UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Thesis
Subject :QC Physics
Main Author :Wan Nor Suhaila Wan Aziz
Title :Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications
Hits :109
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2024
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file
PDF Full Text :You have no permission to view this item.

Abstract : Perpustakaan Tuanku Bainun
This research endeavours to employ optical trapping technique for manipulating a single microcrystalline cellulose microcluster (MCCM) in solution. The viscosity of low concentration microcrystalline cellulose (MCCM) solutions was assessed to identify optimal concentrations for optical tweezer applications. These solutions were prepared via the sonication method, and their viscosity was measured using a rheometer. Utilizing optical microscopy, MCCM formation was observed to determine suitable size ranges for optical trapping. A single MCCM was successfully trapped using a 976nm linearly polarized laser with a numerical aperture of 1.4, whist manipulation was achieved employing a circularly polarized laser. The translation motion of the MCCM was facilitated by a piezostage system. Trajectories of the MCCM were analyzed through visual observation via a CCD camera and scattering light detection with a quadrant photodiode (QPD). The findings indicated that solutions with concentrations below 1% w/w were optimal for optical trapping. MCCM ranging from 0.5 _m to 4.0 _m were effectively trapped within a laser power density range of 0.6 MW/cm2 to 2.2 MW/cm2, with the additional capability of rotation using the circularly polarized laser. In conclusion, this research demonstrates the feasibility of employing optical techniques, in conjunction with a piezostage, to achieve simultaneous linear translation and rotational motion of a single microcrystalline cellulose microcluster. This research implies that a single cellulose microcluster and fibrous microparticle, such as MCCM, can be optically micro-controlled for microtool applications.

References

Abbasi Moud, A. (2022). Cellulose through the Lens of Microfluidics: A Review.

Applied Biosciences, 1(1), 1-37.

 

Abe, K., Kotera, K., Suzuki, K., & Citterio, D. (2010). Inkjet-printed paperfluidic

immuno-chemical sensing device. Analytical and Bioanalytical Chemistry,

398(2), 885-893.

 

Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-Printed Microfluidic Multianalyte

Chemical Sensing Paper. Analytical Chemistry, 80(18), 6928-6934.

 

Aekbote, B. L., Fekete, T., Jacak, J., Vizsnyiczai, G., Ormos, P., & Kelemen, L. (2016).

Surface-modified complex SU-8 microstructures for indirect optical

manipulation of single cells. Biomedical Optics Express, 7(1), 45.

 

Agayan, R. R., Horvath, T., McNaughton, B. H., Anker, J. N., & Kopelman, R. (2004).

Optical manipulation of metal-silica hybrid nanoparticles. In Optical Trapping

and Optical Micromanipulation (Vol. 5514, pp. 502-513). SPIE.

 

Ahn, J., Xu, Z., Bang, J., Ju, P., Gao, X., & Li, T. (2020). Ultrasensitive torque

detection with an optically levitated nanorotor. Nature Nanotechnology, 15(2),

89-93.

 

Amblard, F., Yurke, B., Pargellis, A., & Leibler, S. (1996). A magnetic manipulator

for studying local rheology and micromechanical properties of biological

systems. Review of Scientific Instruments, 67(3), 818-827.

 

Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure.

Physical Review Letters, 24(4), 156-159.

 

Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere

in the ray optics regime. Biophysical Journal, 61(2), 569-582.

 

Ashkin, A. (1997). Optical trapping and manipulation of neutral particles using lasers.

Proceedings of the National Academy of Sciences of the United States of

America.

 

Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses

and bacteria. Science (New York, N.Y.), 235, 1517-1520.

 

Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a

single-beam gradient force optical trap for dielectric particles. Optics Letters,

11(5), 288.

 

Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation

of single cells using infrared laser beams. Nature, 330(6150), 769-771.

 

Bai, W., & Li, K. (2009). Partial replacement of silica with microcrystalline cellulose

in rubber composites. Composites Part A. Applied Science and Manufacturing,

40(10), 1597-1605.

 

Barbot, A., Decanini, D., & Hwang, G. (2016). On-chip Microfluidic Multimodal

Swimmer toward 3D Navigation. Scientific Reports, 6(1), 19041.

 

Barrulas, R. V., & Corvo, M. C. (2023). Rheology in Product Development: An Insight

into 3D Printing of Hydrogels and Aerogels. Gels, 9(12), 986.

 

Bente, K., Codutti, A., Bachmann, F., & Faivre, D. (2018). Biohybrid and Bioinspired

Magnetic Microswimmers. Small, 14(29), 1704374.

 

Berg-Sorensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical

tweezers. Review of Scientific Instruments, 75(3), 594-612.

 

Berg-Sorensen, K., Peterman, E. J. G., Weber, T., Schmidt, C. F., & Flyvbjerg, H.

(2006). Power spectrum analysis for optical tweezers. II: Laser wavelength

dependence of parasitic filtering, and how to achieve high bandwidth. Review of

Scientific Instruments, 77(6).

 

Binnig, G., Garcia, N., & Rohrer, H. (1985). Conductivity sensitivity of inelastic

scanning tunneling microscopy. Physical Review B, 32, 1336-1338.

 

Binnig, G., Quate, C., & Gerber, C. (1986). Atomic force microscope. Physical Review

Letters, 56, 930-933.

 

Blazquez-Castro, A. (2019). Optical Tweezers: Phototoxicity and Thermal Stress in

Cells and Biomolecules. Micromachines, 10(8), 507.

 

Bohm, C. F., Feldner, P., Merle, B., & Wolf, S. E. (2019). Conical Nanoindentation

Allows Azimuthally Independent Hardness Determination in Geological and

Biogenic Minerals. Materials, 12(10), 1630.

 

Boran, S., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2016). The Comparative Study

of Different Mixing Methods for Microcrystalline Cellulose/Polyethylene

Composites. International Polymer Processing, 31(1), 92-103.

 

Bruce, G. D., Rodriguez-Sevilla, P., & Dholakia, K. (2021). Initiating revolutions for

optical manipulation: the origins and applications of rotational dynamics of

trapped particles. Advances in Physics: X, 6(1).

 

Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-Cost Printing of

Poly(dimethylsiloxane) Barriers to Define Microchannels in Paper. Analytical

Chemistry, 80(9), 3387-3392.

 

Bunea, A., & Gluckstad, J. (2019). Strategies for Optical Trapping in Biological

Samples: Aiming at Microrobotic Surgeons. Laser & Photonics Reviews, 13(4),

1800227.

 

Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position

detector for simultaneous measurements of force constants and local viscosity in

optical tweezers. Optics Communications, 230(4-6), 357-368.

 

Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in

single-molecule biophysics. Nature Reviews Methods Primers, 1(1), 25.

 

Butaite, U. G., Gibson, G. M., Ho, Y.-L. D., Taverne, M., Taylor, J. M., & Phillips, D.

B. (2019). Indirect optical trapping using light driven micro-rotors for

reconfigurable hydrodynamic manipulation. Nature Communications, 10(1),

1215.

 

Carrick, C., Larsson, P. A., Brismar, H., Aidun, C., & Wagberg, L. (2014). Native and

functionalized micrometre-sized cellulose capsules prepared by microfluidic

flow focusing. RSC Adv., 4(37), 19061-19067.

 

Cataldi, A., Dorigato, A., Deflorian, F., & Pegoretti, A. (2014). Thermo-mechanical

properties of innovative microcrystalline cellulose filled composites for art

protection and restoration. Journal of Materials Science, 49(5), 2035-2044.

 

Chang, D. E., Sorensen, A. S., Hemmer, P. R., & Lukin, M. D. (2006). Quantum Optics

with Surface Plasmons. Physical Review Letters, 97(5), 053002.

 

Charvin, G., Strick, T. R., Bensimon, D., & Croquette, V. (2005). Tracking

topoisomerase activity at the single-molecule level. Annual Review of

Biophysics and Biomolecular Structure, 34, 201-219.

 

Chen, H., Chandrasekar, S., Sheetz, M. P., Stossel, T. P., Nakamura, F., & Yan, J.

(2013). Mechanical perturbation of filamin A immunoglobulin repeats 20-21

reveals potential non-equilibrium mechanochemical partner binding function.

Scientific Reports, 3(1), 1642.

 

Chen, H., & Sun, D. (2012). Moving Groups of Microparticles into Array with a

Robot-Tweezers Manipulation System. IEEE Transactions on Robotics, 28(5),

1069-1080.

 

Chen, J., Yan, S., & Ruan, J. (1996). A study on the preparation, structure, and

properties of microcrystalline cellulose. Journal of Macromolecular Science -

Pure and Applied Chemistry, 33(12), 1851-1862.

 

Cheng, Z., Mason, T. G., & Chaikin, P. M. (2003). Periodic oscillation of a colloidal

disk near a wall in an optical trap. Physical Review E, 68(5), 051404.

 

Chinnam, J., Das, D. K., Vajjha, R. S., & Satti, J. R. (2015). Measurements of the

surface tension of nanofluids and development of a new correlation. International

Journal of Thermal Sciences, 98, 68-80.

 

Chitnis, G., Ding, Z., Chang, C.-L., Savran, C. A., & Ziaie, B. (2011). Laser-treated

hydrophobic paper: an inexpensive microfluidic platform. Lab on a Chip, 11(6),

1161.

 

Choe, D., Kim, Y. M., Nam, J. E., Nam, K., Shin, C. S., & Roh, Y. H. (2018). Synthesis

of high-strength microcrystalline cellulose hydrogel by viscosity adjustment.

Carbohydrate Polymers, 180, 231-237.

 

Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., & Gupta, S. K. (2014).

Automated Manipulation of Biological Cells Using Gripper Formations

Controlled by Optical Tweezers. IEEE Transactions on Automation Science and

Engineering, 11(2), 338-347.

 

Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., & Ashkin, A. (1985). Threedimensional

viscous confinement and cooling of atoms by resonance radiation

pressure. Physical Review Letters, 55, 48-51.

 

Chung, Y.-C., Chen, P.-W., Fu, C.-M., & Wu, J.-M. (2013). Particles sorting in microchannel

system utilizing magnetic tweezers and optical tweezers. Journal of

Magnetism and Magnetic Materials, 333, 87-92.

 

Coffey, W. T., & Kalmykov, Y. P. (2012). The Langevin Equation (Vol. 27). World

Scientific.

 

Crozier, K. B. (2024). Plasmonic Nanotweezers: What's Next? ACS Photonics, 11(2),

321-333.

 

De Vlaminck, I., & Dekker, C. (2012). Recent Advances in Magnetic Tweezers. Annual

Review of Biophysics, 41(1), 453-472.

 

Dholakia, K., Spalding, G., & MacDonald, M. (2002). Optical tweezers: the next

generation. Physics World, 15(10), 31.

 

Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M.-E.

(2019). Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile

Microfluidics Platform for Nanomanipulation and Mechanical

Characterization. ACS applied materials & interfaces, 11(37), 33620-33627.

 

Donato, M. G., Messina, E., Foti, A., Smart, T. J., Jones, P. H., Iati, M. A., Saija, R.,

Gucciardi, P. G., & Marago, O. M. (2018). Optical trapping and optical force

positioning of two-dimensional materials. Nanoscale, 10(3), 1245-1255.

 

Douplik, A., Saiko, G., Schelkanova, I., & Tuchin, V. V. (2013). The response of tissue

to laser light. In Lasers for Medical Applications (pp. 47-109). Elsevier.

 

Dungchai, W., Chailapakul, O., & Henry, C. S. (2011). A low-cost, simple, and rapid

fabrication method for paper-based microfluidics using wax screen-printing.

The Analyst, 136(1), 77-82.

 

Ejikeme, P. M. (2008). Investigation of the physicochemical properties of

microcrystalline cellulose from agricultural wastes I: orange mesocarp.

Cellulose, 15(1), 141-147.

 

Elsakhawy, M., & Hassan, M. (2007). Physical and mechanical properties of

microcrystalline cellulose prepared from agricultural residues. Carbohydrate

Polymers, 67(1), 1-10.

 

Favre-Bulle, I. A., Stilgoe, A. B., Scott, E. K., & Rubinsztein-Dunlop, H. (2019).

Optical trapping in vivo: theory, practice, and applications. Nanophotonics,

8(6), 1023-1040.

 

Fenton, E. M., Mascarenas, M. R., Lopez, G. P., & Sibbett, S. S. (2009). Multiplex

Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS

Applied Materials & Interfaces, 1(1), 124-129.

 

Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (1996).

Optical angular-momentum transfer to trapped absorbing particles. Physical

Review A, 54(2), 1593-1596.

 

Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H.

(1998). Optical alignment and spinning of laser-trapped microscopic particles.

Nature, 394(6691), 348-350.

 

Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., & Hanstorp, D. (2001).

Optically driven micromachine elements. Applied Physics Letters, 78(4), 547-

549.

 

Geonzon, L. C., Kobayashi, M., Sugimoto, T., & Adachi, Y. (2022). Study on the

kinetics of adsorption of poly(ethylene oxide) onto a silica particle using optical

tweezers and microfluidics. Colloids and Surfaces A. Physicochemical and

Engineering Aspects, 642, 128691.

 

Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M., & Shaler, S. M. (2020).

Birefringence-based orientation mapping of cellulose nanofibrils in thin films.

Cellulose, 27(2), 677-692.

 

Gomez Hoyos, C., Cristia, E., & Vazquez, A. (2013). Effect of cellulose

microcrystalline particles on properties of cement based composites. Materials

and Design, 51, 810-818.

 

Gore, J., Bryant, Z., Stone, M. D., Nollmann, M., Cozzarelli, N. R., & Bustamante, C.

(2006). Mechanochemical analysis of DNA gyrase using rotor bead tracking.

Nature, 439(7072), 100-104.

 

Hamid, M. Y., & Ayop, S. K. (2018). LabVIEW-Based Software for Optical Stiffness

Determination Using Boltzmann Statistics, Equipartition Theorem and Power

Spectral Density Methods. Advanced Science Letters, 24(3), 1856-1860.

 

Han, X., & Sun, C. (2019). Plasmonic Tweezers towards Biomolecular and Biomedical

Applications. Applied Sciences, 9(17), 3596.

 

Hernandez Candia, C. N., Tafoya Martinez, S., & Gutierrez-Medina, B. (2013). A

Minimal Optical Trapping and Imaging Microscopy System. PLoS ONE, 8(2),

e57383.

 

Herranen, J., Markkanen, J., Videen, G., & Muinonen, K. (2019). Non-spherical

particles in optical tweezers: A numerical solution. PLOS ONE, 14(12),

e0225773.

 

Higurashi, E., Sawada, R., & Ito, T. (1998). Optically induced angular alignment of

birefringent micro-objects by linear polarization. Applied Physics Letters,

73(21), 3034-3036.

 

Hochstetter, A., & Pfohl, T. (2016). Motility, Force Generation, and Energy

Consumption of Unicellular Parasites. Trends in Parasitology, 32(7), 531-541.

 

Hou, X., & Cheng, W. (2013). Optical Tweezers. In Encyclopedia of Biophysics.

Springer Berlin Heidelberg 1800-1807.

 

Hu, S., Chen, S., Chen, S., Xu, G., & Sun, D. (2017). Automated Transportation of

Multiple Cell Types Using a Robot-Aided Cell Manipulation System with

Holographic Optical Tweezers. IEEE/ASME Transactions on Mechatronics,

22(2), 804-814.

 

Hu, S., Xie, H., Wei, T., Chen, S., & Sun, D. (2019). Automated Indirect

Transportation of Biological Cells with Optical Tweezers and a 3D Printed

Microtool. Applied Sciences, 9(14), 2883.

 

Irrera, A., Artoni, P., Saija, R., Gucciardi, P. G., Iati, M. A., Borghese, F., Denti, P.,

Iacona, F., Priolo, F., & Marago, O. M. (2011). Size-Scaling in Optical Trapping

of Silicon Nanowires. Nano Letters, 11(11), 4879-4884.

 

Irrera, A., Magazzu, A., Artoni, P., Simpson, S. H., Hanna, S., Jones, P. H., Priolo, F.,

Gucciardi, P. G., & Marago, O. M. (2016). Photonic Torque Microscopy of the

Nonconservative Force Field for Optically Trapped Silicon Nanowires. Nano

Letters, 16(7), 4181-4188.

 

Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U. Il, & Sakai, T. (2014).

"Nonswellable" hydrogel without mechanical hysteresis. Science, 343(6173),

873-875.

 

Kampmann, R., Sinzinger, S., & Korvink, J. G. (2018). Optical tweezers for trapping

in a microfluidic environment. Applied Optics, 57(20), 5733.

 

Kaufman, G., Jimenez, J., Bradshaw, A., Radecka, A., Gallegos, M., Kaehr, B., &

Golecki, H. (2023). A Stiff-Soft Composite Fabrication Strategy for Fiber Optic

Tethered Microtools. Advanced Materials Technologies, 8(12).

 

Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single Cell Isolation

Using Optical Tweezers. Micromachines 2018, Vol. 9, Page 434, 9(9), 434.

 

Kim, J. Y., Yeom, J., Zhao, G., Calcaterra, H., Munn, J., Zhang, P., & Kotov, N. (2019).

Assembly of Gold Nanoparticles into Chiral Superstructures Driven by

Circularly Polarized Light. Journal of the American Chemical Society, 141(30),

11739-11744.

 

Kim, J.-K. (1993). Composite applications: The role of matrix, fiber and interface.

Advanced Materials ISBN 3-527-28094-4, 407.

 

Kiziltas, A., Gardner, D. J., Han, Y., & Yang, H. S. (2014). Mechanical Properties of

Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic

Composites. Journal of Polymers and the Environment, 22(3), 365-372.

 

Klasner, S. A., Price, A. K., Hoeman, K. W., Wilson, R. S., Bell, K. J., & Culbertson,

C. T. (2010). Paper-based microfluidic devices for analysis of clinically relevant

analytes present in urine and saliva. Analytical and Bioanalytical Chemistry,

397(5), 1821-1829.

 

Kotnala, A., Kollipara, P. S., & Zheng, Y. (2020). Opto-thermoelectric speckle

tweezers. Nanophotonics, 9(4), 927-933.

 

Kumar, P. T., Decrop, D., Safdar, S., Passaris, I., Kokalj, T., Puers, R., Aertsen, A.,

Spasic, D., & Lammertyn, J. (2020). Digital Microfluidics for Single Bacteria

Capture and Selective Retrieval Using Optical Tweezers. Micromachines 2020,

Vol. 11, Page 308, 11(3), 308.

 

Leach, J., Mushfique, H., Di Leonardo, R., Padgett, M., & Cooper, J. (2006). An

optically driven pump for microfluidics. Lab on a Chip, 6(6), 735-739.

 

Lee, G. U., Chrisey, L. A., & Colton, R. J. (1994). Direct measurement of the forces

between complementary strands of DNA. Science (New York, N.Y.), 266, 771-

773.

 

Leung, V., Shehata, A.-A. M., Filipe, C. D. M., & Pelton, R. (2010). Streaming

potential sensing in paper-based microfluidic channels. Colloids and Surfaces

A. Physicochemical and Engineering Aspects, 364(1-3), 16-18.

 

Li, J., Alfares, A., & Zheng, Y. (2022). Optical manipulation and assembly of

micro/nanoscale objects on solid substrates. IScience, 25(4), 104035.

 

Li, M., Yan, S., Yao, B., Liang, Y., Han, G., & Zhang, P. (2016). Optical trapping

force and torque on spheroidal Rayleigh particles with arbitrary spatial

orientations. Journal of the Optical Society of America A, 33(7), 1341.

 

Li, X., & Cheah, C. C. (2016). Tracking Control for Optical Manipulation with

Adaptation of Trapping Stiffness. IEEE Transactions on Control Systems

Technology, 24(4), 1432-1440.

 

Li, X., Tian, J., & Shen, W. (2010). Progress in patterned paper sizing for fabrication

of paper-based microfluidic sensors. Cellulose, 17(3), 649-659.

 

Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei,

F., Choi, Y., & Gao, J. (2020). Oscar: Object-Semantics Aligned Pre-training

for Vision-Language Tasks. In Computer Vision-ECCV, Springer International

Publishing, 16, 121-137.

 

Lin, C.-L., Lee, Y.-H., Lin, C.-T., Liu, Y.-J., Hwang, J.-L., Chung, T.-T., & Baldeck,

P. L. (2011). Multiplying optical tweezers force using a micro-lever. Optics

Express, 19(21), 20604.

 

Lin, L., Hill, E. H., Peng, X., & Zheng, Y. (2018). Optothermal Manipulations of

Colloidal Particles and Living Cells. Accounts of Chemical Research, 51(6),

1465-1474.

 

Lin, X., Xie, W., Lin, Q., Cai, Y., Hua, Y., Lin, J., He, G., & Chen, J. (2021). NIRresponsive

metal-containing polymer hydrogel for light-controlled microvalve.

Polymer Chemistry, 12(23), 3375-3382.

 

Liu, L., Yang, J.-P., Ju, X.-J., Xie, R., Yang, L., Liang, B., & Chu, L.-Y. (2009).

Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules

with non-toxic solvent. Journal of Colloid and Interface Science, 336(1), 100-

106.

 

Liu, W., Dong, D., Yang, H., Gong, Q., & Shi, K. (2020). Robust and high-speed

rotation control in optical tweezers by using polarization synthesis based on

heterodyne interference. Opto-Electronic Advances, 3(8), 200022-200022.

 

Lokesh, M., Vaippully, R., Bhallamudi, V. P., Prabhakar, A., & Roy, B. (2021).

Realization of pitch-rotational torque wrench in two-beam optical tweezers.

Journal of Physics Communications, 5(11), 115016.

 

Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009). Rapid prototyping of paper-based

microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30(9),

1497-1500.

 

Magazzu, A., Spadaro, D., Donato, M. G., Sayed, R., Messina, E., D'Andrea, C., Foti,

A., Fazio, B., Iati, M. A., Irrera, A., Saija, R., Gucciardi, P. G., & Marago, O. M.

(2015). Optical tweezers: a non-destructive tool for soft and biomaterial

investigations. Rendiconti Lincei, 26(S2), 203-218.

 

Mahadi, N. I., Ayop, S. K., Mat Yeng, M. S., & Supian, F. L. (2022). Power Density

Limit for Stable Optical Trapping of a Single Microcluster of Calix[4]arene in

Water. Central Asian and the Caucasus, 23(2), 3000-3007.

 

Mahadi, N. I., Ayop, S. K., & Supian, F. L. (2022). The optical trapping of a single

Calix[4]arene microcluster in water. In T. Omatsu (Ed.), Optical Manipulation

and Structured Materials Conference, SPIE, 4.

 

Marago, O. M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P. G., Iati, M. A.,

Calogero, G., Jones, P. H., Borghese, F., Denti, P., Nicolosi, V., & Ferrari, A. C.

(2010). Brownian Motion of Graphene. ACS Nano, 4(12), 7515-7523.

 

Marago, O. M., Jones, P. H., Bonaccorso, F., Scardaci, V., Gucciardi, P. G., Rozhin,

A. G., & Ferrari, A. C. (2008). Femtonewton Force Sensing with Optically

Trapped Nanotubes. Nano Letters, 8(10), 3211-3216.

 

Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned

Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays.

Angewandte Chemie, 119(8), 1340-1342.

 

Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional

microfluidic devices fabricated in layered paper and tape. Proceedings of the

National Academy of Sciences, 105(50), 19606-19611.

 

Martonfalvi, Z., Bianco, P., Naftz, K., Ferenczy, G. G., & Kellermayer, M. (2017).

Force generation by titin folding. Protein Science, 26(7), 1380-1390.

 

Maruo, S., Takaura, A., & Saito, Y. (2009). Optically driven micropump with a twin

spiral microrotor. Optics Express, 17(21), 18525.

 

Marzo, A., & Drinkwater, B. W. (2019). Holographic acoustic tweezers. Proceedings

of the National Academy of Sciences, 116(1), 84-89.

 

Masuda, A., Takao, H., Shimokawa, F., & Terao, K. (2021). On-site processing of

single chromosomal DNA molecules using optically driven microtools on a

microfluidic workbench. Scientific Reports, 11(1), 7961.

 

Mat Yeng, M. S., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4-

pentylbiphenyl (5CB) microdroplet in water using optical tweezers. In Optical

Manipulation and Structured Materials Conference (OMC 2022), SPIE, 12479,

23-25.

 

Merci, A., Urbano, A., Grossmann, M. V. E., Tischer, C. A., & Mali, S. (2015).

Properties of microcrystalline cellulose extracted from soybean hulls by reactive

extrusion. Food Research International, 73, 38-43.

 

Meyer, A. R., & Gorin, M. A. (2019). First point-of-care PSA test for prostate cancer

detection. In Nature Reviews Urology, Nature Publishing Group, 16 (6), 332-

333.

 

Monschein, M., Reisinger, C., & Nidetzky, B. (2013). Enzymatic hydrolysis of

microcrystalline cellulose and pretreated wheat straw: A detailed comparison

using convenient kinetic analysis. Bioresource Technology, 128, 679-687.

 

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose

nanomaterials review: structure, properties and nanocomposites. Chemical

Society Reviews, 40(7), 3941.

 

Munoz-Perez, F. M., Ortega-Mendoza, J. G., Padilla-Vivanco, A., Toxqui-Quitl, C.,

Sarabia-Alonso, J. A., & Ramos-Garcia, R. (2020). Steady-State 3D Trapping

and Manipulation of Microbubbles Using Thermocapillary. Frontiers in Physics,

8.

 

Nachman-Clewner, M., St. Jules, R., & Townes-Anderson, E. (1999). L-type calcium

channels in the photoreceptor ribbon synapse: Localization and role in

plasticity. The Journal of Comparative Neurology, 415(1), 1-16.

 

Nechyporchuk, O., Hakansson, K. M. O., Gowda.V, K., Lundell, F., Hagstrom, B., &

Kohnke, T. (2018). Continuous Assembly of Cellulose Nanofibrils and

Nanocrystals into Strong Macrofibers through Microfluidic Spinning. Advanced

Materials Technologies, 1800557.

 

Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical

tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5,

491-505.

 

Nieminen, T. A., Knoner, G., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007).

Physics of Optical Tweezers. In Methods in Cell Biology, 82, 207-236

 

Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Knoner, G., Branczyk, A. M.,

Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007). Optical tweezers

computational toolbox. Journal of Optics A: Pure and Applied Optics, 9(8),

S196-S203.

 

Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sorensen, K., & Oddershede, L. B.

(2017). Manipulation and Motion of Organelles and Single Molecules in Living

Cells. Chemical Reviews, 117(5), 4342-4375.

 

Olkkonen, J., Lehtinen, K., & Erho, T. (2010). Flexographically Printed Fluidic

Structures in Paper. Analytical Chemistry, 82(24), 10246-10250.

 

O'Neil, A. T., & Padgett, M. J. (2002). Rotational control within optical tweezers by

use of a rotating aperture. Optics Letters, 27(9), 743.

 

Oroszi, L., Galajda, P., Kirei, H., Bottka, S., & Ormos, P. (2006). Direct Measurement

of Torque in an Optical Trap and Its Application to Double-Strand DNA.

Physical Review Letters, 97(5), 058301.

 

Osterman, N., Slapar, V., Boric, M., Stopar, D., Babic, D., & Poberaj, I. (2010). Active

laser tweezers microrheometry of microbial biofilms. In Optical Trapping and

Optical Micromanipulation VII, SPIE, 7762, 313-320.

 

Parker, R. M., Frka-Petesic, B., Guidetti, G., Kamita, G., Consani, G., Abell, C., &

Vignolini, S. (2016). Hierarchical Self-Assembly of Cellulose Nanocrystals in a

Confined Geometry. ACS Nano, 10(9), 8443-8449.

 

Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using

change in properties of optically trapped red blood cells. Biomedical Journal,

40(2), 101-105.

 

Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in

biology and medicine: From molecular principles to bionanotechnology. In

Advanced Materials (Vol. 18, Issue 11, pp. 1345-1360).

 

Pesce, G., Jones, P. H., Marago, O. M., & Volpe, G. (2020). Optical tweezers: theory

and practice. The European Physical Journal Plus, 135(12), 949.

 

Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H.

(2009). Erratum: Colloquium : Momentum of an electromagnetic wave in

dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]. Reviews of Modern

Physics, 81(1), 443-443.

 

Phillips, W. D. (1998). Nobel Lecture: Laser cooling and trapping of neutral atoms.

Reviews of Modern Physics, 70(3), 721-741.

 

Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Esposti Boschi, C. D.,

Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Marago, O. M.

(2018). Optical tweezers and their applications. Journal of Quantitative

Spectroscopy and Radiative Transfer, 218, 131-150.

 

Power, M., Thompson, A. J., Anastasova, S., & Yang, G.-Z. (2018). A Monolithic

Force-Sensitive 3D Microgripper Fabricated on the Tip of an Optical Fiber

Using 2-Photon Polymerization. Small, 14(16), 1703964.

 

Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E. H. K., & Harber, J. K. H. (1999).

Three-dimensional high-resolution particle tracking for optical tweezers by

forward scattered light. Microscopy Research and Technique, 44(5), 378-386.

 

Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties

of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19-25.

 

Rafiee, Z., & Keshavarz, V. (2015). Synthesis and characterization of

polyurethane/microcrystalline cellulose bionanocomposites. Progress in Organic

Coatings, 86, 190-193.

 

Rahman, M. S. S., Li, J., Mengu, D., Rivenson, Y., & Ozcan, A. (2021). Ensemble

learning of diffractive optical networks. Light: Science & Applications, 10(1),

14.

 

Rajeev, A., Deshpande, A. P., & Basavaraj, M. G. (2018). Rheology and

microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-

methylimidazolium chloride (AmimCl)/water mixtures. Soft Matter, 14(37),

7615-7624.

 

Redding, B., & Pan, Y.-L. (2015). Optical trap for both transparent and absorbing

particles in air using a single shaped laser beam. Optics Letters, 40(12), 2798.

 

Riccardi, M., & Martin, O. J. F. (2023). Electromagnetic Forces and Torques: From

Dielectrophoresis to Optical Tweezers. Chemical Reviews, 123(4), 1680-1711.

 

Riyanto, S., Ayop, S. K., & Aziz, W. N. S. W. (2015). The determination of complex

shear modulus of deionized water using kramer-kronig relation (KKR) method.

Jurnal Teknologi, 74(8), 49-54.

 

Robertson-Anderson, R. M. (2018). Optical Tweezers Microrheology: From the Basics

to Advanced Techniques and Applications. ACS Macro Letters, 7(8), 968-975.

 

Romero, C. M., & Beltran, A. (2012). Effect of temperature and concentration on the

viscosity of aqueous solutions of 3-aminopropanoic acid, 4-aminobutanoic acid,

5-aminopentanoic acid, 6-aminohexanoic acid. Revista Colombiana de Quimica,

41(1), 123-131. .

 

Rudraraju, V. S., & Wyandt, C. M. (2005). Rheological characterization of

Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a

controlled stress rheometer: part I. International Journal of Pharmaceutics,

292(1-2), 53-61.

 

Samadi, M., Alibeigloo, P., Aqhili, A., Khosravi, M. A., Saeidi, F., Vasini, S.,

Ghorbanzadeh, M., Darbari, S., & Moravvej-Farshi, M. K. (2022). Plasmonic

tweezers: Towards nanoscale manipulation. Optics and Lasers in Engineering,

154, 107001.

 

Sarkar, R., & Rybenkov, V. V. (2016). A Guide to Magnetic Tweezers and Their

Applications. Frontiers in Physics, 4.

 

Scott, S. M., & Ali, Z. (2021). Fabrication Methods for Microfluidic Devices: An

Overview. Micromachines 2021, Vol. 12, Page 319, 12(3), 319.

 

Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications.

In Science, American Association for the Advancement of Science, 336 (6085),

1124-1128.

 

Shahripul Azeman, N. S., Mat Nawi, M. N., & Yaacob, M. I. H. (2020). Development

and characterization of fluidic based dome-shaped pressure sensor using spiral

microchannel. Microsystem Technologies, 26(5), 1653-1660.

 

Shan, X., Wang, F., Wang, D., Wen, S., Chen, C., Di, X., Nie, P., Liao, J., Liu, Y.,

Ding, L., Reece, P. J., & Jin, D. (2021). Optical tweezers beyond refractive index

mismatch using highly doped upconversion nanoparticles. Nature

Nanotechnology, 16(5), 531-537.

 

Shi, Y., Song, Q., Toftul, I., Zhu, T., Yu, Y., Zhu, W., Tsai, D. P., Kivshar, Y., & Liu,

A. Q. (2022). Optical manipulation with metamaterial structures. Applied

Physics Reviews, 9(3).

 

Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative

measurements of force and displacement using an optical trap. Biophysical

Journal, 70(4), 1813-1822.

 

Simpson, S. H. (2014). Inhomogeneous and anisotropic particles in optical traps:

Physical behaviour and applications. Journal of Quantitative Spectroscopy and

Radiative Transfer, 146, 81-99.

 

Simpson, S. H., & Hanna, S. (2010). First-order nonconservative motion of optically

trapped nonspherical particles. Physical Review E, 82(3), 031141.

 

Singh, V., Lin, P. T., Patel, N., Lin, H., Li, L., Zou, Y., Deng, F., Ni, C., Hu, J.,

Giammarco, J., Soliani, A. P., Zdyrko, B., Luzinov, I., Novak, S., Novak, J.,

achtel, P., Danto, S., Musgraves, J. D., Richardson, K., _ Agarwal, A. M.

(2014). Mid-infrared materials and devices on a Si platform for optical sensing.

Science and Technology of Advanced Materials, 15(1), 014603.

 

Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell

membrane and its relation to hemolytic disorders: An optical tweezers study.

Biophysical Journal, 77(6), 3085-3095.

 

Smith, A. V., Do, B. T., Hadley, G. R., & Farrow, R. L. (2009). Optical Damage Limits

to Pulse Energy From Fibers. IEEE Journal of Selected Topics in Quantum

Electronics, 15(1), 153-158.

 

Song, J., Babayekhorasani, F., & Spicer, P. T. (2019). Soft Bacterial Cellulose

Microcapsules with Adaptable Shapes. Biomacromolecules, 20(12), 4437-4446.

 

Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS

Photonics, 3(5), 719-736.

 

Strick, T., Allemand, J. F., Croquette, V., & Bensimon, D. (2000). Twisting and

stretching single DNA molecules. In Progress in Biophysics and Molecular

Biology (Vol. 74, pp. 115-140).

 

Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A., & Croquette, V. (1996).

The elasticity of a single supercoiled DNA molecule. Science (New York, N.Y.),

271, 1835-1837.

 

Strong, E. B., Schultz, S. A., Martinez, A. W., & Martinez, N. W. (2019). Fabrication

of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Scientific

Reports, 9(1), 7.

 

Sun, C.-K., Huang, Y.-C., Cheng, P. C., Liu, H.-C., & Lin, B.-L. (2001). Cell

manipulation by use of diamond microparticles as handles of optical tweezers.

Journal of the Optical Society of America B, 18(10), 1483.

 

Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J.,

Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature,

489(7414), 133-136.

 

Szymanska-Chargot, M., Ciesla, J., Chylinska, M., Gdula, K., Pieczywek, P. M.,

Koziol, A., Cieslak, K. J., & Zdunek, A. (2018). Effect of ultrasonication on

physicochemical properties of apple based nanocellulose-calcium carbonate

composites. Cellulose, 25(8), 4603-4621.

 

Tassieri, M., Giudice, F. Del, Robertson, E. J., Jain, N., Fries, B., Wilson, R., Glidle,

A., Greco, F., Netti, P. A., Maffettone, P. L., Bicanic, T., & Cooper, J. M. (2015).

Microrheology with Optical Tweezers: Measuring the relative viscosity of

solutions 'at a glance.' Scientific Reports, 5, 8831.

 

Tassieri, M., Laurati, M., Curtis, D. J., Auhl, D. W., Coppola, S., Scalfati, A., Hawkins,

K., Williams, P. R., & Cooper, J. M. (2016). i-Rheo: Measuring the materials'

linear viscoelastic properties "in a step"!. Journal of Rheology, 60(4), 649-660.

 

Terray, A., Oakey, J., & Marr, D. W. M. (2002). Microfluidic Control Using Colloidal

Devices. Science, 296(5574), 1841-1844.

 

Toe, W. J., Ortega-Piwonka, I., Angstmann, C. N., Gao, Q., Tan, H. H., Jagadish, C.,

Henry, B. I., & Reece, P. J. (2016). Nonconservative dynamics of optically

trapped high-aspect-ratio nanowires. Physical Review E, 93(2), 022137.

 

Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., &

Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in

the back focal plane. Review of Scientific Instruments, 77(10).

 

Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F.

A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose:

Isolation, characterization and bio-composites application-A review. In

International Journal of Biological Macromolecules (Vol. 93, pp. 789-804).

 

Turlier, H., Fedosov, D. A., Audoly, B., Auth, T., Gov, N. S., Sykes, C., Joanny, J.-F.,

Gompper, G., & Betz, T. (2016). Equilibrium physics breakdown reveals the

active nature of red blood cell flickering. Nature Physics, 12(5), 513-519.

 

Uetani, K., Koga, H., & Nogi, M. (2019). Estimation of the Intrinsic Birefringence of

Cellulose Using Bacterial Cellulose Nanofiber Films. ACS Macro Letters, 8(3),

250-254.

 

Vizsnyiczai, G., Buzas, A., Lakshmanrao Aekbote, B., Fekete, T., Grexa, I., Ormos,

P., & Kelemen, L. (2020). Multiview microscopy of single cells through

microstructure-based indirect optical manipulation. Biomedical Optics Express,

11(2), 945.

 

Vizsnyiczai, G., Lestyan, T., Joniova, J., Aekbote, B. L., Strejckova, A., Ormos, P.,

Miskovsky, P., Kelemen, L., & Bano, G. (2015). Optically Trapped Surface-

Enhanced Raman Probes Prepared by Silver Photoreduction to 3D

Microstructures. Langmuir, 31(36), 10087-10093.

 

Wang, W., Wu, W.-Y., Wang, W., & Zhu, J.-J. (2010). Tree-shaped paper strip for

semiquantitative colorimetric detection of protein with self-calibration. Journal

of Chromatography A, 1217(24), 3896-3899.

 

Wasserman, M. R., & Liu, S. (2019). A Tour de Force on the Double Helix: Exploiting

DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry,

58(47), 4667-4676.

 

Watanabe, A., Morita, S., & Ozaki, Y. (2006). Temperature-dependent structural

changes in hydrogen bonds in microcrystalline cellulose studied by infrared and

near-infrared spectroscopy with perturbation-correlation moving-window twodimensional

correlation analysis. Applied Spectroscopy, 60(6), 611-618.

 

Wen-Cheng, X., Wei-Cheng, C., Ai-Ping, L., Qi, G., & Song-Hao, L. (2001).

Enhanced Pulse Compression Induced by Third-Order Dispersion in

Birefringent Fibre. Chinese Physics Letters, 18(9), 1211-1213.

 

Whitley, K. D., Comstock, M. J., & Chemla, Y. R. (2017). High-Resolution Optical

Tweezers Combined with Single-Molecule Confocal Microscopy. In Methods in

enzymology, Academic Press, 582, 137-169.

 

Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America,

89(5), 2140-2143.

 

Wu, Y., Sun, D., Huang, W., & Xi, N. (2013). Dynamics Analysis and Motion Planning

for Automated Cell Transportation with Optical Tweezers. IEEE/ASME

Transactions on Mechatronics, 18(2), 706-713.

 

Xie, M., Wang, Y., Feng, G., & Sun, D. (2015). Automated Pairing Manipulation of

Biological Cells with a Robot-Tweezers Manipulation System. IEEE/ASME

Transactions on Mechatronics, 20(5), 2242-2251.

 

Yan, Z., & Scherer, N. F. (2013). Optical vortex induced rotation of silver nanowires.

Journal of Physical Chemistry Letters, 4(17), 2937-2942.

 

Yang, H., Jussila, H., Autere, A., Komsa, H.-P., Ye, G., Chen, X., Hasan, T., & Sun,

Z. (2017). Optical Waveplates Based on Birefringence of Anisotropic Two-

Dimensional Layered Materials. ACS Photonics, 4(12), 3023-3030.

 

Yohana Chaerunisaa, A., Sriwidodo, S., & Abdassah, M. (2020). Microcrystalline

Cellulose as Pharmaceutical Excipient. In Pharmaceutical Formulation Design

- Recent Practices. IntechOpen.

 

Zhang, H., & Liu, K.-K. (2008). Optical tweezers for single cells. Journal of The Royal

Society Interface, 5(24), 671-690.

 

Zhang, Y., Chou, J. B., Li, J., Li, H., Du, Q., Yadav, A., Zhou, S., Shalaginov, M. Y.,

Fang, Z., Zhong, H., Roberts, C., Robinson, P., Bohlin, B., Rios, C., Lin, H.,

Kang, M., Gu, T., arner, J., Liberman, V., _ Hu, J. (2019). Broadband

transparent optical phase change materials for high-performance nonvolatile

photonics. Nature Communications, 10(1), 4279.

 

Zhang, Z., Kimkes, T. E. P., & Heinemann, M. (2019). Manipulating rod-shaped

bacteria with optical tweezers. Scientific Reports 2019 9:1, 9(1), 1-9.

 

Zhao, G. H., Kapur, N., Carlin, B., Selinger, E., & Guthrie, J. T. (2011).

Characterisation of the interactive properties of microcrystalline cellulose-

carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics,

415(1-2), 95-101.

 

Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: Building

dissipation into stretchy networks. In Soft Matter 10(5), 672-687.

 

Zhao, X., Zhao, N., Shi, Y., Xin, H., & Li, B. (2020). Optical Fiber Tweezers: A

Versatile Tool for Optical Trapping and Manipulation. Micromachines, 11(2),

114.

 

Zheng, B., Li, C. Y., Huang, S., Zhang, Z. L., Wu, Q. S., Pang, D. W., & Tang, H. W.

(2022). Optical tweezers assisted analyzing and sorting of tumor cells tagged

with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B:

Chemical, 368, 132173.

 

Zhu, R., Avsievich, T., Popov, A., & Meglinski, I. (2020). Optical Tweezers in Studies

of Red Blood Cells. Cells, 9(3), 545.

 

Zmyslony, M., Dradrach, K., Haberko, J., Nalecz-Jawecki, P., Rogoz, M., &

Wasylczyk, P. (2020). Optical Pliers: Micrometer-Scale, Light-Driven Tools

Grown on Optical Fibers. Advanced Materials, 32(33), 2002779.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.