-Verlad, London, 2011.
Razak, M. A., Rani, A. M. A., Saad, N. M., Littlefair, G., & Aliyu, A. A. (2018). Controlling corrosion rate of Magnesium alloy using powder mixed electrical discharge machining. IOP Conference Series: Materials Science and Engineering, 344, 012010.
Rehbein, W., Schulze, H. P., Mecke, K., et al. (2004). Influence of selected groups of additives on breakdown in EDM sinking. Journal of Materials Processing Technology, 149(1), 58–64.
Rival (2005). Electrical Discharge Machining of Titanium Alloy using Copper Tungsten Electrode with Sic Powder Suspension Dielectric Fluid. Universiti Teknologi Malaysia: Master Thesis.
Rival (2005). Electrical Discharge Machining of Titanium Alloy using Copper Tungsten Electrode with Sic Powder Suspension Dielectric Fluid. Universiti Teknologi Malaysia: Master Thesis.
Santos, R. F., Silva, E. R., Sales, W. F., & Raslan, A. A. (2016). Analysis of the Surface Integrity when Nitriding AISI 4140 Steel by the Sink Electrical Discharge Machining (EDM) Process. Procedia CIRP, 45, 303–306.
Shah, A., Izman, S., Abdul Kadir, M. R., Mas-Ayu, H., Anwar, M., & Ma’aram, A. B. (2013). Influence of Bias Voltage on Corrosion Resistance of TiN Coated on Biomedical TiZrNb Alloy. Advanced Materials Research, 845, 436–440.
Shah, A., Izman, S., Abdul-Kadir, M.R., Mas-Ayu, H. Influence of Substrate Temperature on Adhesion Strength of TiN Coating of Biomedical Ti–13Zr–13Nb Alloy. Arabian Journal for Science and Engineering Volume 42, Issue 11, 1 November 2017, Pages 4737-4742
Shah, A., Izman, S., Fasehah, S.N., Study on micro droplet reduction on tin coated biomedical TI-13ZR-13NB alloy. Jurnal Teknologi Volume 78, Issue 5-10, 2016, Pages 1-5.
Shah, A., Izman, S., Hassan, M.A. Influence of nitrogen flow rate in reducing tin microdroplets on biomedical TI-13ZR-13NB alloy. Jurnal Teknologi, 78, Issue 5-10, 2016, Pages 6-10.
Shaw, B. A. (2003). Corrosion Resistance of Magnesium Alloys. ASM Handbook, Volume 13A Corrosion: Fundamentals, Testing and Protection, 13, 692–696.
Song, Y., Hana, E. H., Shan, D., Yimb, C. D. and Youb, B. S. (2012). The Effect of Zn Concentration on the Corrosion Behavior of Mg-xZn Alloys. Corrosion Science, 65, 322-330.
Sriprasertying, K. and Rhaiphu, S. (2011). The Change of Surface Alloy Compositions and Corrosion Behavior after WEDM Machining of Commercially Pure Titanium (grade 4) and Ti-6Al-4V (grade 5). Journal of Metals, Materials and Minerals, Vol.21 No.1 pp.29-35.
Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27, 1728–1734.
Swiercz, R., Oniszczuk-Swiercz, D., & Chmielewski, T. (2019). Multi-Response Optimization of Electrical Discharge Machining Using the Desirability Function. Micromachines, 10(1), 72.
Tosun, N., Cogun, C., and Tosun, G. (2004). A Study on Kerf (Cutting Width) and Material Removal Rate in Wedm Based On Taguchi Method. J. of Materials Processing Technology. 152, 316 – 322.
Vijayabhaskar, S., & Rajmohan, T. (2018). Experimental Investigation and Optimization of Machining Parameters in WEDM of Nano-SiC Particles Reinforced Magnesium Matrix Composites. Silicon, 11(4), 1701–1716.
Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., & Feyerabend, F. (2008). Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 12(5-6), 63–72.
Zhang, Y., Zhang, Z., Huang, H., et al. (2018). Study on thermal deformation behavior and microstructural characteristics of wire electrical discharge machining thin-walled components. Journal of Manufacturing Processes, 31, 9–19.
Zhang, Z., Ming, W., Zhang, G., et al. (2015). A new method for on-line monitoring discharge pulse in WEDM-MS process. International Journal of Advanced Manufacturing Technology, 81(5–8), 1403–1418.
Zhou, W., Shen, T., & Aung, N. N. (2010). Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corrosion Science, 52(3), 1035–1041.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |