UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
This research endeavours to employ optical trapping technique for manipulating a single
microcrystalline cellulose microcluster (MCCM) in solution. The viscosity of low
concentration microcrystalline cellulose (MCCM) solutions was assessed to identify optimal
concentrations for optical tweezer applications. These solutions were prepared via the
sonication method, and their viscosity was measured using a rheometer. Utilizing optical
microscopy, MCCM formation was observed to determine suitable size ranges for optical
trapping. A single MCCM was successfully trapped using a 976nm linearly polarized laser with
a numerical aperture of 1.4, whist manipulation was achieved employing a circularly polarized
laser. The translation motion of the MCCM was facilitated by a piezostage system. Trajectories
of the MCCM were analyzed through visual observation via a CCD camera and scattering light
detection with a quadrant photodiode (QPD). The findings indicated that solutions with
concentrations below 1% w/w were optimal for optical trapping. MCCM ranging from 0.5 _m
to 4.0 _m were effectively trapped within a laser power density range of 0.6 MW/cm2 to
2.2 MW/cm2, with the additional capability of rotation using the circularly polarized laser.
In conclusion, this research demonstrates the feasibility of employing optical techniques, in
conjunction with a piezostage, to achieve simultaneous linear translation and rotational motion
of a single microcrystalline cellulose microcluster. This research implies that a single cellulose
microcluster and fibrous microparticle, such as MCCM, can be optically micro-controlled for
microtool applications. |
References |
Abbasi Moud, A. (2022). Cellulose through the Lens of Microfluidics: A Review. Applied Biosciences, 1(1), 1-37.
Abe, K., Kotera, K., Suzuki, K., & Citterio, D. (2010). Inkjet-printed paperfluidic immuno-chemical sensing device. Analytical and Bioanalytical Chemistry, 398(2), 885-893.
Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Analytical Chemistry, 80(18), 6928-6934.
Aekbote, B. L., Fekete, T., Jacak, J., Vizsnyiczai, G., Ormos, P., & Kelemen, L. (2016). Surface-modified complex SU-8 microstructures for indirect optical manipulation of single cells. Biomedical Optics Express, 7(1), 45.
Agayan, R. R., Horvath, T., McNaughton, B. H., Anker, J. N., & Kopelman, R. (2004). Optical manipulation of metal-silica hybrid nanoparticles. In Optical Trapping and Optical Micromanipulation (Vol. 5514, pp. 502-513). SPIE.
Ahn, J., Xu, Z., Bang, J., Ju, P., Gao, X., & Li, T. (2020). Ultrasensitive torque detection with an optically levitated nanorotor. Nature Nanotechnology, 15(2), 89-93.
Amblard, F., Yurke, B., Pargellis, A., & Leibler, S. (1996). A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments, 67(3), 818-827.
Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156-159.
Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophysical Journal, 61(2), 569-582.
Ashkin, A. (1997). Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences of the United States of America.
Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses and bacteria. Science (New York, N.Y.), 235, 1517-1520.
Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters, 11(5), 288.
Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330(6150), 769-771.
Bai, W., & Li, K. (2009). Partial replacement of silica with microcrystalline cellulose in rubber composites. Composites Part A. Applied Science and Manufacturing, 40(10), 1597-1605.
Barbot, A., Decanini, D., & Hwang, G. (2016). On-chip Microfluidic Multimodal Swimmer toward 3D Navigation. Scientific Reports, 6(1), 19041.
Barrulas, R. V., & Corvo, M. C. (2023). Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Gels, 9(12), 986.
Bente, K., Codutti, A., Bachmann, F., & Faivre, D. (2018). Biohybrid and Bioinspired Magnetic Microswimmers. Small, 14(29), 1704374.
Berg-Sorensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594-612.
Berg-Sorensen, K., Peterman, E. J. G., Weber, T., Schmidt, C. F., & Flyvbjerg, H. (2006). Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth. Review of Scientific Instruments, 77(6).
Binnig, G., Garcia, N., & Rohrer, H. (1985). Conductivity sensitivity of inelastic scanning tunneling microscopy. Physical Review B, 32, 1336-1338.
Binnig, G., Quate, C., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930-933.
Blazquez-Castro, A. (2019). Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines, 10(8), 507.
Bohm, C. F., Feldner, P., Merle, B., & Wolf, S. E. (2019). Conical Nanoindentation Allows Azimuthally Independent Hardness Determination in Geological and Biogenic Minerals. Materials, 12(10), 1630.
Boran, S., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2016). The Comparative Study of Different Mixing Methods for Microcrystalline Cellulose/Polyethylene Composites. International Polymer Processing, 31(1), 92-103.
Bruce, G. D., Rodriguez-Sevilla, P., & Dholakia, K. (2021). Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 6(1).
Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-Cost Printing of Poly(dimethylsiloxane) Barriers to Define Microchannels in Paper. Analytical Chemistry, 80(9), 3387-3392.
Bunea, A., & Gluckstad, J. (2019). Strategies for Optical Trapping in Biological Samples: Aiming at Microrobotic Surgeons. Laser & Photonics Reviews, 13(4), 1800227.
Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Optics Communications, 230(4-6), 357-368.
Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers, 1(1), 25.
Butaite, U. G., Gibson, G. M., Ho, Y.-L. D., Taverne, M., Taylor, J. M., & Phillips, D. B. (2019). Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nature Communications, 10(1), 1215.
Carrick, C., Larsson, P. A., Brismar, H., Aidun, C., & Wagberg, L. (2014). Native and functionalized micrometre-sized cellulose capsules prepared by microfluidic flow focusing. RSC Adv., 4(37), 19061-19067.
Cataldi, A., Dorigato, A., Deflorian, F., & Pegoretti, A. (2014). Thermo-mechanical properties of innovative microcrystalline cellulose filled composites for art protection and restoration. Journal of Materials Science, 49(5), 2035-2044.
Chang, D. E., Sorensen, A. S., Hemmer, P. R., & Lukin, M. D. (2006). Quantum Optics with Surface Plasmons. Physical Review Letters, 97(5), 053002.
Charvin, G., Strick, T. R., Bensimon, D., & Croquette, V. (2005). Tracking topoisomerase activity at the single-molecule level. Annual Review of Biophysics and Biomolecular Structure, 34, 201-219.
Chen, H., Chandrasekar, S., Sheetz, M. P., Stossel, T. P., Nakamura, F., & Yan, J. (2013). Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function. Scientific Reports, 3(1), 1642.
Chen, H., & Sun, D. (2012). Moving Groups of Microparticles into Array with a Robot-Tweezers Manipulation System. IEEE Transactions on Robotics, 28(5), 1069-1080.
Chen, J., Yan, S., & Ruan, J. (1996). A study on the preparation, structure, and properties of microcrystalline cellulose. Journal of Macromolecular Science - Pure and Applied Chemistry, 33(12), 1851-1862.
Cheng, Z., Mason, T. G., & Chaikin, P. M. (2003). Periodic oscillation of a colloidal disk near a wall in an optical trap. Physical Review E, 68(5), 051404.
Chinnam, J., Das, D. K., Vajjha, R. S., & Satti, J. R. (2015). Measurements of the surface tension of nanofluids and development of a new correlation. International Journal of Thermal Sciences, 98, 68-80.
Chitnis, G., Ding, Z., Chang, C.-L., Savran, C. A., & Ziaie, B. (2011). Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab on a Chip, 11(6), 1161.
Choe, D., Kim, Y. M., Nam, J. E., Nam, K., Shin, C. S., & Roh, Y. H. (2018). Synthesis of high-strength microcrystalline cellulose hydrogel by viscosity adjustment. Carbohydrate Polymers, 180, 231-237.
Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., & Gupta, S. K. (2014). Automated Manipulation of Biological Cells Using Gripper Formations Controlled by Optical Tweezers. IEEE Transactions on Automation Science and Engineering, 11(2), 338-347.
Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., & Ashkin, A. (1985). Threedimensional viscous confinement and cooling of atoms by resonance radiation pressure. Physical Review Letters, 55, 48-51.
Chung, Y.-C., Chen, P.-W., Fu, C.-M., & Wu, J.-M. (2013). Particles sorting in microchannel system utilizing magnetic tweezers and optical tweezers. Journal of Magnetism and Magnetic Materials, 333, 87-92.
Coffey, W. T., & Kalmykov, Y. P. (2012). The Langevin Equation (Vol. 27). World Scientific.
Crozier, K. B. (2024). Plasmonic Nanotweezers: What's Next? ACS Photonics, 11(2), 321-333.
De Vlaminck, I., & Dekker, C. (2012). Recent Advances in Magnetic Tweezers. Annual Review of Biophysics, 41(1), 453-472.
Dholakia, K., Spalding, G., & MacDonald, M. (2002). Optical tweezers: the next generation. Physics World, 15(10), 31.
Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M.-E. (2019). Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile Microfluidics Platform for Nanomanipulation and Mechanical Characterization. ACS applied materials & interfaces, 11(37), 33620-33627.
Donato, M. G., Messina, E., Foti, A., Smart, T. J., Jones, P. H., Iati, M. A., Saija, R., Gucciardi, P. G., & Marago, O. M. (2018). Optical trapping and optical force positioning of two-dimensional materials. Nanoscale, 10(3), 1245-1255.
Douplik, A., Saiko, G., Schelkanova, I., & Tuchin, V. V. (2013). The response of tissue to laser light. In Lasers for Medical Applications (pp. 47-109). Elsevier.
Dungchai, W., Chailapakul, O., & Henry, C. S. (2011). A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. The Analyst, 136(1), 77-82.
Ejikeme, P. M. (2008). Investigation of the physicochemical properties of microcrystalline cellulose from agricultural wastes I: orange mesocarp. Cellulose, 15(1), 141-147.
Elsakhawy, M., & Hassan, M. (2007). Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues. Carbohydrate Polymers, 67(1), 1-10.
Favre-Bulle, I. A., Stilgoe, A. B., Scott, E. K., & Rubinsztein-Dunlop, H. (2019). Optical trapping in vivo: theory, practice, and applications. Nanophotonics, 8(6), 1023-1040.
Fenton, E. M., Mascarenas, M. R., Lopez, G. P., & Sibbett, S. S. (2009). Multiplex Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS Applied Materials & Interfaces, 1(1), 124-129.
Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (1996). Optical angular-momentum transfer to trapped absorbing particles. Physical Review A, 54(2), 1593-1596.
Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (1998). Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394(6691), 348-350.
Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., & Hanstorp, D. (2001). Optically driven micromachine elements. Applied Physics Letters, 78(4), 547- 549.
Geonzon, L. C., Kobayashi, M., Sugimoto, T., & Adachi, Y. (2022). Study on the kinetics of adsorption of poly(ethylene oxide) onto a silica particle using optical tweezers and microfluidics. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 642, 128691.
Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M., & Shaler, S. M. (2020). Birefringence-based orientation mapping of cellulose nanofibrils in thin films. Cellulose, 27(2), 677-692.
Gomez Hoyos, C., Cristia, E., & Vazquez, A. (2013). Effect of cellulose microcrystalline particles on properties of cement based composites. Materials and Design, 51, 810-818.
Gore, J., Bryant, Z., Stone, M. D., Nollmann, M., Cozzarelli, N. R., & Bustamante, C. (2006). Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature, 439(7072), 100-104.
Hamid, M. Y., & Ayop, S. K. (2018). LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 24(3), 1856-1860.
Han, X., & Sun, C. (2019). Plasmonic Tweezers towards Biomolecular and Biomedical Applications. Applied Sciences, 9(17), 3596.
Hernandez Candia, C. N., Tafoya Martinez, S., & Gutierrez-Medina, B. (2013). A Minimal Optical Trapping and Imaging Microscopy System. PLoS ONE, 8(2), e57383.
Herranen, J., Markkanen, J., Videen, G., & Muinonen, K. (2019). Non-spherical particles in optical tweezers: A numerical solution. PLOS ONE, 14(12), e0225773.
Higurashi, E., Sawada, R., & Ito, T. (1998). Optically induced angular alignment of birefringent micro-objects by linear polarization. Applied Physics Letters, 73(21), 3034-3036.
Hochstetter, A., & Pfohl, T. (2016). Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends in Parasitology, 32(7), 531-541.
Hou, X., & Cheng, W. (2013). Optical Tweezers. In Encyclopedia of Biophysics. Springer Berlin Heidelberg 1800-1807.
Hu, S., Chen, S., Chen, S., Xu, G., & Sun, D. (2017). Automated Transportation of Multiple Cell Types Using a Robot-Aided Cell Manipulation System with Holographic Optical Tweezers. IEEE/ASME Transactions on Mechatronics, 22(2), 804-814.
Hu, S., Xie, H., Wei, T., Chen, S., & Sun, D. (2019). Automated Indirect Transportation of Biological Cells with Optical Tweezers and a 3D Printed Microtool. Applied Sciences, 9(14), 2883.
Irrera, A., Artoni, P., Saija, R., Gucciardi, P. G., Iati, M. A., Borghese, F., Denti, P., Iacona, F., Priolo, F., & Marago, O. M. (2011). Size-Scaling in Optical Trapping of Silicon Nanowires. Nano Letters, 11(11), 4879-4884.
Irrera, A., Magazzu, A., Artoni, P., Simpson, S. H., Hanna, S., Jones, P. H., Priolo, F., Gucciardi, P. G., & Marago, O. M. (2016). Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires. Nano Letters, 16(7), 4181-4188.
Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U. Il, & Sakai, T. (2014). "Nonswellable" hydrogel without mechanical hysteresis. Science, 343(6173), 873-875.
Kampmann, R., Sinzinger, S., & Korvink, J. G. (2018). Optical tweezers for trapping in a microfluidic environment. Applied Optics, 57(20), 5733.
Kaufman, G., Jimenez, J., Bradshaw, A., Radecka, A., Gallegos, M., Kaehr, B., & Golecki, H. (2023). A Stiff-Soft Composite Fabrication Strategy for Fiber Optic Tethered Microtools. Advanced Materials Technologies, 8(12).
Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single Cell Isolation Using Optical Tweezers. Micromachines 2018, Vol. 9, Page 434, 9(9), 434.
Kim, J. Y., Yeom, J., Zhao, G., Calcaterra, H., Munn, J., Zhang, P., & Kotov, N. (2019). Assembly of Gold Nanoparticles into Chiral Superstructures Driven by Circularly Polarized Light. Journal of the American Chemical Society, 141(30), 11739-11744.
Kim, J.-K. (1993). Composite applications: The role of matrix, fiber and interface. Advanced Materials ISBN 3-527-28094-4, 407.
Kiziltas, A., Gardner, D. J., Han, Y., & Yang, H. S. (2014). Mechanical Properties of Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic Composites. Journal of Polymers and the Environment, 22(3), 365-372.
Klasner, S. A., Price, A. K., Hoeman, K. W., Wilson, R. S., Bell, K. J., & Culbertson, C. T. (2010). Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Analytical and Bioanalytical Chemistry, 397(5), 1821-1829.
Kotnala, A., Kollipara, P. S., & Zheng, Y. (2020). Opto-thermoelectric speckle tweezers. Nanophotonics, 9(4), 927-933.
Kumar, P. T., Decrop, D., Safdar, S., Passaris, I., Kokalj, T., Puers, R., Aertsen, A., Spasic, D., & Lammertyn, J. (2020). Digital Microfluidics for Single Bacteria Capture and Selective Retrieval Using Optical Tweezers. Micromachines 2020, Vol. 11, Page 308, 11(3), 308.
Leach, J., Mushfique, H., Di Leonardo, R., Padgett, M., & Cooper, J. (2006). An optically driven pump for microfluidics. Lab on a Chip, 6(6), 735-739.
Lee, G. U., Chrisey, L. A., & Colton, R. J. (1994). Direct measurement of the forces between complementary strands of DNA. Science (New York, N.Y.), 266, 771- 773.
Leung, V., Shehata, A.-A. M., Filipe, C. D. M., & Pelton, R. (2010). Streaming potential sensing in paper-based microfluidic channels. Colloids and Surfaces A. Physicochemical and Engineering Aspects, 364(1-3), 16-18.
Li, J., Alfares, A., & Zheng, Y. (2022). Optical manipulation and assembly of micro/nanoscale objects on solid substrates. IScience, 25(4), 104035.
Li, M., Yan, S., Yao, B., Liang, Y., Han, G., & Zhang, P. (2016). Optical trapping force and torque on spheroidal Rayleigh particles with arbitrary spatial orientations. Journal of the Optical Society of America A, 33(7), 1341.
Li, X., & Cheah, C. C. (2016). Tracking Control for Optical Manipulation with Adaptation of Trapping Stiffness. IEEE Transactions on Control Systems Technology, 24(4), 1432-1440.
Li, X., Tian, J., & Shen, W. (2010). Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose, 17(3), 649-659.
Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F., Choi, Y., & Gao, J. (2020). Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks. In Computer Vision-ECCV, Springer International Publishing, 16, 121-137.
Lin, C.-L., Lee, Y.-H., Lin, C.-T., Liu, Y.-J., Hwang, J.-L., Chung, T.-T., & Baldeck, P. L. (2011). Multiplying optical tweezers force using a micro-lever. Optics Express, 19(21), 20604.
Lin, L., Hill, E. H., Peng, X., & Zheng, Y. (2018). Optothermal Manipulations of Colloidal Particles and Living Cells. Accounts of Chemical Research, 51(6), 1465-1474.
Lin, X., Xie, W., Lin, Q., Cai, Y., Hua, Y., Lin, J., He, G., & Chen, J. (2021). NIRresponsive metal-containing polymer hydrogel for light-controlled microvalve. Polymer Chemistry, 12(23), 3375-3382.
Liu, L., Yang, J.-P., Ju, X.-J., Xie, R., Yang, L., Liang, B., & Chu, L.-Y. (2009). Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent. Journal of Colloid and Interface Science, 336(1), 100- 106.
Liu, W., Dong, D., Yang, H., Gong, Q., & Shi, K. (2020). Robust and high-speed rotation control in optical tweezers by using polarization synthesis based on heterodyne interference. Opto-Electronic Advances, 3(8), 200022-200022.
Lokesh, M., Vaippully, R., Bhallamudi, V. P., Prabhakar, A., & Roy, B. (2021). Realization of pitch-rotational torque wrench in two-beam optical tweezers. Journal of Physics Communications, 5(11), 115016.
Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009). Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30(9), 1497-1500.
Magazzu, A., Spadaro, D., Donato, M. G., Sayed, R., Messina, E., D'Andrea, C., Foti, A., Fazio, B., Iati, M. A., Irrera, A., Saija, R., Gucciardi, P. G., & Marago, O. M. (2015). Optical tweezers: a non-destructive tool for soft and biomaterial investigations. Rendiconti Lincei, 26(S2), 203-218.
Mahadi, N. I., Ayop, S. K., Mat Yeng, M. S., & Supian, F. L. (2022). Power Density Limit for Stable Optical Trapping of a Single Microcluster of Calix[4]arene in Water. Central Asian and the Caucasus, 23(2), 3000-3007.
Mahadi, N. I., Ayop, S. K., & Supian, F. L. (2022). The optical trapping of a single Calix[4]arene microcluster in water. In T. Omatsu (Ed.), Optical Manipulation and Structured Materials Conference, SPIE, 4.
Marago, O. M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P. G., Iati, M. A., Calogero, G., Jones, P. H., Borghese, F., Denti, P., Nicolosi, V., & Ferrari, A. C. (2010). Brownian Motion of Graphene. ACS Nano, 4(12), 7515-7523.
Marago, O. M., Jones, P. H., Bonaccorso, F., Scardaci, V., Gucciardi, P. G., Rozhin, A. G., & Ferrari, A. C. (2008). Femtonewton Force Sensing with Optically Trapped Nanotubes. Nano Letters, 8(10), 3211-3216.
Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays. Angewandte Chemie, 119(8), 1340-1342.
Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences, 105(50), 19606-19611.
Martonfalvi, Z., Bianco, P., Naftz, K., Ferenczy, G. G., & Kellermayer, M. (2017). Force generation by titin folding. Protein Science, 26(7), 1380-1390.
Maruo, S., Takaura, A., & Saito, Y. (2009). Optically driven micropump with a twin spiral microrotor. Optics Express, 17(21), 18525.
Marzo, A., & Drinkwater, B. W. (2019). Holographic acoustic tweezers. Proceedings of the National Academy of Sciences, 116(1), 84-89.
Masuda, A., Takao, H., Shimokawa, F., & Terao, K. (2021). On-site processing of single chromosomal DNA molecules using optically driven microtools on a microfluidic workbench. Scientific Reports, 11(1), 7961.
Mat Yeng, M. S., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4- pentylbiphenyl (5CB) microdroplet in water using optical tweezers. In Optical Manipulation and Structured Materials Conference (OMC 2022), SPIE, 12479, 23-25.
Merci, A., Urbano, A., Grossmann, M. V. E., Tischer, C. A., & Mali, S. (2015). Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion. Food Research International, 73, 38-43.
Meyer, A. R., & Gorin, M. A. (2019). First point-of-care PSA test for prostate cancer detection. In Nature Reviews Urology, Nature Publishing Group, 16 (6), 332- 333.
Monschein, M., Reisinger, C., & Nidetzky, B. (2013). Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology, 128, 679-687.
Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941.
Munoz-Perez, F. M., Ortega-Mendoza, J. G., Padilla-Vivanco, A., Toxqui-Quitl, C., Sarabia-Alonso, J. A., & Ramos-Garcia, R. (2020). Steady-State 3D Trapping and Manipulation of Microbubbles Using Thermocapillary. Frontiers in Physics, 8.
Nachman-Clewner, M., St. Jules, R., & Townes-Anderson, E. (1999). L-type calcium channels in the photoreceptor ribbon synapse: Localization and role in plasticity. The Journal of Comparative Neurology, 415(1), 1-16.
Nechyporchuk, O., Hakansson, K. M. O., Gowda.V, K., Lundell, F., Hagstrom, B., & Kohnke, T. (2018). Continuous Assembly of Cellulose Nanofibrils and Nanocrystals into Strong Macrofibers through Microfluidic Spinning. Advanced Materials Technologies, 1800557.
Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5, 491-505.
Nieminen, T. A., Knoner, G., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007). Physics of Optical Tweezers. In Methods in Cell Biology, 82, 207-236
Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Knoner, G., Branczyk, A. M., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007). Optical tweezers computational toolbox. Journal of Optics A: Pure and Applied Optics, 9(8), S196-S203.
Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sorensen, K., & Oddershede, L. B. (2017). Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chemical Reviews, 117(5), 4342-4375.
Olkkonen, J., Lehtinen, K., & Erho, T. (2010). Flexographically Printed Fluidic Structures in Paper. Analytical Chemistry, 82(24), 10246-10250.
O'Neil, A. T., & Padgett, M. J. (2002). Rotational control within optical tweezers by use of a rotating aperture. Optics Letters, 27(9), 743.
Oroszi, L., Galajda, P., Kirei, H., Bottka, S., & Ormos, P. (2006). Direct Measurement of Torque in an Optical Trap and Its Application to Double-Strand DNA. Physical Review Letters, 97(5), 058301.
Osterman, N., Slapar, V., Boric, M., Stopar, D., Babic, D., & Poberaj, I. (2010). Active laser tweezers microrheometry of microbial biofilms. In Optical Trapping and Optical Micromanipulation VII, SPIE, 7762, 313-320.
Parker, R. M., Frka-Petesic, B., Guidetti, G., Kamita, G., Consani, G., Abell, C., & Vignolini, S. (2016). Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry. ACS Nano, 10(9), 8443-8449.
Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomedical Journal, 40(2), 101-105.
Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology. In Advanced Materials (Vol. 18, Issue 11, pp. 1345-1360).
Pesce, G., Jones, P. H., Marago, O. M., & Volpe, G. (2020). Optical tweezers: theory and practice. The European Physical Journal Plus, 135(12), 949.
Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2009). Erratum: Colloquium : Momentum of an electromagnetic wave in dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]. Reviews of Modern Physics, 81(1), 443-443.
Phillips, W. D. (1998). Nobel Lecture: Laser cooling and trapping of neutral atoms. Reviews of Modern Physics, 70(3), 721-741.
Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Esposti Boschi, C. D., Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Marago, O. M. (2018). Optical tweezers and their applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 131-150.
Power, M., Thompson, A. J., Anastasova, S., & Yang, G.-Z. (2018). A Monolithic Force-Sensitive 3D Microgripper Fabricated on the Tip of an Optical Fiber Using 2-Photon Polymerization. Small, 14(16), 1703964.
Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E. H. K., & Harber, J. K. H. (1999). Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microscopy Research and Technique, 44(5), 378-386.
Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19-25.
Rafiee, Z., & Keshavarz, V. (2015). Synthesis and characterization of polyurethane/microcrystalline cellulose bionanocomposites. Progress in Organic Coatings, 86, 190-193.
Rahman, M. S. S., Li, J., Mengu, D., Rivenson, Y., & Ozcan, A. (2021). Ensemble learning of diffractive optical networks. Light: Science & Applications, 10(1), 14.
Rajeev, A., Deshpande, A. P., & Basavaraj, M. G. (2018). Rheology and microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3- methylimidazolium chloride (AmimCl)/water mixtures. Soft Matter, 14(37), 7615-7624.
Redding, B., & Pan, Y.-L. (2015). Optical trap for both transparent and absorbing particles in air using a single shaped laser beam. Optics Letters, 40(12), 2798.
Riccardi, M., & Martin, O. J. F. (2023). Electromagnetic Forces and Torques: From Dielectrophoresis to Optical Tweezers. Chemical Reviews, 123(4), 1680-1711.
Riyanto, S., Ayop, S. K., & Aziz, W. N. S. W. (2015). The determination of complex shear modulus of deionized water using kramer-kronig relation (KKR) method. Jurnal Teknologi, 74(8), 49-54.
Robertson-Anderson, R. M. (2018). Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Letters, 7(8), 968-975.
Romero, C. M., & Beltran, A. (2012). Effect of temperature and concentration on the viscosity of aqueous solutions of 3-aminopropanoic acid, 4-aminobutanoic acid, 5-aminopentanoic acid, 6-aminohexanoic acid. Revista Colombiana de Quimica, 41(1), 123-131. .
Rudraraju, V. S., & Wyandt, C. M. (2005). Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I. International Journal of Pharmaceutics, 292(1-2), 53-61.
Samadi, M., Alibeigloo, P., Aqhili, A., Khosravi, M. A., Saeidi, F., Vasini, S., Ghorbanzadeh, M., Darbari, S., & Moravvej-Farshi, M. K. (2022). Plasmonic tweezers: Towards nanoscale manipulation. Optics and Lasers in Engineering, 154, 107001.
Sarkar, R., & Rybenkov, V. V. (2016). A Guide to Magnetic Tweezers and Their Applications. Frontiers in Physics, 4.
Scott, S. M., & Ali, Z. (2021). Fabrication Methods for Microfluidic Devices: An Overview. Micromachines 2021, Vol. 12, Page 319, 12(3), 319.
Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications. In Science, American Association for the Advancement of Science, 336 (6085), 1124-1128.
Shahripul Azeman, N. S., Mat Nawi, M. N., & Yaacob, M. I. H. (2020). Development and characterization of fluidic based dome-shaped pressure sensor using spiral microchannel. Microsystem Technologies, 26(5), 1653-1660.
Shan, X., Wang, F., Wang, D., Wen, S., Chen, C., Di, X., Nie, P., Liao, J., Liu, Y., Ding, L., Reece, P. J., & Jin, D. (2021). Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. Nature Nanotechnology, 16(5), 531-537.
Shi, Y., Song, Q., Toftul, I., Zhu, T., Yu, Y., Zhu, W., Tsai, D. P., Kivshar, Y., & Liu, A. Q. (2022). Optical manipulation with metamaterial structures. Applied Physics Reviews, 9(3).
Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative measurements of force and displacement using an optical trap. Biophysical Journal, 70(4), 1813-1822.
Simpson, S. H. (2014). Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 81-99.
Simpson, S. H., & Hanna, S. (2010). First-order nonconservative motion of optically trapped nonspherical particles. Physical Review E, 82(3), 031141.
Singh, V., Lin, P. T., Patel, N., Lin, H., Li, L., Zou, Y., Deng, F., Ni, C., Hu, J., Giammarco, J., Soliani, A. P., Zdyrko, B., Luzinov, I., Novak, S., Novak, J., achtel, P., Danto, S., Musgraves, J. D., Richardson, K., _ Agarwal, A. M. (2014). Mid-infrared materials and devices on a Si platform for optical sensing. Science and Technology of Advanced Materials, 15(1), 014603.
Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell membrane and its relation to hemolytic disorders: An optical tweezers study. Biophysical Journal, 77(6), 3085-3095.
Smith, A. V., Do, B. T., Hadley, G. R., & Farrow, R. L. (2009). Optical Damage Limits to Pulse Energy From Fibers. IEEE Journal of Selected Topics in Quantum Electronics, 15(1), 153-158.
Song, J., Babayekhorasani, F., & Spicer, P. T. (2019). Soft Bacterial Cellulose Microcapsules with Adaptable Shapes. Biomacromolecules, 20(12), 4437-4446.
Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS Photonics, 3(5), 719-736.
Strick, T., Allemand, J. F., Croquette, V., & Bensimon, D. (2000). Twisting and stretching single DNA molecules. In Progress in Biophysics and Molecular Biology (Vol. 74, pp. 115-140).
Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A., & Croquette, V. (1996). The elasticity of a single supercoiled DNA molecule. Science (New York, N.Y.), 271, 1835-1837.
Strong, E. B., Schultz, S. A., Martinez, A. W., & Martinez, N. W. (2019). Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Scientific Reports, 9(1), 7.
Sun, C.-K., Huang, Y.-C., Cheng, P. C., Liu, H.-C., & Lin, B.-L. (2001). Cell manipulation by use of diamond microparticles as handles of optical tweezers. Journal of the Optical Society of America B, 18(10), 1483.
Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133-136.
Szymanska-Chargot, M., Ciesla, J., Chylinska, M., Gdula, K., Pieczywek, P. M., Koziol, A., Cieslak, K. J., & Zdunek, A. (2018). Effect of ultrasonication on physicochemical properties of apple based nanocellulose-calcium carbonate composites. Cellulose, 25(8), 4603-4621.
Tassieri, M., Giudice, F. Del, Robertson, E. J., Jain, N., Fries, B., Wilson, R., Glidle, A., Greco, F., Netti, P. A., Maffettone, P. L., Bicanic, T., & Cooper, J. M. (2015). Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions 'at a glance.' Scientific Reports, 5, 8831.
Tassieri, M., Laurati, M., Curtis, D. J., Auhl, D. W., Coppola, S., Scalfati, A., Hawkins, K., Williams, P. R., & Cooper, J. M. (2016). i-Rheo: Measuring the materials' linear viscoelastic properties "in a step"!. Journal of Rheology, 60(4), 649-660.
Terray, A., Oakey, J., & Marr, D. W. M. (2002). Microfluidic Control Using Colloidal Devices. Science, 296(5574), 1841-1844.
Toe, W. J., Ortega-Piwonka, I., Angstmann, C. N., Gao, Q., Tan, H. H., Jagadish, C., Henry, B. I., & Reece, P. J. (2016). Nonconservative dynamics of optically trapped high-aspect-ratio nanowires. Physical Review E, 93(2), 022137.
Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., & Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in the back focal plane. Review of Scientific Instruments, 77(10).
Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application-A review. In International Journal of Biological Macromolecules (Vol. 93, pp. 789-804).
Turlier, H., Fedosov, D. A., Audoly, B., Auth, T., Gov, N. S., Sykes, C., Joanny, J.-F., Gompper, G., & Betz, T. (2016). Equilibrium physics breakdown reveals the active nature of red blood cell flickering. Nature Physics, 12(5), 513-519.
Uetani, K., Koga, H., & Nogi, M. (2019). Estimation of the Intrinsic Birefringence of Cellulose Using Bacterial Cellulose Nanofiber Films. ACS Macro Letters, 8(3), 250-254.
Vizsnyiczai, G., Buzas, A., Lakshmanrao Aekbote, B., Fekete, T., Grexa, I., Ormos, P., & Kelemen, L. (2020). Multiview microscopy of single cells through microstructure-based indirect optical manipulation. Biomedical Optics Express, 11(2), 945.
Vizsnyiczai, G., Lestyan, T., Joniova, J., Aekbote, B. L., Strejckova, A., Ormos, P., Miskovsky, P., Kelemen, L., & Bano, G. (2015). Optically Trapped Surface- Enhanced Raman Probes Prepared by Silver Photoreduction to 3D Microstructures. Langmuir, 31(36), 10087-10093.
Wang, W., Wu, W.-Y., Wang, W., & Zhu, J.-J. (2010). Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. Journal of Chromatography A, 1217(24), 3896-3899.
Wasserman, M. R., & Liu, S. (2019). A Tour de Force on the Double Helix: Exploiting DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry, 58(47), 4667-4676.
Watanabe, A., Morita, S., & Ozaki, Y. (2006). Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window twodimensional correlation analysis. Applied Spectroscopy, 60(6), 611-618.
Wen-Cheng, X., Wei-Cheng, C., Ai-Ping, L., Qi, G., & Song-Hao, L. (2001). Enhanced Pulse Compression Induced by Third-Order Dispersion in Birefringent Fibre. Chinese Physics Letters, 18(9), 1211-1213.
Whitley, K. D., Comstock, M. J., & Chemla, Y. R. (2017). High-Resolution Optical Tweezers Combined with Single-Molecule Confocal Microscopy. In Methods in enzymology, Academic Press, 582, 137-169.
Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America, 89(5), 2140-2143.
Wu, Y., Sun, D., Huang, W., & Xi, N. (2013). Dynamics Analysis and Motion Planning for Automated Cell Transportation with Optical Tweezers. IEEE/ASME Transactions on Mechatronics, 18(2), 706-713.
Xie, M., Wang, Y., Feng, G., & Sun, D. (2015). Automated Pairing Manipulation of Biological Cells with a Robot-Tweezers Manipulation System. IEEE/ASME Transactions on Mechatronics, 20(5), 2242-2251.
Yan, Z., & Scherer, N. F. (2013). Optical vortex induced rotation of silver nanowires. Journal of Physical Chemistry Letters, 4(17), 2937-2942.
Yang, H., Jussila, H., Autere, A., Komsa, H.-P., Ye, G., Chen, X., Hasan, T., & Sun, Z. (2017). Optical Waveplates Based on Birefringence of Anisotropic Two- Dimensional Layered Materials. ACS Photonics, 4(12), 3023-3030.
Yohana Chaerunisaa, A., Sriwidodo, S., & Abdassah, M. (2020). Microcrystalline Cellulose as Pharmaceutical Excipient. In Pharmaceutical Formulation Design - Recent Practices. IntechOpen.
Zhang, H., & Liu, K.-K. (2008). Optical tweezers for single cells. Journal of The Royal Society Interface, 5(24), 671-690.
Zhang, Y., Chou, J. B., Li, J., Li, H., Du, Q., Yadav, A., Zhou, S., Shalaginov, M. Y., Fang, Z., Zhong, H., Roberts, C., Robinson, P., Bohlin, B., Rios, C., Lin, H., Kang, M., Gu, T., arner, J., Liberman, V., _ Hu, J. (2019). Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nature Communications, 10(1), 4279.
Zhang, Z., Kimkes, T. E. P., & Heinemann, M. (2019). Manipulating rod-shaped bacteria with optical tweezers. Scientific Reports 2019 9:1, 9(1), 1-9.
Zhao, G. H., Kapur, N., Carlin, B., Selinger, E., & Guthrie, J. T. (2011). Characterisation of the interactive properties of microcrystalline cellulose- carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics, 415(1-2), 95-101.
Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. In Soft Matter 10(5), 672-687.
Zhao, X., Zhao, N., Shi, Y., Xin, H., & Li, B. (2020). Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation. Micromachines, 11(2), 114.
Zheng, B., Li, C. Y., Huang, S., Zhang, Z. L., Wu, Q. S., Pang, D. W., & Tang, H. W. (2022). Optical tweezers assisted analyzing and sorting of tumor cells tagged with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B: Chemical, 368, 132173.
Zhu, R., Avsievich, T., Popov, A., & Meglinski, I. (2020). Optical Tweezers in Studies of Red Blood Cells. Cells, 9(3), 545.
Zmyslony, M., Dradrach, K., Haberko, J., Nalecz-Jawecki, P., Rogoz, M., & Wasylczyk, P. (2020). Optical Pliers: Micrometer-Scale, Light-Driven Tools Grown on Optical Fibers. Advanced Materials, 32(33), 2002779. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |