UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
ISBN :2229838X
Main Author :Suriani binti Abu Bakar, Azmi bin Mohamed
Title :Recent Advances for Wastewater Treatment on Polyvinylidene Fluoride-Based Membrane: A Review
Hits :81
Place of Production :Tanjung Malim
Publisher :Fakulti Sains & Matematik
Year of Publication :2024
Notes :International Journal of Integrated Engineering
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
The development of scalable membrane-based separation processes has attracted considerable interest on laboratory and industrial scales. Polyvinylidene fluoride (PVDF) is one of the most widely used fluoropolymer materials for membrane fabrication due to its excellent mechanical strength, good thermal stability and chemical resistance as well as aging resistance. However, the hydrophobic nature of PVDF has resulted in serious membrane fouling during the filtration process. From the past decade, the embedment of hydrophilic materials in/on PVDF-based membranes can significantly alter the membrane’s morphology and surface properties. Therefore, based on most articles retrieved from Web of Science, Scopus, Google Scholar, etc., this article provides the overview of the recent development of PVDF-based membranes during the recent several decades. The detailed information regarding PVDF as a polymer material as well as the main challenge in the development of PVDF-based membranes with better performance was summarised. Moreover, the factors influencing membrane fouling including surface hydrophilicity, roughness and charge are also addressed. Then, the PVDF-based membrane preparation and its recent modification via the blending method were discussed. Finally, the overview and future perspective of PVDF-based membrane development are reviewed. Overall, it can be concluded that PVDF-based membranes have great potential for further advances towards the development of membrane technologies for the future. © (2024), (Penerbit UTHM). All Rights Reserved.
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.