UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :T Technology (General)
ISBN :2147-6799
Main Author :Muhammad Modi Lakulu
Additional Authors :
  • Ismail @ Ismail Yusuf Panessai
Title :Predicting premature birth during pregnancy using machine learning: A systematic review
Hits :226
Place of Production :Tanjung Malim
Publisher :Fakulti Komputeran & Meta-Teknologi
Year of Publication :2024
Notes :International Journal of Intelligent Systems and Applications in Engineering
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Artificial intelligence is widely developed in the health sector, and machine learning has been increasingly used in healthcare to make predictions, assign diagnoses and as a method of prioritizing actions. machine learning methods have become a feature of several tools in the field of obstetrics and child care. Is to identify the applicability and performance of machine learning methods used to identify preterm labor during pregnancy the main precision metric used is the AUC. the machine learning method with the best results was the prediction of prematurity the SVM classifier algorithm method is the best method for predicting the incidence of premature birth with an accuracy level of 0.997, recall of 0.995, and specificity of 1.0, for identifying a diagnosis of premature birth which is quite good. good. accurately. These results are similar to the results of Rawashdeh et al.'s research on a data mining-based intelligence system using the Naïve Bayes, Decision Tree, K-NN, RF, And NN algorithms with results obtained with an accuracy of 0.95, recall of 1.0, and specificity of 0.94 using rf. To prevent preterm birth, it is critical to support research in this area and develop machine learning-based solutions with broad clinical applicability. It is also advised that future research compare ml with a traditional approach using the same data to comprehend its value in filling the current gap. This comprehensive review makes a substantial contribution to the specialized literature on women's health and artificial intelligence. © 2024, Ismail Saritas. All rights reserved.

References

E. Nsugbe, O. Obajemu, O. W. Samuel, and I. Sanusi, “Enhancing care strategies for preterm pregnancies by  using  a  prediction  machine  to  aid  clinical  care decisions,” Machine  Learning  With  Applications, vol. 6, p. 100110, Dec. 2021, doi: 10.1016/j.mlwa.2021.100110.

J.  Cresswell  and  W.  H.  Organization, Trends  in maternal mortality 2000 to 2020: estimates by WHO, UNICEF,    UNFPA,    World    Bank    Group    and UNDESA/Population Division. World Health Organization, 2023.

R.   Surendiran,   R.   Aarthi,   M.   Thangamani,   S. Sugavanam,  and  R.  Sarumathy,  “A  Systematic Review   using   Machine   Learning   Algorithms   for Predicting Preterm Birth,” International  Journal  of Engineering  Trends and  Technology,  vol.  70,  no. 5, pp. 46–59, May 2022, doi: 10.14445/22315381/ijett-v70i5p207.

K.-S. Lee, E. S. Kim, D. Kim, I. Song, and K. H. Ahn, “Association  of  Gastroesophageal  Reflux  Disease with  Preterm  Birth:  Machine  Learning  Analysis,” Journal of Korean Medical Science, vol. 36, no. 43, Jan. 2021, doi: 10.3346/jkms.2021.36.e282.

T. Włodarczyk et  al., “Machine Learning Methods for Preterm Birth Prediction: A review,” Electronics, vol.    10,    no.    5,    p.    586,    Mar.    2021,    doi: 10.3390/electronics10050586.

D. Despotović, A. Zec, K. G. Mladenović, N. Radin, and  T.  Lončar-Turukalo,  “A  Machine  Learning Approach   for   an   Early   Prediction   of   Preterm Delivery,” 2018 IEEE 16th International Symposium on  Intelligent  Systems  and  Informatics  (SISY),  Sep. 2018, doi: 10.1109/sisy.2018.8524818.

R.  Pari,  M.  Sandhya,  and  S.  Sankar,  “Risk  factors based  classification  for  accurate  prediction  of  the Preterm  Birth,” 2017  International  Conference  on Inventive  Computing  and  Informatics  (ICICI),  Nov. 2017, doi: 10.1109/icici.2017.8365380.

Kementrian  Kesehatan  Republik  INdonesia,  “Hasil Utama RISKESDAS Tahun 2020,” 2018. Accessed: Nov. 19, 2023. [Online]. Available: https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-riskesdas-2018_1274.pdf.

Dinas  Kesehatan  Pemerintah  Provinsi  Kalimantan Selatan.,   “PROFIL   KESEHATAN   KALSEL TAHUN 2018.” Accessed: Nov. 19, 2023. [Online]. Available: https://drive.google.com/file/d/135Boo4b0G7yBAR_ghPDzl6U7LkzGcJ9S/view.

T. Solehati et al., “Intervensi selama kehamilan untuk mencegah  kelahiran  prematur:  Systematic  literature review,” Holistik,  vol.  14,  no.  2,  pp.  210–218,  Jul. 2020, doi: 10.33024/hjk.v14i2.2685.

G. Bloom, Y. Katsuma, K. D. Rao, S. Makimoto, J. D.-C.  Yin,  and  G.  M. Leung,  “Next  steps  towards universal health coverage call for global leadership,” The BMJ, p. l2107, May 2019, doi: 10.1136/bmj.l2107.

B. M. Farrant, S. W. White, and C. Shepherd, “Trends and  predictors  of  extreme  preterm  birth:  Western Australian  population-based  cohort  study,” PLOS ONE,  vol.  14,  no.  3,  p.  e0214445,  Mar.  2019,  doi: 10.1371/journal.pone.0214445.

A.  Muzakir  and  R.  A.  Wulandari,  “Model  Data Mining    sebagai    Prediksi    Penyakit    Hipertensi Kehamilan dengan Teknik Decision Tree,” Scientific Journal of Informatics, vol. 3, no. 1, pp. 19–26, Jun. 2016, doi: 10.15294/sji.v3i1.4610.

A.  Muzakir  and  R.  A.  Wulandari,  “Model  Data Mining    sebagai    Prediksi    Penyakit    Hipertensi Kehamilan dengan Teknik Decision Tree,” Scientific Journal of Informatics, vol. 3, no. 1, pp. 19–26, Jun. 2016, doi: 10.15294/sji.v3i1.4610.

I. Atienza-Navarro, P. Alves-Martínez, S. P. Lubián‐López,  and  M.  García-Alloza,  “Germinal  Matrix-Intraventricular hemorrhage of the preterm newborn and Preclinical models: Inflammatory considerations,” International  Journal  of  Molecular Sciences,  vol.  21,  no.  21,  p.  8343,  Nov.  2020,  doi: 10.3390/ijms21218343.

P.   Barrett et   al.,  “Stillbirth  is  associated  with increased risk of long-term maternal renal disease: a nationwide  cohort  study,” American   Journal   of Obstetrics and Gynecology, vol. 223, no. 3, p. 427.e1-427.e14, Sep. 2020, doi: 10.1016/j.ajog.2020.02.031.

D.   Puspitasari,   K.   Ramanda,   A.   Supriyatna,   M. Wahyudi,  E.  D.  Sikumbang,  and  S.  H.  Sukmana, “Comparison  of  data  mining  algorithms  using artificial neural networks (ANN) and naive bayes for preterm  birth  prediction,” Journal   of   Physics: Conference Series, vol. 1641, no. 1, p. 012068, Nov. 2020, doi: 10.1088/1742-6596/1641/1/012068.

H. Sufriyana, Y. W. Wu, and E. C. Y. Su, “Artificial intelligence-assisted    prediction    of    preeclampsia: Development and external validation of a nationwide health  insurance  dataset  of  the  BPJS  Kesehatan  in Indonesia,” EBioMedicine,  vol.  54,  p.  102710,  Apr. 2020, doi: 10.1016/j.ebiom.2020.102710.

V.    Berghella, Maternal-Fetal    Evidence    Based Guidelines. CRC Press, 2021.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.