UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
This study investigated the optical properties of neodymium nanoparticles (NPs) doped
tellurite glass coated with graphene oxide (GO)/ reduced graphene oxide (rGO). Two series
of glasses were prepared and coated using melt-quenching and spray-coating methods. The
X-ray diffractograms proved the amorphous structure of the glass series. The presence of
non-bridging oxygens in the glass network were proven via FTIR analysis. Meanwhile, the
existence of neodymium nanoparticles in the tellurite glass network were confirmed using
TEM analysis. FESEM and EDX analysis showed the morphologies of GO and rGO on
the glass surface and their chemical elements, respectively. From UV-Vis spectroscopy
analysis, the optical band gaps of ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were found
in the range 2.355-2.998 eV and 2.770-3.125 eV, respectively. Meanwhile, the refractive
index of ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were 2.041-2.194 and 2.339-2.657,
respectively. Furthermore, the oxide ion polarizability (_o2-) of ZBTNd (NPs)-GO and
ZBTNd (NPs)-rGO were 3.453-3.854 A and 3.360-3.664 A, respectively. The optical
basicity (_) values for ZBTNd (NPs)-GO and ZBTNd (NPs)-rGO were 1.220 to 1.262 and
1.174 to 1.214, respectively. The metallization criteria (M) for both glass series
demonstrate that the glass system has acceptable optical nonlinearity in the range of 0.3 |
References |
Abdel-Baki, M., & El-Diasty, F. (2006). Optical properties of oxide glasses containing transition metals: case of titanium-and chromium-containing glasses. Current Opinion in Solid State and Materials Science, 10(5-6), 217-229. https://doi.org/10.1016/j.cossms.2007.08.001
Abdel-Baki, M., Abdel-Wahab, F. A., Radi, A., & El-Diasty, F. (2007). Factors affecting optical dispersion in borate glass systems. Journal of Physics and Chemistry of Solids, 68(8), 1457-1470. https://doi.org/10.1016/j.jpcs.2007.03.026
Abdulbaset, A. A. (2019).Physical, Structural, Elastic and Optical properties of Neodymium Oxide Doped Zinc Tellurite Glass System with Silver Incorporation [unpublished doctoral dissertation]. Universiti Putra Malaysia, Serdang, Malaysia).
Abdulbaset, A. A., Halimah, M. K., & Azlan, M. N. (2017). Effect of Neodymium Ions on Density and Elastic Properties of Zinc Tellurite Glass Systems. Solid State Phenomena, 268, 28-32. https://doi.org/10.4028/www.scientific.net/SSP.268.28
Abdulbaset, A. A., Halimah, M. K., Chan, K. T., Nurisya, M. S., Salah, H. A., Umar, S. A., & Muhammad, N. A. A. (2017). Effect of Neodymium Nanoparticles On Elastic Properties Of Zinc Tellurite Glass System. Advances in Materials Science and Engineering, 2017, 1-7. https://doi.org/10.1155/2017/6790635
Abdullah, M., Yahya, N., Kasim, A., & Saipuddin, S. F. (2018). Structural and Optical Properties of Nd3+ Doped Lead Borotellurite Glass Containing Silver. International Journal of Engineering & Technology, 7(4.42), 98-101. https://www.researchgate.net/publication/331894628_Structural_and_Optical_Properties_of_Nd3_Doped_Lead_Borotellurite_Glass_Containing_Silver
Abdullahi, I., Hashim, S., Ghoshal, S. K., & Sa'adu, L. (2020). Modified structure and spectroscopic characteristics of Sm3+/Dy3+ co-activated barium-sulfur-telluro-borate glass host: Role of plasmonic gold nanoparticles inclusion. Optics and Laser Technology, 132. https://doi.org/10.1016/j.optlastec.2020.106486
Abid, Sehrawat, P., Islam, S. ., Mishra, P., & Ahmad, S. (2018). Reduced graphene oxide (rGO) based wideband optical sensor and the role of Temperature, Defect States and Quantum Efficiency. Scientific Reports, 8, 3537. https://doi.org/10.1038/s41598-018-21686-2
Abu-Khadra, A. S., Taha, A. M., Abdel-Ghany, A. M., & Abul-Magd, A. A. (2021). Effect of silver iodide (AgI) on structural and optical properties of cobalt doped lead-borate glasses. Ceramics International, 47(18), 26271-26279. https://doi.org/10.1016/j.ceramint.2021.06.036
Acik, M., & Chabal, Y. J. (2013). A Review on Reducing Graphene Oxide for Band Gap Engineering. Journal of Materials Science Research, 2(1), 101-112. https://doi.org/10.5539/jmsr.v2n1p101
Adamu, S. B., Halimah, M. K., Chan, K. T., Muhammad, F. D., Nazrin, S. N., & Tafida, R. A. (2022). Eu3+ ions doped zinc borotellurite glass system for white light laser application: Structural, physical, optical properties, and Judd-Ofelt theory. Journal of Luminescence, 250, 119099. https://doi.org/10.1016/j.jlumin.2022.119099
Ahmad, H., Albaqawi, H. S., Yusoff, N., Reduan, S. A., & Yi, C. W. (2020). Reduced Graphene Oxide-Silver Nanoparticles for Optical Pulse Generation in Ytterbium- and Erbium-Doped Fiber Lasers. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-66253-w
Ahmed, K. F. (2017). Thermal , Structural and Spectroscopic Properties of Rare Earth Elements Co-Doped Zinc Tellurite Glass with AgCl Nanoparticles [Doctoral dissertation, Salahaddin University-Erbil, Kurdistan] https://www.researchgate.net/publication/320166556
Al-Kandari, H., Abdullah, A. M., Al-Kandari, S., & Mohamed, A. M. (2015). Effect of the graphene oxide reduction method on the photocatalytic and electrocatalytic activities of reduced graphene oxide/TiO2 composite. RSC Advances, 5(88), 71988-71998. https://doi.org/10.1039/c5ra13065d
Algarni, H., Reben, M., & Yousef, E. (2018). Optical features of novel fluorotellurite glasses based on TeO2- LiNbO3- BaF2- La2O3- (Nb2O5 or TiO2). Optik, 156, 720-727. https://doi.org/10.1016/j.ijleo.2017.12.001
Algradee, M. A., Sultan, M., Samir, O. M., & Alwany, A. E. B. (2017). Electronic polarizability, optical basicity and interaction parameter for Nd2O3 doped lithium-zinc-phosphate glasses. Applied Physics A: Materials Science and Processing, 123(8). https://doi.org/10.1007/s00339-017-1136-6
American Element (n.d). Neodymium Nanoparticles https://www.americanelements.com/neodymium-nanoparticles-7440-00-8
Ami Hazlin, M.., Halimah, M.., & Muhammad, F.(2018). Absorption and emission analysis of zinc borotellurite glass doped with dysprosium oxide nanoparticles for generation of white light. Journal of Luminesence, 196, 498-503. https://doi.org/10.1016/j.jlumin.2017.11.054
Ami Hazlin, M. N. (2018). Optical Properties of Zinc Borotellurite Glass Systems Doped With Dysprosium Oxide And Dysprosium Oxide Nanoparticles. [unpublished doctoral dissertation] Universiti Putra Malaysia, Serdang
Ami Hazlin, M. N., Halimah, M. K., Muhammad, F. D., & Faznny, M. F. (2017). Optical properties of zinc borotellurite glass doped with trivalent dysprosium ion. Physica B: Condensed Matter, 510, 38-42. https://doi.org/10.1016/j.physb.2017.01.012
Aruna, V., Yusub, S., Venkateswarlu, M., Ramesh Babu, A., & Anitha, K. (2020). Efficacy of copper ions on lithium ion conductivity, electron hopping, optical band gap, metallization criterion and morphology of Li2O-B2O3-P2O5 glasses. Journal of Non-Crystalline Solids, 536, 120015. https://doi.org/10.1016/j.jnoncrysol.2020.120015
Asyikin, A. S., Halimah, M. K., Latif, A. A., Faznny, M. F., & Nazrin, S. N. (2020). Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles. Journal of Non-Crystalline Solids, 529, 119777. https://doi.org/10.1016/j.jnoncrysol.2019.119777
Ayuni, J. N., Halimah, M. K., Talib, Z. A., Sidek, H. A. ., Daud, W. M., Zaidan, A. w., & Kamirul, A. M. (2011). Optical Properties of Ternary TeO2-B2O3-ZnO Glass System. IOP Conference Series: Materials Science and Engineering, 17, 012027. https://doi.org/10.1088/1757-899X/17/1/012027
Azlan, M. . (2016). Linear and non-linear optical properties of Zinc Borotellurite Glass Doped with Erbium, Erbium Nanoparticles, Neodymium and Neodymium Nanoparticles.[ [unpublished doctoral dissertation] Universiti Putra Malaysia, Serdang
Azlan, M. ., Halimah, M. ., Baki, S. O. O., & Daud, W. M. M. (2016). Effect of Neodymium Concentration on Structural and Optical Properties of Tellurite Based Glass System. Materials Science Forum, 846, 183-188. https://doi.org/10.4028/www.scientific.net/msf.846.183
Azlan, M. ., Halimah, M. ., Suriani, A. ., Azlina, Y., & El-Mallawany, R. (2019). Electronic polarizability and third-order nonlinearity of Nd3+ doped borotellurite glass for potential optical fiber. Materials Chemistry and Physics, 236, 121812. https://doi.org/10.1016/j.matchemphys.2019.121812
Azlan, M. ., & Halimah, M. K. (2018). Role of Nd3+ nanoparticles on enhanced optical efficiency in borotellurite glass for optical fiber. Results in Physics, 11, 58-64. https://doi.org/10.1016/j.rinp.2018.08.017
Azlan, M. ., Kamari, H. M., Zulkefly, S. S., & Daud, W. . (2013). Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System. Journal of Nanomaterials, 2013, 1-8.
Azlan, M. N., Halimah, M. ., Zulkefly, S. S., & Mohamad, D. W. (2013). Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System. Journal of Nanomaterials, 2013, 1-8. https://doi.org/http://dx.doi.org/10.1155/2013/940917
Azlan, M. N., Halimah, M. K., El-Mallawany, R., Faznny, M. F., & Eevon, C. (2017). Optical properties of zinc borotellurite glass system doped with erbium and erbium nanoparticles for photonic applications. Journal of Materials Science: Materials in Electronics, 28, 4318-4327. https://doi.org/10.1007/s10854-016-6056-2
Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2014). Polarizability and optical basicity of Er3+ ions doped tellurite based glasses. Chalcogenide Letters, 11(7), 319-335. https://www.researchgate.net/publication/264196665_Polarizability_and_optical_basicity_of_Er3_ions_doped_tellurite_based_glasses
Azlan, M. N., Halimah, M. K., Shafinas, S. Z., & Daud, W. M. (2015). Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Materials Express, 5(3), 211-218. https://doi.org/10.1166/mex.2015.1236
Azlan, M. N., Kamari, H. M., Aliyu, U. S., Halimah, M. . K., Hajer, S. S., Suraini, A. B., Azlina, Y., & Umar, S. A. (2019). Enhanced Optical Performance of Tellurite Glass Doped with Samarium Nanoparticles for Fiber Optics Application. Chalcogenide Letters, 5(5), 215-229. https://www.researchgate.net/publication/333208195_ENHANCED_OPTICAL_PERFORMANCE_OF_TELLURITE_GLASS_DOPED_WITH_SAMARIUM_NANOPARTICLES_FOR_FIBER_OPTICS_APPLICATION
Azlan, M. N. N., Halimah, M. K. K., Suriani, A. B. B., Azlina, Y., Umar, S. A. A., & El-Mallawany, R. (2019). Upconversion properties of erbium nanoparticles doped tellurite glasses for high efficient laser glass. Optics Communications, 448, 82-88. https://doi.org/10.1016/J.OPTCOM.2019.05.022
Azlan. M.N., Halimah, M. K., Zulkefly, S. S., & Mohamad, D. W. (2013). Effect of Erbium Nanoparticles on Optical Properties of Zinc Borotellurite Glass System Azlan. Journal of Nanomaterials, 2013. https://doi.org/10.4028/www.scientific.net/ssp.268.13
Azlina, Y., Azlan, M. ., & Suriani, A.(2023). Optical Properties of Reduced Graphene Oxide-Coated Tellurite Glass Doped at Different Erbium Composition. Sains Malaysiana, 52(1), 261-269. https://doi.org/10.17576/jsm-2023-5201-21
Azlina, Y., Azlan, M. N., Hajer, S. S., Halimah, M. K., Suriani, A. B., Umar, S. A., Hisam, R., Zaid, M. H. M., Iskandar, S. M., Kenzhaliyev, B. K., Nitsenko, A. V., Yusof, N. N., & Imed, B. (2021). Graphene oxide deposition on neodymium doped zinc borotellurite glass surface: Optical and polarizability study for future fiber optics. Optical Materials, 117, 111138. https://doi.org/10.1016/j.optmat.2021.111138
Azlina, Y., Azlan, M. N., Halimah, M. K., Umar, S. A., Najmi, G., Azlan, M. N., Halimah, M. K., Umar, S. A., & Najmi, G. (2020). Optical performance of neodymium nanoparticles doped tellurite glasses Y. Physica B: Condensed Matter, 577, 411784.
Azlina, Y., Azlan, M. N. N., Halimah, M. K. K., Umar, S. A. A., El-Mallawany, R., & Najmi, G. (2020). Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B: Condensed Matter, 577, 411784. https://doi.org/10.1016/j.physb.2019.411784
Azlina, Y., Azlan, M. N., Shaari, H. R., Nazrin, S. N., Al-Hada, N. M., Umar, S. A., Zaid, M. H. M., Hisam, R., Iskandar, S. M., Kenzhaliyev, B. K., Kassymova, G. K., & Boukhris, I. (2021). Polarizability of erbium-doped zinc-tellurite glasses coated with graphene oxide for telecommunication devices. Chalcogenide Letters, 18(9), 525-534. https://www.researchgate.net/publication/354683304_Polarizability_of_erbium-doped_zinc-tellurite_glasses_coated_with_graphene_oxide_for_telecommunication_devices
Azlina, Y., Azlan, M. N., Suriani, A. B., Halimah, M. K., & Umar, S. A. (2020). Optical properties of graphene oxide-coated tellurite glass for potential fiber optics. Journal of Non-Crystalline Solids, 536, 120000. https://doi.org/10.1016/j.jnoncrysol.2020.120000
Azlina, Y., Azlan, M. N., Suriani, A. B., Shaari, H. R., Boukhris, I., & Kebaili, I. (2022). Emission properties of reduced graphene oxide-coated Er3+-tellurite glass for fiber optics. Journal of Materials Science: Materials in Electronics, 33, 26915-26930. https://doi.org/10.1007/s10854-022-09356-6
Azlina.(2023). Structural, Intensity Parameters and Luminescence Analysis of rGO/CNTs-Coated Tellurite Glass Doped with Erbium Nanoparticles [unpublished doctoral dissertation] Universiti Pendidikan Sultan Idris, Tanjong Malim
Barbosa, L. C., Filho, C. O., & Chillcce, E. F. (2017). Tellurite glasses for optical amplifiers. Springer Series in Materials Science, 254, 131-153. https://doi.org/10.1007/978-3-319-53038-3_7
Bell, M. J. V., Anjos, V., Moreira, L. M., Falci, R. F., Kassab, L. R. P., da Silva, D. S., Doualan, J. L., Camy, P., & Moncorge, R. (2014). Laser emission of a Nd-doped mixed tellurite and zinc oxide glass. Journal of the Optical Society of America B, 31(7), 1590. https://doi.org/10.1364/josab.31.001590
Berwal, N., Dhankhar, S., Sharma, P., Kundu, R. S., Punia, R., & Kishore, N. (2017). Physical, structural and optical characterization of silicate modified bismuth-borate-tellurite glasses. Journal of Molecular Structure, 1127, 636-644. https://doi.org/10.1016/j.molstruc.2016.08.033
Berwal, N., Kundu, R. S., Nanda, K., Punia, R., & Kishore, N. (2015). Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses. Journal of Molecular Structure, 1097, 37-44. https://doi.org/10.1016/j.molstruc.2015.05.011
Biru, E. I., & Iovu, H. (2018). Graphene nanocomposites studied by Raman spectroscopy.In Nascimento, G. M. do (Ed.). Raman Spectroscopy. InTech. doi: 10.5772/intechopen.68928
Bhanuprakash, L., Parasuram, S., & Varghese, S. (2019). Experimental investigation on graphene oxides coated carbon fibre/epoxy hybrid composites: Mechanical and electrical properties. Composites Science and Technology, 179, 134-144. https://doi.org/10.1016/j.compscitech.2019.04.034
Bhatia, B., Meena, S. L., Parihar, V., & Poonia, M. (2015). Optical Basicity and Polarizability of Nd3+-Doped Bismuth Borate Glasses. New Journal of Glass and Ceramics, 05(03), 44-52. https://doi.org/10.4236/njgc.2015.53006
Bose, S., Misra, D., & Debnath, R. (2013). Ho3+ ion in a (Ba, La)-tellurite glass: Strong ~2.0 lm NIR emission and Yb3+ aided efficient NIR to vis upconversion. Optical Materials, 36(2), 221-227. http://dx.doi.org/10.1016/j.optmat.2013.08.027
Boukhris, I., Kebaili, I., Sayyed, M. I., Askin, A., & Rammah, Y. S. (2020). Linear, nonlinear optical and photon attenuation properties of La3+ doped tellurite glasses. Optical Materials, 108, 110196. https://doi.org/10.1016/j.optmat.2020.110196
Burger, H., Kneipp, K., Hobert, H., Kozhukharov, V., Neov, S., Burger, H., Kneipp, K., Hobert, H., Vogel, W., Kozhukharov, V., & Neov, S. (1992). Glass formation, properties and structure of glasses in the TeO2ZnO system. Journal of Non-Crystalline Solids, 151(1-2), 134-142. https://doi.org/https://doi.org/10.1016/0022-3093(92)90020-K.
Cao, C., Appelbaum, R. P., & Parker, R. (2013). Research is high and the market is far away: Commercialization of nanotechnology in China. Technology in Society, 35(1), 55-64. https://doi.org/10.1016/j.techsoc.2013.03.004
Cao, R., Lu, Y., Tian, Y., Huang, F., Guo, Y., Xu, S., & Zhang, J. (2016). 2 _m emission properties and nonresonant energy transfer of Er3+ and Ho3+ codoped silicate glasses. Scientific Reports, 6, 1-11. https://doi.org/10.1038/srep37873
Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I Pr3+, Nd3+, Pm3+ Sm3+, Dy3+, Ho3+, Er3+ and Tm3+. The Journal of Chemical Physics, 49(10), 4424-4442. https://doi.org/10.1063/1.1669893
Catania, F., Marras, E., Giorcelli, M., Jagdale, P., Lavagna, L., Tagliaferro, A., & Bartoli, M. (2021). A review on recent advancements of graphene and graphene-related materials in biological applications. Applied Sciences, 11, 1-21. https://doi.org/10.3390/app11020614 Chimalawong, P., Kaewkhao, J., Kedkaew, C., & Limsuwan, P. (2010). Optical and electronic polarizability investigation of Nd3-doped soda-lime silicate glasses. Journal of Physics and Chemistry of Solids, 71(7), 965-970. https://doi.org/10.1016/j.jpcs.2010.03.044
Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43(1), 291-312. https://doi.org/10.1039/c3cs60303b
Costa, F. ., Yukimitu, K., Nunes, L. A. ., Figueiredo, M. ., Andrade, L. H. ., Lima, S. ., & Moraes, J. C. . (2016). Spectroscopic properties of Nd3+doped tungsten-tellurite glasses. Journal of Physics and Chemistry of Solids, 88(9), 54-59. http://dx.doi.org/10.1016/j.jpcs.2013.04.009
Das, S., Madheshiya, A., Gautam, S. S., & Gautam, C. R. (2017). Fabrication and optical characterizations of lead calcium titanate borosilicate glasses. Journal of Non-Crystalline Solids, 478, 16-22. https://doi.org/10.1016/J.JNONCRYSOL.2017.10.004
de Clermont-Gallerande, J., Saito, S., Hayakawa, T., Colas, M., Duclere, J. R., & Thomas, P. (2020). Optical properties of Nd3+-doped TeO2-TiO2-ZnO glasses with lower hydroxyl content. Journal of Non-Crystalline Solids, 528(September 2019). https://doi.org/10.1016/j.jnoncrysol.2019.119678
Deepa, A. V., Murugasen, P., Muralimanohar, P., Sathyamoorthy, K., & Vinothkumar, P. (2019). A comparison on the structural and optical properties of different rare earth doped phosphate glasses. Optik, 181, 361-367. https://doi.org/10.1016/j.ijleo.2018.12.045
Devaraja, C., Gowda, G. V. J. J., Eraiah, B., & Keshavamurthy, K. (2021). Optical properties of bismuth tellurite glasses doped with holmium oxide. Ceramics International, 47(6), 7602-7607. https://doi.org/10.1016/j.ceramint.2020.11.099
Dideikin, A. T., & Vul', A. Y. (2019). Graphene Oxide and Derivatives: The Place in Graphene Family. Frontiers in Physics, 6, 149. https://doi.org/10.3389/FPHY.2018.00149
Diffzy. (2022). Difference Between Glass and Ceramics. https://www.diffzy.com/article/difference-between-glass-and-ceramics-499
Dimitrov, V, & Komatsu, T. (2010). An Interpretation of Optical Properties of Oxides and Oxide Glasses in Terms of the Electronic Ion Polarizability and Average Single Bond Strength. Journal of the University of Chemical Technology and Metallurgy, 45(3), 219-250. https://doi.org/10.1016/j.jnoncrysol.2009.11.014
Dimitrov, Vesselin, & Komatsu, T. (2000). Interionic interactions, electronic polarizability and optical basicity of oxide glasses. Journal of the Ceramic Society of Japan, 108(4), 330-338. https://doi.org/10.2109/jcersj.108.1256_330
Dimitrov, Vesselin, & Sakka, S. (1996). Electronic oxide polarizability and optical basicity of simple oxides. I. Journal of Applied Physics, 79(3), 1736-1740. https://doi.org/10.1063/1.360962
Doremus, R. . (1994). Glass Science (3rd Edition). John Wiley & Sons.
Dresselhaus, M. S., Jorio, A., Souza Filho, A. G., & Saito, R. (2010). Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1932), 5355-5377
Duffy, J. A. (1990). Bonding, energy levels and bands in inorganic solids. Longman Scintific & Technical.
Effendy, N., Sidek, H. A. A., Halimah, M. K., & Zaid, M. H. M. (2021). Enhancement on thermal, elastic and optical properties of new formulation tellurite glasses: Influence of ZnO as a glass modifier. Materials Chemistry and Physics, 273(June), 125156. https://doi.org/10.1016/j.matchemphys.2021.125156
Effendy, N., Zaid, M. H. M., Sidek, H. A. A., Matori, K. A., Mahmoud, K. A., & Sayyed, M. I. (2021). Influence of ZnO to the physical, elastic and gamma radiation shielding properties of the tellurite glass system using MCNP-5 simulation code. Radiation Physics and Chemistry, 188, 109665. https://doi.org/10.1016/j.radphyschem.2021.109665
Ehrt, D. (2015). Phosphate and fluoride phosphate optical glasses - Properties, structure and applications. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 56(6), 217-234. https://doi.org/10.13036/17533562.56.6.217
El-Zaiat, S. Y., El-Den, M. B., El-Kameesy, S. U., & El-Gammam, Y. A. (2012). Spectral dispersion of linear optical properties for Sm2O3 doped B2O3PbOAl2O3 glasses. Optics and Laser Technology, 44(5), 1270-1276. https://doi.org/10.1016/j.optlastec.2011.12.051
Elazoumi, S. H., Sidek, H. A. A. A., Rammah, Y. S., El-Mallawany, R., Halimah, M. K., Matori, K. A., & Zaid, M. H. M. M. (2018). Effect of PbO on optical properties of tellurite glass. Results in Physics, 8, 16-25. https://doi.org/10.1016/j.rinp.2017.11.010
Elbakey, A. A., Farag, M. A., El-Okr, M., Elrasasi, T. Y., & El-Mansy, M. K. (2020). Preparation and characterization of phosphate glasses co-doped with rare earth ions. Egyptian Journal of Chemistry, 63(5), 1955-1964. https://doi.org/10.21608/ejchem.2019.15556.1944
Elkhoshkhany, N., Marzouk, S., El-Sherbiny, M., Yousri, S., Alqahtani, M. S., Algarni, H., Reben, M., & Sayed Yousef, E. (2021). Enhanced thermal stability and optical and structural properties of Tm+3 ions in doped tellurite glasses for photonic use. Results in Physics, 24(January), 104202. https://doi.org/10.1016/j.rinp.2021.104202
Elliot, S.(1990). Physics of Amorphous Materials (2 Edition). Longman Scientific & Technical.
Eranna, G. (2012). Nanostructure Metal Oxides and Gas-Sensing Devices. In Metal Oxide Nanostructures As Gas Sensing Devices (pp. 41-190). CRC Press, Taylor & Francis Group.
Ersundu, M. C., & Ersundu, A. E. (2016). Structure and crystallization kinetics of lithium tellurite glasses. Journal of Non-Crystalline Solids, 453, 150-157. https://doi.org/10.1016/j.jnoncrysol.2016.10.007
Fang, M., Xiong, X., Hao, Y., Zhang, T., Wang, H., Cheng, H. M., & Zeng, Y. (2019). Preparation of highly conductive graphene-coated glass fibers by sol-gel and dip-coating method. Journal of Materials Science and Technology, 35, 1989-1995. https://doi.org/10.1016/j.jmst.2019.05.027
Fares, H., Jlassi, I., Elhouichet, H., & Ferid, M. (2014). Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. Journal of Non-Crystalline Solids, 396-397, 1-7. https://doi.org/10.1016/J.JNONCRYSOL.2014.04.012
Faznny, M. F., Halimah, M. . K., Azlan M.N, & Azlan, M. . N. (2016). Effect Of Lanthanum Oxide On Optical Properties Of Zinc Borotellurite Glass System. Journal of Optoelectronics and Biomedical Materials, 8(2), 49-59. https://doi.org/10.4028/www.scientific.net/MSF.846.63
Faznny, M. F., Halimah, M. K., Latif, A. A., & Azlan, M. (2017). Linear Optical Properties of Zinc Borotellurite Glass Doped with Lanthanum Oxide Nanoparticles for Optoelectronic and Photonic Application. Journal of Nanomaterials, 2017, 1-8. https://doi.org/10.4028/www.scientific.net/ssp.268.23
Faznny, F. M., Kamari, H. M., Muhammad, F. D., Latif, A. A., & Ismail, Z. (2018). Structural and Optical Properties of Zinc Borotellurite Glass Co-Doped with Lanthanum and Silver Oxide. Journal of Materials Science and Chemical Engineering, 06(04), 18-23. https://doi.org/10.4236/msce.2018.64003
Filip, A. V., Trefilov, A. M. I., Boroica, L., Dinca, M. C., Elisa, M., Vasilliu, I. C., Tigau, N., Brajnicov, S., Dumitru, M., Luculescu, C., Gherasim, O., & Sava, B. A. (2023). Graphene oxide- boro-phosphate glass nano-composite thin films synthesized by sol-gel spin coating method. Journal of Non-Crystalline Solids, 613, 122372.
Gangwar, H., Singh, V., Tewari, B. S., Gupta, H., & Purohit, L. P. (2019). Study of zinc doped tellurite glasses using XRD, UV-Vis and FTIR. Materials Today: Proceedings, 17, 329-337. https://doi.org/10.1016/j.matpr.2019.06.437
Gayathri Pavani, P., Sadhana, K., & Chandra Mouli, V. (2011). Optical, physical and structural studies of boro-zinc tellurite glasses. Physica B: Condensed Matter, 406(6-7), 1242-1247. https://doi.org/10.1016/j.physb.2011.01.006
Geidam, I. G., Matori, K. A., Halimah, M. K., Chan, K. T., Muhammad, F. D., Ishak, M., Umar, S. A., & Hamza, A. M. (2022). Optical characterization and polaron radius of Bi2O3 doped silica borotellurite glasses. Journal of Luminescence, 246, 118868. https://doi.org/10.1016/j.jlumin.2022.118868
Gerosa, R. M., Suarez, F. G., Vianna, P. G., Domingues, S. H., & de Matos, C. J. S. (2020). One-step deposition and in-situ reduction of graphene oxide in photonic crystal fiber for all-fiber laser mode locking. Optics and Laser Technology, 121, 105838. https://doi.org/10.1016/j.optlastec.2019.105838
Ghofraniha, N., & Conti, C. (2019). Graphene oxide photonics. Journal of Optics, 21(5), 053001. https://doi.org/10.1088/2040-8986/ab10d7
Gonzalez-Castillo, E. I., Zitnan, M., Torres, Y., Shuttleworth, P. S., Galusek, D., Ellis, G., & Boccaccini, A. R. (2022). Relation between chemical composition, morphology, and microstructure of poly(ether ether ketone)/reduced graphene oxide nanocomposite coatings obtained by electrophoretic deposition. Journal of Materials Science, 57(10), 5839-5854. https://doi.org/10.1007/s10853-022-06995-2
Gupta, P. K. (1996). Non-crystalline solids: glasses and amorphous solids. Journal of Non-Crystalline Solids, 195(1-2), 158-164. https://doi.org/https://doi.org/10.1016/0022-3093(95)00502-1
Hajer, S. ., Halimah, M. K., & Azlan, M. N. (2014). Optical properties of Zinc-Borotellurite doped samarium. Chalgogenide Letters, 11(11), 553-566. https://www.researchgate.net/publication/267869120_Optical_properties_of_Zinc-Borotellurite_doped_samarium
Halimah, M. K., Ami Hazlin, M. N., & Muhammad, F. D. (2018). Experimental and theoretical approach on the optical properties of zinc borotellurite glass doped with dysprosium oxide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 195, 128-135. https://doi.org/10.1016/j.saa.2017.12.054
Halimah, M. K., Awshah, A. A., Hamza, A. M., Chan, K. T., Umar, S. A., & Alazoumi, S. H. (2020). Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system. Journal of Materials Science: Materials in Electronics, 31, 3785-3794. https://doi.org/10.1007/s10854-020-02907-9
Halimah, M. K., & Eevon, C. (2019). Comprehensive study on the effect of Gd2O3 NPs on elastic properties of zinc borotellurite glass system using non-destructive ultrasonic technique. Journal of Non-Crystalline Solids, 511, 10-18. https://doi.org/10.1016/j.jnoncrysol.2019.01.033
Halimah, M. K., Faznny, M. F., Azlan, M. N., & Sidek, H. A. A. A. (2017a). Optical basicity and electronic polarizability of zinc borotellurite glass doped La3+ ions. Results in Physics, 7, 581-589. https://doi.org/10.1016/j.rinp.2017.01.014
Halimah, M. K., Hamza, A. M., Muhammad, F. D., Chan, K. T., Umar, S. A., Umaru, I., & Geidam, I. G. (2019). Effect of erbium nanoparticles on structural and spectroscopic properties of bio-silica borotellurite glasses containing silver oxide. Materials Chemistry and Physics, 236, 121795. https://doi.org/10.1016/j.matchemphys.2019.121795
Halimah, M. K., Nazrin, S. N., & Muhammad, F. D. (2019). Influence of silver oxide on structural, physical, elastic and optical properties of zinc tellurite glass system for optical application. Chalcogenide Letters, 16(8), 365-385. https://chalcogen.ro/365_HalimahMK.pdf
Halimah, M. K., Tafida, R. A., Chan, K. T., & Muhammad, F. D. (2021). A comparative study of the experimental and the theoretical elastic data of silver oxide incorporated zinc tellurite glass system doped with Sm3+ NPs ions. Optik, 238, 166536. https://doi.org/10.1016/j.ijleo.2021.166536
Halimah, M. M. K., Daud, W. M. M., Sidek, H. A. . A. A., Zaidan, A. w. W., & Zainal, A. S. S. (2010). Optical properties of ternary tellurite glasses. Materials Science-Poland, 28(1), 173-180. http://www.researchgate.net/publication/228687040_Optical_properties_of_ternary_tellurite_glasses/file/9fcfd513a130742758.pdf
Halimah, Mohamed Kamari, Azlan, M. N., & Shafinas, S. Z. (2015). Optical Properties of Erbium Doped Borotellurite Glass System. Advanced Materials Research, 1112, 7-10. https://doi.org/10.4028/www.scientific.net/amr.1112.7
Hamza, A. M. (2019). Physical, Optical and Thermal Properties of Erbum-doped Borotellurite Silicate Glass System Incorporated with Silver Oxide. [unpublished doctoral dissertation] Universiti Putra Malaysia, Serdang
Hamza, A. M., Halimah, M. K., Muhammad, F. D., & Chan, K. T. (2019). Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide. Journal of Luminescence, 207(November 2018), 497-506. https://doi.org/10.1016/j.jlumin.2018.11.038
Hamzah, H., Arifin, R., & Ghoshal, S. K. (2017). Reduction of hygroscopicity in zinc-calcium-phosphate glass via iron-oxide incorporation. Solid State Phenomena, 268 SSP, 82-86. https://doi.org/10.4028/www.scientific.net/SSP.268.82
Hanifah, M. F. R., Jaafar, J., Othman, M. H. D., Ismail, A. F., Rahman, M. A., Yusof, N., Salleh, W. N. W., & Aziz, F. (2019). Facile synthesis of highly favorable graphene oxide: Effect of oxidation degree on the structural, morphological, thermal and electrochemical properties. Materialia, 6, 100344. https://doi.org/10.1016/j.mtla.2019.100344
Hanifi, A. . (2022). Ceramics and Glasses. Retrived from https://sites.ualberta.ca/~hanifi/Ceramics and Glasses.htm
Hasim, N. (2014). Thermal, Structural and Optical Properties of Lithum Niobate Tellurite Glass Doped Erbium and Neodymium [unpublished doctoral dissertation] Universiti Teknologi Malaysia., Skudai
Hasnimulyati, L., Halimah, M. K., Zakaria, A., Halim, S. A., Ishak, M., & Eevon, C. (2016). Structural and optical properties of tm2o3-doped zinc borotellurite glass system. Journal of Ovonic Research, 12(6), 291-299. https://chalcogen.ro/291_HasnimulyatiL.pdf
He, D., Kang, S., Zhang, L., Chen, L., DIng, Y., Yin, Q., & Hu, L. L. (2017). Research and development of new neodymium laser glasses. High Power Laser Science and Engineering, 5, 1-6. https://doi.org/10.1017/hpl.2016.46
Heidari, B., Majdabadi, A., Najei, L., Sasani G, M., Fakharan, Z., Salmani, S., Naji, L., Sasani Ghamsari, M., Fakharan, Z., & Salmani, S. (2018). Thin reduced graphene oxide film with enhanced optical nonlinearity. Optik, 124, 620. https://doi.org/10.1016/j.ijleo.2017.10.176
Hernaez, M., Zamarreno, C. R., Melendi-Espina, S., Bird, L. R., Mayes, A. G., & Arregui, F. J. (2017). Optical fibre sensors using graphene-based materials: A review. Sensors (Switzerland), 17(1), 1-24. https://doi.org/10.3390/s17010155
Hou, G., Cao, L., Zhang, C., Yu, X., Fu, W., Li, G., Xia, J., & Ping, Y. (2021). Improvement of ultra-broadband near-infrared emission in Nd3+-Er3+-Pr3+ tri-doped tellurite glasses. Optical Materials, 111, 110547. https://doi.org/10.1016/j.optmat.2020.110547
Hou, G., Zhang, C., Fu, W., Li, G., Xia, J., Yu, X., & Ping, Y. (2021). Improvement of ultra-broadband near-infrared emission at around 1.0 _m in Nd3+-Er3+-Pr3+ tri-doped tellurite glasses. Journal of Non-Crystalline Solids, 553, 120511. https://doi.org/10.1016/j.jnoncrysol.2020.120511
Huang, S. J., Xiao, Y. B., Liu, J. L., Ji, Y., Mao, L. Y., & Wang, W. C. (2019). Nd3+-doped antimony germanate glass for 1.06__m fiber lasers. Journal of Non-Crystalline Solids, 518(May), 10-17. https://doi.org/10.1016/j.jnoncrysol.2019.05.008
Jaafar, E., Kashif, M., Sahari, S. K., & Ngaini, Z. (2019). Effects of reduction temperatures on morphological, optical, and electrical properties of reduced graphene oxide (rGO) thin films. Materials Today: Proceedings, 16, 1702-1707. https://doi.org/10.1016/j.matpr.2019.06.039
Jalaukhan, A. H. A. (2020). Optical Investigation of TiO2/Graphene Oxide Thinfilm Prepared by Spin Coating Technique. IOP Conference Series: Materials Science and Engineering, 871(1). https://doi.org/10.1088/1757-899X/871/1/012087
Jamalaiah, B. C. (2018). GeO2 activated tellurite tungstate glass: A new candidate for solid state lasers and fiber devices. Journal of Non-Crystalline Solids, 502, 54-61. https://doi.org/10.1016/j.jnoncrysol.2018.03.032
Jan, N. A. M., & Sahar, M. R. (2016). Effect of heat treatment on the structural modification of neodymium doped tellurite glass. Chalcogenide Letters, 13(9), 417-426.
Jan, N. A. M., Sahar, M. R., Sulhadi, S., & El-Mallawany, R. (2019). Thermal, structural and magnetic properties of TeO2-MgO-Na2O-Nd2O3 glass system with NiO nanoparticles. Journal of Non-Crystalline Solids, 522. https://doi.org/10.1016/j.jnoncrysol.2019.119566
Janaki, S., & Punithamurthy, K. (2022). The influence of graphene oxide on structural, optical, and catalytic properties of LaFeO3 nanoparticles synthesized by hydrothermal method. Chemical Data Collections, 42(September). https://doi.org/10.1016/j.cdc.2022.100968
Jha, A., Richards, B. D. O., Jose, G., Fernandez, T. T., Hill, C. J., Lousteau, J., & Joshi, P. (2012). Review on structural, thermal, optical and spectroscopic properties of tellurium oxide based glasses for fibre optic and waveguide applications. International Materials Reviews, 57(6), 357-382. https://doi.org/10.1179/1743280412Y.0000000005
Jha, Animesh, Richards, B., Jose, G., Teddy-Fernandez, T., Joshi, P., Jiang, X., & Lousteau, J. (2012). Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Progress in Materials Science, 57(8), 1426-1491. https://doi.org/10.1016/j.pmatsci.2012.04.003
Jirickova, A., Jankovsky, O., Sofer, Z., & Sedmidubsky, D. (2022). Synthesis and Applications of Graphene Oxide. Materials, 15, 920. https://doi.org/10.3390/ma15030920
Kaewkhao, J., Tamilselvan, B., Pavan, H. L., Biju, A. K., Meghana, E. P., Tomy, A., & Rajaramakrishna, R. (2022). Neodymium-Doped Multi-Component Borate/Phosphate Glasses for NIR Solid-State Material Applications. Integrated Ferroelectrics, 224(1), 13-32. https://doi.org/10.1080/10584587.2022.2035592
Kamaruddin, W. H. A., Rohani, M. S., Sahar, M. R., & Liu, H. (2017). Effect of Nd3+ on the properties of lithium niobium borate crystal and glass. Solid State Phenomena, 268, 210-216. https://doi.org/10.4028/www.scientific.net/SSP.268.210
Kant, R., Sharma, T., Bhardwaj, S., & Kumar, K. (2022). Structural, electrical and optical properties of MgO-reduced graphene oxide nanocomposite for optoelectronic applications. Current Applied Physics, 36(January), 76-82. https://doi.org/10.1016/j.cap.2022.01.008
Karas, G. (2005). Trends in Crystal Growth Research (Karas (ed.)). Nova Science Pub Inc.
Karmakar, B. (2016). Fundamentals of Glass and Glass Nanocomposites. In K. B, R. K, & S. A.L (Eds.), Glass Nanocomposites: Synthesis, Properties and Applications (1st ed., pp. 3-53). Elsevier Inc. https://doi.org/http://dx.doi.org/10.1016/B978-0-323-39309-6.00001-8
Kaur, N., Khanna, A., Gonzalez-Barriuso, M., Gonzalez, F., & Chen, B. (2015). Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. Journal of Non-Crystalline Solids, 429, 153-163. https://doi.org/10.1016/j.jnoncrysol.2015.09.005
Kaur, R., Rakesh, R. B., Mhatre, S. G., Bhatia, V., Kumar, D., Singh, H., Singh, S. P., & Kumar, A. (2021). Physical, optical, structural and thermoluminescence behaviour of borosilicate glasses doped with trivalent neodymium ions. Optical Materials, 117, 111109. https://doi.org/10.1016/j.optmat.2021.111109
Kavitha, M. K., & Jaiswal, M. (2016). Graphene_: A review of optical properties and photonic applications. Asian Journal of Physics, 25(7), 809-831. https://www.researchgate.net/publication/312070999_Graphene_A_review_of_optical_properties_and_photonic_applications
Kazi, S. N., Badarudin, A., Zubir, M. N. M., Ming, H. N., Misran, M., Sadeghinezhad, E., Mehrali, M., & Syuhada, N. I. (2015). Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. Nanoscale Research Letters, 10(1), 16-18. https://doi.org/10.1186/s11671-015-0882-7
Kesavulu, C. R., Suresh, K., dos Santos, J. F. M., Catunda, T., Kim, H. J., & Jayasankar, C. K. (2017). Spectroscopic investigations of 1.06 _m emission and time resolved Z-scan studies in Nd3+-doped zinc tellurite based glasses. Journal of Luminescence, 192, 1047-1055. https://doi.org/10.1016/j.jlumin.2017.08.037
Khattak, G. D., & Salim, M. A. (2002). X-ray photoelectron spectroscopic studies of zinc - tellurite glasses. Journal of Electron Spectroscopy and Related Phenomena, 123, 47-55. https://doi.org/10.1016/S0368-2048(01)00371-1 Khazaalah, T. H., Mustafa, I. S., Aloraini, D. A., Hisam, R., Mohd Zaid, M. H., Halimah, M. K., Sayyed, M. I., Izwan Abdul Malik, M. F., Almuqrin, A. H., Ezra, N. S., & Naeem, H. S. (2022). Investigation of optical properties and radioactive attenuation parameters of doped tungsten oxide soda lime silica SLS waste glass. Journal of Materials Research and Technology, 19, 3355-3365. https://doi.org/10.1016/j.jmrt.2022.05.178
Klinkov, V. A., Tsimerman, E. A., Rokhmin, A. S., Andreeva, V. D., Tagil'tseva, N. O., & Babkina, A. N. (2021). 1.53 _m luminescent properties of Er3+-doped fluoroaluminate glasses. Optical Materials, 121, 111585. https://doi.org/10.1016/j.optmat.2021.111585
Krogh-Moe, J. (1959). On the structure of boron oxide and alkali borate glasses. Chalmers Tekniska Hogskola (Sweden).
Kumar, M., & Ratnakaram, Y. C. (2021). Role of TeO2 coordination with the BaF2 and Bi2O3 on structural and emission properties in Nd3+ doped fluoro phosphate glasses for NIR 1.058 _m laser emission. Optical Materials, 112. https://doi.org/10.1016/j.optmat.2020.110738
Kundu, R. S., Dhankhar, S., Punia, R., Nanda, K., & Kishore, N. (2014). Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses. Journal of Alloys and Compounds, 587, 66-73. https://doi.org/10.1016/J.JALLCOM.2013.10.141
Li, J., Tong, Z. Rong, Jing, L., Zhang, W. hua, Qin, J., & Liu, J. Wei. (2020). Fiber temperature and humidity sensor based on photonic crystal fiber coated with graphene oxide. Optics Communications, 467, 125707. https://doi.org/10.1016/j.optcom.2020.125707
Liu, J., Chen, S., Liu, Y., & Zhao, B. (2022). Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26(6). https://doi.org/10.1016/j.jscs.2022.101560
Loh, K. P., Bao, Q., Eda, G., & Chhowalla, M. (2010). Graphene oxide as a chemically tunable platform for optical applications. Nature Chemistry, 2(12), 1015-1024. https://doi.org/10.1038/nchem.907
Mackenzie, J. (1982). State of the art and prospects of glass science. Journal of Non-Crystalline Solids, 52(1-3), 1-8. https://doi.org/https://doi.org/10.1016/0022-3093(82)90277-0
Madani, A., Alghamdi, M., Alamri, B., & Althobaiti, S. (2023). Structural and optical properties of Sb-BaTiO3 and Y- BaTiO3 doped ceramics prepared by solid-state reaction. Optical Materials, 137. https://doi.org/10.1016/j.optmat.2023.113480
Mahamuda, S., Swapna, K., Srinivasa Rao, A., Jayasimhadri, M., Sasikala, T., Pavani, K., & Rama Moorthy, L. (2013). Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. Journal of Physics and Chemistry of Solids, 74, 1308-1315. https://doi.org/10.1016/j.jpcs.2013.04.009
Mahraz, Z. A. ., Sazali, E. S., Sahar, M. R., Amran, N. U., Yaacob, S. N. S., Aziz, S. M., Mawlud, S. Q., Noor, F. M., & Harun, A. N. (2019). Spectroscopic investigations of near-infrared emission from Nd3+-doped zinc-phosphate glasses_: Judd-Ofelt evaluation. Journal of Non-Crystalline Solids, 509, 106-114.
Mahraz, Z. A. S., Sahar, M. R., & Ghoshal, S. K. (2014). Band gap and polarizability of boro-tellurite glass: Influence of erbium ions. Journal of Molecular Structure, 1072, 238-241. https://doi.org/10.1016/j.molstruc.2014.05.017
Maiti, R., Midya, A., Narayana, C., & Ray, S. K. (2014). Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation. Nanotechnology, 25, 495704. https://doi.org/10.1088/0957-4484/25/49/495704
Manzani, D., Da Silveira Petruci, J. F., Nigoghossian, K., Cardoso, A. A., & Ribeiro, S. J. L. (2017). A portable luminescent thermometer based on green up-conversion emission of Er3+/Yb3+ co-doped tellurite glass. Scientific Reports, 7, 1-11. https://doi.org/10.1038/srep41596
Manzani, D., Jefferson L.F., Ferminio, C. P., Younes M., & Sidney Jose, L. R. (2012). 1.5 .m and Visible up-Conversion Emissions in Er 3+/Yb3+ Co-Doped Tellurite Glasses and Optical Fibers for Photonic Applications. Journal of Materials Chemistry 22(32):16540-45.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806-4814. https://doi.org/10.1021/nn1006368
Mariselvam, K., Arun Kumar, R., & Manasa, P. (2018). Spectroscopic investigations of neodymium doped barium bismuth fluoroborate glasses. Infrared Physics and Technology, 91, 18-26. https://doi.org/10.1016/j.infrared.2018.03.021
Mariyappan, M., Arunkumar, S., & Marimuthu, K. (2020). Effect of Bi2O3 on JO parameters and spectroscopic properties of Er3+ incorporated sodiumfluoroborate glasses for amplifier applications. Journal of Non-Crystalline Solids, 532. https://doi.org/10.1016/j.jnoncrysol.2020.119891
Md Disa, N. (2017). Synthesis of graphene oxide using electrochemical exfoliation method for electrode materials application [unpublished doctoral dissertation] Universiti Pendidikan Sultan Idris, Tanjong Malim
Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., Hashim, N., Abd Aziz, A., & Rusop Mahmood, M. (2015). The Synthesis of Graphene Oxide via Electrochemical Exfoliation Method. Advanced Materials Research, 1109, 55-59. https://doi.org/10.4028/www.scientific.net/amr.1109.55
MetaLaser. (2022a). N21:Nd-Doped Phosphate Glass. In Shanghai Daheng Optics and Fine Mechanics Co., Ltd [Data set] https://www.meta-laser.com/laserglass/n21-nd-doped-phosphate-glass.html
MetaLaser. (2022b). Nd-Doped Fluorophosphate Glass. In Shanghai Daheng Optics and Fine Mechanics Co., Ltd [Data set]. https://www.meta-laser.com/laserglass/nf-nd-doped-fluorophosphate.html
MetaLaser. (2022c). Nd-Doped Silicate Glass. In Shanghai Daheng Optics and Fine Mechanics Co. [Data set]. https://www.meta-laser.com/laserglass/nsg2-nd-doped-silicate-glass.html
Miniscalco, W. J. (1991). General procedure for the analysis of Er3+ cross sections. 16(4), 258-260. https://doi.org/10.1364/OL.16.000258
Mohamed, E. A., Ahmad, F., & Aly, K. A. (2012). Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass. Journal of Alloys and Compounds, 538, 230-236. https://doi.org/10.1063/1.5028824
Mohandoss, M., & Nelleri, A. (2018). Optical properties of sunlight reduced graphene oxide using spectroscopic ellipsometry. Optical Materials, 86, 126-132. https://doi.org/10.1016/j.optmat.2018.09.035
Moon, K. I., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications. https://doi.org/10.1038/ncomms1067
Mott, N. ., & Davis, E. (1979). Electronic Processes in Non-Crystalline Materials (2nd Ed.). Oxford University Press.
Muqoyyanah. (2019). Fabrication Of Graphene Oxide/Titanium Dioxide Hybrid Material For Solar Cell And Membrane Application [unpublished doctoral dissertation] Universiti Pendidikan Sultan Idris, Tanjong Malim
Nabilah Razali, N. A., Mustafa, I. S., Azman, N. Z. N., Kamari, H. M., Rahman, A. A., Rosli, K., Taib, N. S., & Tajuddin, N. A. (2018). The Physical and Optical Studies of Erbium Doped Borosilicate Glass. Journal of Physics: Conference Series, 1083(1), 012004. https://doi.org/10.1088/1742-6596/1083/1/012004
Nagaraju, J., & Eraiah, B. (2023). Physical and Optical Properties of Terbium Doped Lithium Aluminum Borate Glass. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2023.05.002
NanoComposix. (2012). TEM Analysis of Nanoparticles 1 Transmission Electron Microscopy Analysis Of Nanoparticles. NanoComposix, 1.1, 1-7.
Narayan, R., & Kim, S. O. (2015). Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence, 2, 20. https://doi.org/10.1186/S40580-015-0050-X
Nascimento, M. L. F. (2014). Brief history of the flat glass patent - Sixty years of the float process. World Patent Information, 38, 50-56. https://doi.org/10.1016/j.wpi.2014.04.006
Nazrin, S. N., Halimah, M. K., Awshah, A. A. A., Yee, S. P., Hasnimulyati, L., Boukhris, I., Gowda, G. V. J., Azlan, M. N., Clabel H, J. L., & Nadzim, S. N. (2022). Experimental and theoretical elastic studies on neodymium-doped zinc tellurite glasses. Journal of Non-Crystalline Solids, 575, 121208. https://doi.org/10.1016/j.jnoncrysol.2021.121208
Neelima, G., Krishnaiah, K. V., Ravi, N., Suresh, K., Tyagarajan, K., & Prasad, T. J. (2019). Investigation of optical and spectroscopic properties of neodymium doped oxyfluoro-titania-phosphate glasses for laser applications. Scripta Materialia, 162, 246-250. https://doi.org/10.1016/j.scriptamat.2018.11.018
Nilsson, J., Neto, A. H. C., Guinea, F., & Peres, N. M. R. (2006). Electronic properties of graphene multilayers. Physical Review Letters, 97(26), 1-4. https://doi.org/10.1103/PhysRevLett.97.266801
Noranizah, A., Azman, K., Azhan, H., Nurbaisyatul, E. S., & Mardhiah, A. (2014). Spectroscopic Properties of Rare Earth Ion Doped TeO2-B2O3-PbO Glass. Jurnal Teknologi (Sciences and Engineering), 69(6), 49-52. https://doi.org/10.11113/jt.v69.3239
Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V, & Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films Supplementary. Science, 306(5696), 666-669. https://doi.org/10.1126/science.aab1343
Nur Amanina, M. J., Sahar, M. . R., Ghoshal, S. K., Ariffin, R., Rohani, M. S., & Hamzah, K. (2014). Absorption Spectra of Neodymium Doped Tellurite Glass. International Conference on Solid State Science & Technology 2012 (ICSSST 2012), Melaka , Malaysia, 895, 395-399. https://doi.org/10.4028/www.scientific.net/AMR.895.395
Obayes, H. K., Wagiran, H., Hussin, R., & Saeed, M. A. (2016). Structural and optical properties of strontium/copper co-doped lithium borate glass system. Materials and Design, 94, 121-131. https://doi.org/10.1016/j.matdes.2016.01.018
Oermann, M. R. (2011). Microstructured Tellurite Glass Fibre Laser Development. In Doctor of Philosophy University of Adelaide, Australia. https://digital.library.adelaide.edu.au/dspace/bitstream/2440/73494/8/02whole.pd
Pal, M., Roy, B., & Pal, M. (2011). Structural Characterization of Borate Glasses Containing Zinc and Manganese Oxides. Journal of Modern Physics, 02, 1062-1066. https://doi.org/10.4236/jmp.2011.29129
Pandarinath, M. ., Upender, G., Narasimha Rao, K., & Suresh Babu, D. (2016). Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. Journal of Non-Crystalline Solids, 433, 60-67. https://doi.org/10.1016/j.jnoncrysol.2015.11.028
Pei, S., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50(9), 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010
Peng, B., & Izumitani, T. (1995). Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+. Optical Materials, 4, 797-810. https://doi.org/10.1016/0925-3467(95)00032-1
Peng, S., Wu, L., Wang, B., Yang, F., Qi, Y., & Zhou, Y. (2015). Intense visible upconversion and energy transfer in Ho3+/Yb3+ codoped tellurite glasses for potential fiber laser. Optical Fiber Technology, 22, 95-101. https://doi.org/10.1016/j.yofte.2015.01.016
Perrozzi, F., Prezioso, S., & Ottaviano, L. (2015). Graphene oxide: From fundamentals to applications. Journal of Physics Condensed Matter, 27(1), 13002. https://doi.org/10.1088/0953-8984/27/1/013002
Petermann, K. (2013). Oxide laser crystals doped with rare earth and transition metal ions. Handbook of Solid-State Lasers: Materials, Systems and Applications, 3-27. https://doi.org/10.1533/9780857097507.1.3
Pfaender, H. . (1996a). Schoot Guide to Glass (2 Edition). Springer Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-011-0517-0
Pfaender, H. . (1996b). The History of Glass. In Schott Guide to Glass (pp. 1-15). Springer Dordrecht. https://doi.org/https://doi.org/10.1007/978-94-011-0517-0_1
Pham, V. H., Cuong, T. V., Hur, S. H., Shin, E. W., Kim, J. S., Chung, J. S., & Kim, E. J. (2010). Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon, 48(7), 1945-1951. https://doi.org/10.1016/j.carbon.2010.01.062
Picollo, M., Aceto, M., & Vitorino, T. (2019). UV-Vis spectroscopy. Physical Sciences Reviews, 4(4), 20180008. https://doi.org/https://doi.org/10.1515/psr-2018-0008
Politano, G. G., Vena, C., Desiderio, G., & Versace, C. (2018). Spectroscopic ellipsometry investigation of the optical properties of graphene oxide dip-coated on magnetron sputtered gold thin films. Journal of Applied Physics, 123(5). https://doi.org/10.1063/1.5007430
Prakash, M. R., Neelima, G., Kummara, V. K., Ravi, N., Viswanath, C. D., Rao, T. S., & Jilani, S. M. (2019). Holmium doped bismuth-germanate glasses for green lighting applications: A spectroscopic study. Optical Materials, 94, 436-443. https://doi.org/10.1016/j.optmat.2019.05.003
Pye, L. ., Frechette, V. ., & Kreidl, N. . (2012). Borate Glasses_: Structure, Properties, Application. Springer Science & Business Media.
Rajagukguk, J., Rajagukguk, D. H., Gultom, R. S., Simamora, P., Situmorang, R., & Sarumaha, C. (2022). Structure and emission properties of Nd3+ doped oxyfluorophosphate glasses. Journal of Physics: Conference Series, 2193, 012007. https://doi.org/10.1088/1742-6596/2193/1/012007
Rajeswari, R., Babu, S. S., & Jayasankar, C. K. (2010). Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 77(1), 135-140. https://doi.org/10.1016/j.saa.2010.04.040
Rashi. (2022). Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications. Ceramics International, 49(1), 40-47. https://doi.org/10.1016/j.ceramint.2022.10.333
Reddy, R. R., Nazeer Ahammed, Y., Abdul Azeem, P., Rama Gopal, K., & Rao, T. V. R. (2001). Electronic polarizability and optical basicity properties of oxide glasses through average electronegativity. Journal of Non-Crystalline Solids, 286(3), 169-180. https://doi.org/10.1016/S0022-3093(01)00481-1
Reddy, R. R., Nazeer Ahammed, Y., Rama Gopal, K., & Raghuram, D. V. (1998). Optical electronegativity and refractive index of materials. Optical Materials, 10, 95-100. https://doi.org/10.1016/S0925-3467(97)00171-7
Reddy, K. S. R. K., Swapna, K., Mahamuda, S., Venkateswarlu, M., Prasad, M. S., Rao, A. S., & Prakash, G. V. (2018). Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses. Optical Materials, 79, 21-32.
Righini, G. C. (2022). Special Issue "Glassy Materials: From Preparation to Application." MDPI_: Materials. https://www.mdpi.com/journal/materials/special_issues/Glassy_Materials_Preparation_Application#info
Rijal, S. (2017). Effect of Host Glass and Semiconducting Nanoarticles on the Optical Properties of Rare Earth Ions in Lead/Bismuth Telluroborate Glasses (Issue June). Western Illinois University. Riker, L. W. (1981). The Use of Rare Earths in Glass Compositions. In Karl A. Gschnidner (Ed.), Industrial Applications of Rare Earth Elements (pp. 81-94). American Chemical Society. https://doi.org/10.1021/bk-1981-0164.ch004
Ruan, Y., Ding, L., Duan, J., Ebendorff-Heidepriem, H., & Monro, T. M. (2016). Integration of conductive reduced graphene oxide into microstructured optical fibres for optoelectronics applications. Scientific Reports, 6(1), 21682. https://doi.org/10.1038/srep21682
Sahar, M. R., & Jan, N. A. M. (2017). Influence of NiO nanoparticles on magnetic properties of neodymium doped tellurite glasses. Solid State Phenomena, 268 SSP, 102-105. https://doi.org/10.4028/www.scientific.net/SSP.268.102
Saleem, H., Haneef, M., & Abbasi, H. Y. (2018). Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Materials Chemistry and Physics, 204, 1-7. https://doi.org/10.1016/j.matchemphys.2017.10.020
Sekiya, T., Mochida, N., Ohtsuka, A., & Soejima, A. (1992). Raman spectra of BO3/2TeO2 glasses. Journal of Non-Crystalline Solids, 151, 222-228. https://doi.org/10.1016/0022-3093(92)90033-G
Seshadri, M., Anjos, V., & Bell, M. J. V. (2018). Energy transfer process and radiative properties of 1.06 _m emission in Nd3+ doped TeO2-ZnO-Na2O glasses. Journal of Luminescence, 196, 399-405. https://doi.org/10.1016/j.jlumin.2017.12.055
Shaaban, M. H., Rammah, Y. S., Ahmed, E. M., & Ali, A. A. (2021). Fabrication, physical, thermal and optical properties of oxyfluoride glasses doped with rare earth oxides. Journal of Materials Science: Materials in Electronics, 32(14), 18951-18967. https://doi.org/10.1007/s10854-021-06410-7
Shaari, H. R., Azlan, M. N., Azlina, Y., Al-Hada, N. M., Umar, S. A., Kenzhaliyev, B. K., Zaid, M. H. M., Hisam, R., & Yusof, N. N. (2022). Oxide ion polarizability, optical basicity, and metallization criterion of GO-coated Nd2O3 (NPs) - TeO2 glass for linear optical fibre. Chalcogenide Letters, 19(8), 565-577. https://doi.org/10.15251/cl.2022.198.565
Shaari, H.R, Azlan, M. ., Suriani, A. B., & Azlina, Y. (2022). The Effect of rGO On Optical Properties of Neodymium Nanoparticles Doped Tellurite Glass System. Journal of Mechanical Engineering, SI 11(1), 273-288.
Shaari, H.R, Azlan, M. N., Azlina, Y., Hajer, S. S., Nazrin, S. N., Umar, S. A., Kenzhaliyev, B. K., Boukhris, I., & Al-hada, N. M. (2021). Investigation of Structural and Optical Properties of Graphene Oxide-Coated Neodymium Nanoparticles Doped Zinc - Tellurite Glass for Glass Fiber. Journal of Inorganic and Organometallic Polymers and Materials, 31, 4349-4359. https://doi.org/10.1007/s10904-021-02061-7
Shaari, H.R (2018). Synthesis of Vanadium Based Lithium Nickel Aluminium Oxide Systems for Good Performance Cathode Materials of Lithium-Ion Batteries. [unpublished Master dissertation] Universiti Pendidikan Sultan Idris, Tanjong Malim
Shakeri, M. S., & Rezvani, M. (2011). Optical band gap and spectroscopic study of lithium alumino silicate glass containing Yb3+ ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1920-1925. https://doi.org/10.1016/j.saa.2011.05.090
Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477. https://doi.org/10.1016/j.cej.2016.02.109
Sharma, A., Nazrin, S. N., Humaira, S. A., Boukhris, I., & Kebaili, I. (2022). Impact of neodymium oxide on optical properties and X-ray shielding competence of Nd2O3-TeO2-ZnO glasses. Radiation Physics and Chemistry, 195, 110047. https://doi.org/10.1016/j.radphyschem.2022.110047
Sharma, M., Alvi, P. A., Gupta, S. K., & Negi, C. M. S. (2021). The optoelectronic behavior of reduce graphene oxide-carbon nanotube nanocomposites. Synthetic Metals, 281, 116892. https://doi.org/10.1016/j.synthmet.2021.116892
Sharma, P., Hasan, M. ., Mehto, N. . ., Deepak., Bishoyi, A., & Narang, J. (2022). 92 years of zinc oxide: has been studied by the scientific community since the 1930s- An overview. Sensors International, 3, 100182. https://doi.org/10.1016/j.sintl.2022.100182
Shelby, J. E. (2007). Introduction to Glass Science and Technology. In Introduction to Glass Science and Technology (2nd Ed). Royal Society of Chemistry. https://doi.org/10.1039/9781847551160
Shen, Y., Jing, T., Ren, W., Zhang, J., Jiang, Z. G., Yu, Z. Z., & Dasari, A. (2012). Chemical and thermal reduction of graphene oxide and its electrically conductive polylactic acid nanocomposites. Composites Science and Technology, 72, 1430-1435. https://doi.org/10.1016/j.compscitech.2012.05.018
Sidek, H. A. A. (2011). Wonders of Glass Synthesis, Elasticity and Application. Universiti Putra Malaysia Press.
Simon, M., Benitez, A., Caballero, A., Morales, J., & Vargas, O. (2018). Untreated natural graphite as a graphene source for high-performance Li-Ion batteries. Batteries, 4(1), 1-9. https://doi.org/10.3390/batteries4010013
Siva Raju, D., Rajesh, M., Hima Bindu, S., Suresh Krishna, J., Vinay Krishna, V., Deva Prasad Raju, B., & Linga Raju, C. (2021). Spectral investigations of trivalent europium (Eu3+ ) ions doped znbinapsr oxyfluoride glasses for visible photonic device applications. Rasayan Journal of Chemistry, 14(4), 2392-2405. https://doi.org/10.31788/RJC.2021.1446523
Siva Rama Krishna Reddy, K., Swapna, K., Mahamuda, S., Venkateswarlu, M., Srinivas Prasad, M. V. V. K., Rao, A. S., & Prakash, G. V. (2018). Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses. Optical Materials, 79, 21-32. https://doi.org/10.1016/j.optmat.2018.03.005
Siva Rama Krishna Reddy, K., Swapna, K., Mahamuda, S., Venkateswarulu, M., & Rao, A. S. (2021). Structural, optical and photoluminescence properties of alkaline-earth boro tellurite glasses doped with trivalent Neodymium for 1.06 _m optoelectronic devices. Optical Materials, 111(September 2020). https://doi.org/10.1016/j.optmat.2020.110615
Song, J., & Chang, C.-T. (2014). Preparation and Characterization of Graphene Oxide. Journal of Nanomaterials, 2014, 1-6. https://doi.org/http://dx.doi.org/10.1155/2014/276143
Sontakke, A. D., & Purkait, M. K. (2021). A brief review on graphene oxide Nanoscrolls: Structure, Synthesis, characterization and scope of applications. Chemical Engineering Journal, 420(P1), 129914. https://doi.org/10.1016/j.cej.2021.129914
Stambouli, W., Elhouichet, H., Gelloz, B., Ferid, M., & Koshida, N. (2012). Energy transfer induced Eu3+ photoluminescence enhancement in tellurite glass. Journal of Luminescence, 132(1), 205-209. https://doi.org/10.1016/j.jlumin.2011.08.018
Steinberg, D., Gerosa, R. M., Pellicer, F. N., Zapata, J. D., Domingues, S. H., Thoroh de Souza, E. A., & Saito, L. A. M. (2018). Graphene oxide and reduced graphene oxide as saturable absorbers onto D-shaped fibers for sub 200-fs EDFL mode-locking. Optical Materials Express, 8(1), 144-156. https://doi.org/10.1364/ome.8.000144
Struchkov, N. S., Alexandrov, E. V., Romashkin, A. V., Silakov, G. O., & Rabchinskii, M. K. (2020). Uniform graphene oxide films fabrication via spray-coating for sensing application. Fullerenes Nanotubes and Carbon Nanostructures, 28(3), 214-220. https://doi.org/10.1080/1536383X.2019.1686623
Stuart, B. H. (2005). Infrared Spectroscopy: Fundamentals and Applications. In Infrared Spectroscopy: Fundamentals and Applications. https://doi.org/10.1002/0470011149
Su, X., Yaxun Z., Minghan Z., Yarui Z., Pan C., Zizhon Z., & Nengjun W. (2018). Enhanced 1.80 Mm Fluorescence in Er3+/Yb3+/Tm3+Tri-Doped Tellurite Glass for Fiber Lasers. Journal of Alloys and Compounds 739:149-59. https://doi.org/10.1016/j.jallcom.2017.12.223
Sudhakar Reddy, B., Hwang, H. Y., Jho, Y. D., Seung Ham, B., Sailaja, S., Madhukar Reddy, C., Vengala Rao, B., & Dhoble, S. J. (2015). Optical properties of Nd3+-doped and Er3+-Yb3+ codoped borotellurite glass for use in NIR lasers and fiber amplifiers. Ceramics International, 41, 3684-3692. https://doi.org/10.1016/j.ceramint.2014.11.040
Sujiono, E. H., Zurnansyah, Zabrian, D., Dahlan, M. Y., Amin, B. D., Samnur, & Agus, J. (2020). Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization. Heliyon, 6(8), e04568. https://doi.org/10.1016/j.heliyon.2020.e04568
Sulc, J., & Jelinkova, H. (2013). Solid-state lasers for medical applications. In Lasers for Medical Applications: Diagnostics, Therapy and Surgery. Elsevier. https://doi.org/10.1533/9780857097545.2.127
Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., Ahmad, M. K., Nayan, N., & Khalil, H. P. S. A. (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723-10743. https://doi.org/10.1007/s10854-018-9139-4
Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Rohani, R., Yusoff, I. I., Mamat, M. H., Hashim, N., Azlan, M. N., Ahmad, M. K., Marwoto, P., Sulhadi, Kusuma, H. H., Birowosuto, M. D., & Khalil, H. P. S. A. (2019). Incorporation of Electrochemically Exfoliated Graphene Oxide and TiO2 into Polyvinylidene Fluoride-Based Nanofiltration Membrane for Dye Rejection. Water, Air, and Soil Pollution, 230(8). https://doi.org/10.1007/s11270-019-4222-x
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Mamat, M. H., Malek, M. F., Ahmad, M. K., Pandikumar, A., & Huang, N. M. (2017). Enhanced photovoltaic performance using reduced graphene oxide assisted by triple-tail surfactant as an efficient and low-cost counter electrode for dye-sensitized solar cells. Optik, 139, 291-298. https://doi.org/10.1016/j.ijleo.2017.04.025
Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Mamat, M., Malek, M. F., Ahmad, M. ., Rosmi, M. S., & Tanemura, M. (2017). Electrical enhancement of radiation-vulcanized natural rubber latex added with reduced graphene oxide additives for supercapacitor electrodes. Journal of Materials Science, 52, 6611-6622. https://doi.org/10.1007/s10853-017-0897-9
Sutrisno, M. S., Sabri, N. S., Zaid, M. H. M., & Hisam, R. (2023). Tuning optical dispersion and localized surface plasmon resonance of 20Li2O-xBi2O3-(78-x)TeO2-1Er2O3-1Ag glass system. Optics and Laser Technology, 157, 1087739. https://doi.org/10.1016/j.optlastec.2022.108739
Syam Prasad, P., & Venkateswara Rao, P. (2018). Structural and luminescence properties of tellurite glasses for laser applications. Tellurite Glass Smart Materials: Applications in Optics and Beyond, 45-66. https://doi.org/10.1007/978-3-319-76568-6_4
Tafida, R. A., Thakur, S., Onimisi, M. Y., Adamu, S. B., & Lakin, I. I. (2023). Samarium nanoparticle-doped silver oxide-incorporated zinc tellurite glass system: Structural, elastic, and Judd-Offelt intensity parameters. Materials Chemistry and Physics, 296, https://doi.org/10.1016/j.matchemphys.2023.127319
Tarafder, A., Molla, A. R., & Karmakar, B. (2016). Chapter 3: Advanced Glass-Ceramic Nanocomposites for Structural, Photonic, and Optoelectronic Applications. In Glass Nanocomposites (pp. 299-338). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-39309-6.00013-4
Thermofisher. (2013). Introduction to Fourier Transform Infrared Spectrometry, Thermo Fisher Scintific Incorporation. https://assets.thermofisher.com/TFS-Assets/MSD/brochures/introduction-fourier-transform-infrared-spectroscopy-br50555.pdf
Tian, Y., Li, B., Chen, R., Xia, J., Jing, X., Zhang, J., & Xu, S. (2016). Thermal stability and 2.7 _m spectroscopic properties in Er3+ doped tellurite glasses. Solid State Sciences, 60, 17-22. https://doi.org/10.1016/j.solidstatesciences.2016.07.012
Tohidifar, M. R., Alizadeh, P., Riello, P., Eftekhari-Yekta, B., & Aghaei, A. R. (2012). Sol-Gel Preparation and Characterization of Nano-Crystalline Lithium-Mica Glass-Ceramic. Ceramics International, 38(4), 2813-2821. https://doi.org/10.1016/j.ceramint.2011.11.052
Tseng, S. F., Liao, C. H., Hsiao, W. T., & Chang, T. L. (2021). Ultrafast laser direct writing of screen-printed graphene-based strain electrodes for sensing glass deformation. Ceramics International, 47(20), 29099-29108. https://doi.org/10.1016/j.ceramint.2021.07.071
Umar, S.A., Halimah, M. K., Chan, K. T., & Latif, A. A. (2017). Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. Journal of Non-Crystalline Solids, 471, 101-109. https://doi.org/10.1016/j.jnoncrysol.2017.05.018
Umar, S.A (2019). Structural, Elastic and Optical Properties Of Rice Husk Silicate Borotellurite Glass System Doped With Micro And Nanoparticles Of Erbium Oxide. [unpublished doctoral dissertation] Universiti Putra Malaysia, Serdang
Usman, A. (2019). Structural, Elastic and Optical Properties of Zinc Borotellurite Glass systems co-doped with Ho2O3 and Ag1O/Ag2O NPs. [unpublished doctoral dissertation] Universiti Putra Malaysia, Serdang.
Usman, Abdullahi, Halimah, M. K. K., Latif, A. A. A., Muhammad, F. D. D., & Abubakar, A. I. I. (2018). Influence of Ho3+ ions on structural and optical properties of zinc borotellurite glass system. Journal of Non-Crystalline Solids, 483, 18-25. https://doi.org/10.1016/j.jnoncrysol.2017.12.040
Veeranna Gowda, V. C. (2013). Effect of Bi3+ ions on physical, thermal, spectroscopic and optical properties of Nd3+ doped sodium diborate glasses. Physica B: Condensed Matter, 426, 58-64. https://doi.org/10.1016/j.physb.2013.06.007
Veeranna Gowda, V. C. (2015). Physical, thermal, infrared and optical properties of Nd3+doped lithium-lead-germanate glasses. Physica B: Condensed Matter, 456, 298-305. https://doi.org/10.1016/j.physb.2014.09.004
Venkateswarlu, M., Mahamuda, S., Swapna, K., Prasad, M. V. V. K. S., Srinivasa Rao, A., Mohan Babu, A., Shakya, S., & Vijaya Prakash, G. (2015). Spectroscopic studies of Nd3+ doped lead tungsten tellurite glasses for the NIR emission at 1062 nm. Optical Materials, 39, 8-15. https://doi.org/10.1016/j.optmat.2014.10.031
Wang, J. S., Vogel, E. M., & Snitzer, E. (1994). Tellurite glass: a new candidate for fiber devices. Optical Materials, 3, 187-203. https://doi.org/10.1016/0925-3467(94)90004-3
Wang, W. C., Zhou, B., Xu, S. H., Yang, Z. M., & Zhang, Q. Y. (2019). Recent advances in soft optical glass fiber and fiber lasers. Progress in Materials Science, 101, 90-171. https://doi.org/10.1016/J.PMATSCI.2018.11.003
Wang, Y., Xu, L., Wang, L., Bao, S., Wen, Q., Zhao, C., Wang, X. D., Liu, J., Liang, X., & Xiang, W. (2023). High power multicolor composite fluorescent glass coated with graphene monolayer for laser lighting. Journal of Alloys and Compounds, 941, 168986. https://doi.org/10.1016/j.jallcom.2023.168986
Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., Hamzah, K., & Jandra, M. (2013). Natural Fe3O4 nanoparticles embedded zinc-tellurite glasses: Polarizability and optical properties. Materials Chemistry and Physics, 138(1), 174-178. https://doi.org/10.1016/j.matchemphys.2012.11.040
Wu, T. T., & Ting, J. M. (2013). Preparation and characteristics of graphene oxide and its thin films. Surface and Coatings Technology, 231, 487-491. https://doi.org/10.1016/j.surfcoat.2012.05.066
Xia, L., Zhang, Y., Ding, J., Li, C., Shen, X., & Zhou, Y. (2021). Er3+/Tm3+/Nd3+ tri-doping tellurite glass with ultra-wide NIR emission. Journal of Alloys and Compounds, 863. https://doi.org/10.1016/j.jallcom.2021.158626
Yaacob, S. N. S. S., Sahar, M. R., Sazali, E. S., & Sulhadi, S. (2019). The polarizability and optical characteristics of zinc phosphate glasses doped terbium embedded with copper oxide nanoparticles. Solid State Phenomena, 290, 35-40. https://doi.org/10.4028/www.scientific.net/SSP.290.35
Yamane, M., & Asahara, Y. (2000). Glass Properties. In Glasses for Photonics (pp. 1-57). Chambridge University Press.
Yao, C., He, C., Jia, Z., Wang, S., Qin, G., Ohishi, Y., & Qin, W. (2015). Holmium-doped fluorotellurite microstructured fibers for 21 _m lasing. Optics Letters, 40(20), 4695. https://doi.org/10.1364/ol.40.004695
Yilbas, B. S., Ibrahim, A., Ali, H., Khaled, M., & Laoui, T. (2018). Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface. Applied Surface Science, 442, 213-223. https://doi.org/10.1016/j.apsusc.2018.02.176
Yu, C., Yang, Z., Qiu, J., Song, Z., & Dacheng, Z. (2018). Enhanced photoluminescence property and mechanism of Eu3+-doped tellurite glasses by the silver and gold nanoparticles. Journal of the American Ceramic Society, 101(2), 612-623. https://doi.org/10.1111/jace.15222
Yuliantini, L., Djamal, M., Hidayat, R., Boonin, K., Kaewkhao, J., & Yasaka, P. (2021). Luminescence and Judd-Ofelt analysis of Nd3+ ion doped oxyfluoride boro-tellurite glass for near-infrared laser application. Materials Today: Proceedings, 43, 2655-2662. https://doi.org/10.1016/j.matpr.2020.04.631
Yusof, N. N., Ghoshal, S. K., & Azlan, M. N. (2017). Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd- Ofelt analysis. Journal of Alloys and Compounds, 724, 1083-1092. https://doi.org/10.1016/j.jallcom.2017.07.102
Yusof, N. N., Ghoshal, S. K., & Jupri, S. A. (2020). Luminescence of Neodymium Ion-Activated Magnesium Zinc Sulfophosphate Glass: Role of Titanium Nanoparticles Sensitization. Optical Materials, 109, 110390. https://doi.org/10.1016/j.optmat.2020.110390
Zaid, M. H. M., Matori, K. A., Abdul Aziz, S. H., Zakaria, A., & Ghazali, M. S. M. (2012). Effect of ZnO on the physical properties and optical band gap of soda lime silicate glass. International Journal of Molecular Sciences, 13, 7550-7558. https://doi.org/10.3390/ijms13067550
Zhang, L., Xue, T., He, D., Guzik, M., & Boulon, G. (2015). Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses. Optics Express, 23(2), 1505. https://doi.org/10.1364/oe.23.001505
Zhang, Y., Xia, L., Shen, X., Li, J., Yang, G., & Zhou, Y. (2021). Broadband mid-infrared emission in Dy3+/Er3+ co-doped tellurite glass. Journal of Luminescence, 236, 118078. https://doi.org/10.1016/j.jlumin.2021.118078
Zhou, D., Bai, X., & Zhou, H. (2017). Preparation of Ho3+/Tm 3+ Co-doped Lanthanum Tungsten Germanium Tellurite Glass Fiber and Its Laser Performance for 2.0 _mOPEN. Scientific Reports, 7, 44747. https://doi.org/10.1038/srep44747
Zulkefly, S. S., Kamari, H. M., Abdul Azis, M. N. A., Wan Yusoff, W. M. D., Halimah, M. K., Azlan, M. ., & Daud, W. . (2016). Influence of Erbium Doping on Dielectric Properties of Zinc Borotellurite Glass System. Materials Science Forum, 846, 161-171. https://doi.org/10.4028/www.scientific.net/msf.846.161
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |