|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||||||||
| Abstract : Universiti Pendidikan Sultan Idris |
| In this work, electrochemically exfoliated graphene oxide-based photocatalyst was synthesised with the help of single- (sodium dodecyl sulphate; SDS) and triple-chain (sodium 1,4-bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate; TC14) anionic surfactants. The hybrid photocatalyst is a system consisting of surfactant-assisted electrochemically exfoliated graphene oxide (sEGO) and zinc oxide (ZnO). The system was prepared by exfoliating graphite in the presence of surfactant and ZnO, and it was used for the removal of methylene blue (MB) dye. Of these different surfactants, the triple-chain TC14 exhibited 98.53% MB removal, which was significantly higher than the system with SDS surfactant (50.94%) or ZnO alone (42.33%). Observations through field-emission scanning electron microscopy suggested an enhanced exfoliation degree upon increasing the number of surfactant chains. Results from zeta potential measurement also revealed increased system stability along with a high number of surfactant chains and the addition of ZnO into the system. These findings highlight the importance of tailoring the surfactant’s chemical structure to achieve enhanced graphene oxide-based photocatalyst performance for MB dye removal and wastewater treatment. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. |
| References |
Abebe, B., Murthy, H. C. A., & Amare, E. (2020). Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environmental Nanotechnology, Monitoring and Management, 14, 100336. https:// doi. org/10. 1016/j. enmm. 2020. 100336. Ahmad, M., Ahmed, E., Hong, Z. L., Khalid, N. R., Ahmed, W., & Elhissi, A. (2013). Graphene-Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. Journal of Alloys and Compounds, 577, 717–727. https:// doi. org/ 10. 1016/j. jallc om. 2013. 06. 137. Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663. https:// doi. org/ 10. 1016/j. heliy on. 2020. e03663. Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https:// doi. org/ 10. 1016/j. arabjc. 2016. 10. 004. Ankamwar, B. G., Kamble, V. B., Annsi, J. I., Sarma, L. S., & Mahajan, C. M. (2017). Solar photocatalytic degradation of methylene blue by ZnO nanoparticles. Journal of Nanoscience and Nanotechnology, 17(2), 1185–1192. https:// doi. org/ 10. 1166/ jnn. 2017. 12579. Ardyani, T., Mohamed, A., Bakar, S. A., Sagisaka, M., Umetsu, Y., Mamat, M. H., … Eastoe, J. (2019). Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. Journal of Colloid and Interface Science, 545, 184–194. https:// doi. org/ 10. 1016/j.jcis. 2019. 03. 012. Azmina, M. S., Nor, R. M., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman, Z. (2017). Enhanced photocatalytic activity of zno nanoparticles grown on porous silica microparticles. Applied Nanoscience (Switzerland), 7(8), 885–892. https:// doi. org/ 10. 1007/ s13204- 017- 0626-3. Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO 2 /Fe 3 O 4) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560–568. https:// doi. org/ 10.1016/j. apsusc. 2018. 01. 085. Baskoro, F., Wong, C. B., Kumar, S. R., Chang, C. W., Chen, C. H., Chen, D. W., & Lue, S. J. (2018). Graphene oxidecation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions. Journal of Membrane Science, 554, 253–263. https:// doi. org/ 10.1016/j. memsci. 2018. 03. 006. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https:// doi. org/ 10. 1016/j. jconr el. 2016. 06. 017. Jamaluddin, N. A., Mohamed, A., Abu Bakar, S., Ardyani, T., Sagisaka, M., Suhara, S., … Eastoe, J. (2020). Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 22(22), 12732–12744. https:// doi. org/ 10. 1039/ d0cp0 1243b. Johnson, D. W., Dobson, B. P., & Coleman, K. S. (2015). A manufacturing perspective on graphene dispersions. Current Opinion in Colloid and Interface Science, 20(5–6), 367–382. https:// doi. org/ 10. 1016/j. cocis. 2015. 11. 004. Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https:// doi. org/ 10. 1016/j. jece. 2018. 06.060. Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis a: Chemical, 328(1–2), 8–26. https:// doi. org/ 10. 1016/j. molca ta. 2010. 05. 023. Kim, K. M., Kim, T. H., Kim, H. M., Kim, H. J., Gwak, G. H., Paek, S. M., & Oh, J. M. (2012). Colloidal behaviors of ZnO nanoparticles in various aqueous media. Toxicology and Environmental Health Sciences, 4(2), 121–131. https:// doi. org/ 10. 1007/ s13530- 012- 0126-5. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis b: Environmental, 49(1), 1–14. https://doi. org/ 10. 1016/j. apcatb. 2003. 11. 010. Liang, Q., Liu, X., Zeng, G., Liu, Z., Tang, L., Shao, B., … Gong, S. (2019). Surfactant-assisted synthesis of photocatalysts: Mechanism, synthesis, recent advances and environmental application. Chemical Engineering Journal, 372, 429–451. https:// doi. org/ 10. 1016/j. cej. 2019. 04.168. Lin, Y., Hong, R., Chen, H., Zhang, D., & Xu, J. (2020). Green Synthesis of ZnO-GO Composites for the Photocatalytic Degradation of Methylene Blue. Journal of Nanomaterials, 2020. https:// doi. org/ 10. 1155/ 2020/ 41473 57. Liu, X., Li, X., Liu, X., He, S., Jin, J., & Meng, H. (2020). Green preparation of Ag-ZnO-rGO nanoparticles for efficient adsorption and photodegradation activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 584(September 2019), 124011. https:// doi. org/10. 1016/j. colsu rfa. 2019. 124011. Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water, Air, and Soil Pollution, 224(7). https:// doi. org/ 10. 1007/s11270- 013- 1612-3. Martins, P. M., Ferreira, C. G., Silva, A. R., Magalhães, B., Alves, M. M., Pereira, L., … Lanceros-Méndez, S. (2018). TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B: Engineering, 145, 39–46. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 03. 015. McCoy, T. M., De Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: Adsorption and stability. Physical Chemistry Chemical Physics, 20(24), 16801–16816. https:// doi. org/ 10. 1039/ c8cp0 2738b. Mohamed, M. M., Ghanem, M. A., Khairy, M., Naguib, E., & Alotaibi, N. H. (2019). Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Applied Surface Science, 487, 539–549. https:// doi. org/ 10.1016/j. apsusc. 2019. 05. 135. Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., … Eastoe, J. (2010). Universal surfactant for water, oils, and CO2. Langmuir, 26(17), 13861–13866. https:// doi. org/ 10. 1021/ la102 303q. Mohamed, A., Anas, A. K., Abu Bakar, S., Aziz, A. A., Sagisaka, M., Brown, P., … Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013–3023. https:// doi. org/ 10. 1007/s00396- 014- 3354-1. |
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |