|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||||||
| Abstract : Universiti Pendidikan Sultan Idris |
| Predicting the occurrence of haze is of great importance due to its negative impact on human health, the environment, and the economy. This study aims to develop a model for predicting haze using chaos theory. The data were taken from an industrial area, Klang, Selangor Malaysia during Southwest Monsoon. The model is trained using historical data on haze occurrences and the accuracy of the prediction is evaluated using a testing dataset. A chaos model, namely local mean approximation method (LMAM) will be used to predict the haze phenomenon. Results show that the chaos-based approach is effective in forecasting the onset and duration of haze events. The predicting model can provide early warnings for policymakers and relevant authorities, enabling them to take proactive measures to mitigate the effects of haze on public health and the environment. The model also presents a promising alternative to traditional forecasting techniques and highlights the potential applications of chaos theory in atmospheric science. _ 2024, Penerbit Universiti Kebangsaan Malaysia. All rights reserved. |
| References |
Abarbanel H.D.I. 1996. Analysis of Observed Chaotic Data. New York: Springer. Abdullah S., Ismail M. & Fong S.Y. 2017. Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. Journal of Sustainability Science and Management 12(1): 60-69. Abdullah S., Napi N.N.L.M., Ahmed A.N., Mansor W.N.W., Mansor A.A., Ismail M., Abdullah A.M. & Ramly Z.T.A. 2020. Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia. Atmosphere 11(3): 289. Adenan N.H., Karim N.S.A., Mashuri A., Hamid N.Z.A., Adenan M.S., Armansyah & Siregar I. 2021. Traffic flow prediction in urban area using inverse approach of chaos theory. Civil Engineering and Architecture 9(4): 1277-1282. Bahari M. & Hamid N.Z.A. 2019. Analisis dan peramalan siri masa suhu menggunakan pendekatan kalut. Journal of Quality Measurement and Analysis 15(1): 43-52. Cao L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 110(1-2): 43-50. Chen J. & Wang J. 2019. Prediction of PM2.5 concentration based on multiple linear regression. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 457-460. Department of Environment. 2019. Annual Environmental Quality Report 2019. Fraser A.M. & Swinney H.L. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33(2): 1134-1140. Hamid N.Z.A. 2018. Prediction of ozone pollution through chaotic approach. International Journal of Engineering & Technology 7(4.38): 1635-1638. Hamid N.Z.A. 2020. Prediction of PM10 time series at industrial area through an improved local linear approximation method. ASM Science Journal 13: 1-7. Hamid N.Z.A., Adenan N.H., Wahid N.B.A., Bidin B. & Saleh S.H.M. 2021. A pilot study using chaos theory to predict temperature time series in Malaysian semi urban area. Turkish Journal of Computer and Mathematics Education 12(3): 997-1003. Hamid N.Z.A. & Noorani M.S.M. 2014. Suatu kajian perintis menggunakan pendekatan kalut bagi pengesanan sifat dan peramalan siri masa kepekatan PM10. Sains Malaysiana 43(3): 475-481. Hamid N.Z.A. & Noorani M.S.M. 2017. Aplikasi model baharu penambahbaikan pendekatan kalut ke atas peramalan siri masa kepekatan ozon. Sains Malaysiana 46(8): 1333-1339. Hamid N.Z.A., Noorani M.S.M., Juneng L. & Latif M.T. 2013. Prediction of ozone concentrations using nonlinear prediction method. AIP Conference Proceeding 1552(1): 125-131. Hasmarullzakim A.M. & Abdullah A. 2018. Haze pattern prediction using deep learning. UTM Computing Proceedings 3. Hu Y., Liu Z., Yue H., Wang J., Gao C., Zhang Y., Tan C. & Chen R. 2023. Flame instability analysis of water hyacinth pellets in combustion based on the chaos theory. Solid Fuel Chemistry 57: 228-241. Idris A.C. & Yassin H. 2021. Deep learning method for haze prediction in Singapore. IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1-6. Dewan Negeri Selangor. 2016. Kawasan Perindustrian di Selangor. https://dewan.selangor.gov.my/question/kawasan-perindustrian-di-selangor (1 June 2023). Kementerian Kesihatan Malaysia. 2020. Pelan Tindakan Pengurusan Kesihatan Akibat Jerebu. Latif M.T., Othman M., Idris N., Juneng L., Abdullah A.M., Hamzah W.P., Khan M.F., Sulaiman N.M.N., Jewaratnam J., Aghamohammadi N., Sahani M., Xiang C.J., Ahamad F., Amil N., Darus M., Varkkey H., Tangang F. & Jaafar A.B. 2018. Impact of regional haze towards air quality in Malaysia: A review. Atmospheric Environment 177: 28-44. Latif M.T., Othman M. & Kamin K.H. 2017. Fenomena jerebu di Asia Tenggara: Punca dan penyelesaian. Salam LESTARI 37: 1-4. |
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |