UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :S Agriculture (General)
ISBN :0126-8643
Main Author :Siti Fairuz Yusoff
Title :Identification and characterization of botrytis cinerea causing gray mold on tomatoes in Cameron Highlands, Malaysia
Hits :85
Place of Production :Tanjung Malim
Publisher :Fakulti Teknikal & Vokasional
Year of Publication :2024
Notes :Malaysian Applied Biology
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Botrytis cinerea, commonly known as gray mold, is a pervasive fungal pathogen that affects a wide range of plant species, leading to significant agricultural losses. The identification of Botrytis cinerea in Malaysia is crucial for protecting the agricultural sector, minimizing economic losses, ensuring food security, maintaining export quality, addressing environmental concerns, and advancing scientific research. In the present research, tomato fruits collected from Cameron Highlands, Pahang, Malaysia showed gray mold disease symptoms of B. cinerea. The fungal isolates were examined morphologically for colony colour, growth rate, conidiophores, conidia shape, and sclerotia on PDA and V8 agar. According to the results, conidiophores appeared in grape shape and length was range of 21.26-32.52 μm, ovoid conidial dimensions were in the range of 10.03-16.08 × 7.37-11.15 μm and sclerotia size was range 1.91-4.50 × 1.70-4.00 mm. All isolates were attributed to the morphospecies Botrytis cinerea on account of these characteristics. The resulting sequences deposited in GenBank were accessions MT012053 to MT012062, respectively. A BLAST analysis of the resulting 550-bp nucleotide sequences showed 99-100% identity closest matched to B. cinerea. The pathogenicity experiments showed P6 isolates of B. cinerea were highly pathogenic and caused gray mold development on tomato fruits that led to severe symptoms in five days. Meanwhile, the least pathogenic isolate was P9. In terms of temperature, B. cinerea grew faster on PDA at 20ºC, slower grew below 20ºC and did not grow at 25ºC. Identification and characterization of B. cinerea on tomato could potentially provide information to assist disease management strategies for B. cinerea. © 2024 Malaysian Society of Applied Biology.

References

Afroz,  T.,  Aktaruzzaman,  M.  &  Kim,  B.S.  2019.  First  report  of  gray  mold  on  okra  caused  by  Botrytis cinerea in Korea. Plant Disease, 103(5): 1038-1038. https://doi.org/10.1094/PDIS-10-18-1884-PD.

NAgrios G.N. 2005. Plant Pathology, 5th Ed. Academic Press, California.Aktaruzzaman, M., Afroz, T., Hong, S.J. & Kim, B.S. 2017. Identification of Botrytis cinerea, the cause of post-harvest gray mold on broccoli in Korea. Research in Plant Disease, 23(4): 372-378. https://doi.org/10.5423/RPD.2017.23.4.372.

Aktaruzzaman, M., Afroz, T., Kim, B.S. & Shin, H.D. 2016. First report of gray mold disease of sponge gourd (Luffa cylindrica) caused by Botrytis cinerea in Korea. Research in Plant Disease, 22(2): 107-110. https://doi.org/10.5423/RPD.2016.22.2.107.

Aktaruzzaman, M., Kim, J.Y., Xu, S.J. & Kim, B.S. 2014. First report of postharvest gray mold rot on carrot caused by Botrytis cinerea in Korea. Research in Plant Disease, 20(2): 129-131. https://doi.org/10.5423/RPD.2014.20.2.129.

Bautista-Baños,  S.  2014.  Postharvest  Decay:  Control  Strategies.  Elsevier.  383  pp.  https://doi.org/10.1016/B978-0-12-411552-1.00001-6.

Bojkov, G., Mitrev, S. & Arsov, E. 2019. Impact of ampelotechnical measures in the grapevine protection from occurrence of grey mould (Botrytis cinerea). Journal of Animal and Plant Sciences, 17(1): 29-41.

Cantu, D., Blanco-Ulate, B., Yang, L., Labavitch, J.M., Bennett, A.B. & Powell, A.L.T. 2009. Ripening-regulated  susceptibility  of  tomato  fruit  to  Botrytis  cinerea  requires  NOR  but  not  RIN  or  ethylene.  Plant Physiology, 150(3): 1434-1449. https://doi.org/10.1104/pp.109.138701.

Ciliberti, N., Fermaud, M., Roudet, J. & Rossi, V. 2015. Environmental conditions affect Botrytis cinereainfection  of  mature  grape  berries  more  than  the  strain  or  transposon  genotype.  Phytopathology,  105(8): 1090-1096. https://doi.org/10.1094/PHYTO-10-14-0264-R.

Collinge,  D.  B.  &  Sarrocco,  S.  2022.  Transgenic  approaches  for  plant  disease  control:  Status  and  prospects 2021. Plant Pathology, 71(1): 207-225. https://doi.org/10.1111/ppa.13443.

Crisosto, C.H., Garner, D. & Crisosto, G. 2002. Carbon dioxide-enriched atmospheres during cold storage limit  losses  from  Botrytis  but  accelerate  rachis  browning  of  'Redglobe'  table  grapes.  Postharvest  Biology and Technology, 26(2): 181-189. https://doi.org/10.1016/S0925-5214(02)00013-3.

Damialis, A., Mohammad, A.B., Halley, J.M. & Gange, A.C. 2015. Fungi in a changing world: Growth rates will be elevated, but spore production may decrease in future climates. International Journal of Biometeorology, 59(9): 1157-1167. https://doi.org/10.1007/s00484-014-0927-0.

Derckel,  J.P.,  Baillieul,  F.,  Manteau,  S.,  Audran,  J.C.,  Haye,  B.,  Lambert,  B.  &  Legendre,  L.  1999.  Differential  induction  of  grapevine  defenses  by  two  strains  of  Botrytis  cinerea.  Phytopathology,  89(3): 197-203. https://doi.org/10.1094/PHYTO.1999.89.3.197.

Elfar, K., Riquelme, D., Zoffoli, J.P. & Latorre, B.A. 2017. First report of Botrytis prunorum causing fruit rot  on  kiwifruit  in  Chile.  Plant  Disease,  101(2):  1-388.  https://doi.org/10.1094/PDIS-05-16-0775-PDN.

Fillinger, S. & Walker, A.S. 2016. Chemical control and resistance management of Botrytis diseases. In S. Fillinger & Y. Elad (Eds.), Botrytis-The fungus, the pathogen and its management in agricultural systems. Springer. 189-216 pp. https://doi.org/10.1007/978-3-319-23371-0_10.

Hegyi-Kaló, J., Holb, I.J., Lengyel, S., Juhász, Á. & Váczy, K.Z. 2019. Effect of year, sampling month and grape cultivar on noble rot incidence, mycelial growth rate and morphological type of Botrytis cinerea during noble rot development. European Journal of Plant Pathology, 155: 339-348. https://doi.org/10.1007/s10658-019-01745-8.

Holz,  G.,  Coertze,  S.  &  Williamson,  B.  2007.  The  ecology  of  Botrytis  on  plant  surface.  In  Y.  Elad;  B.  Williamson; P. Tudzynski & N. Delen (Eds.), Botrytis: Biology, Pathology and Control. Springer. 9-27 pp. https://doi.org/10.1007/978-1-4020-2626-3_2.

Hsiang, T. & Chastagner, G.A. 1992. Production and viability of sclerotia from fungicide-resistant and fungicide-sensitive  isolates  of  Botrytis  cinerea, B. elliptica  and  B. tulipae.  Plant  Pathology,  41(5):  600-605. https://doi.org/10.1111/j.1365-3059.1992.tb02459.x.

Javed, S., Javaid, A., Anwar, W., Majeed, R.A., Akhtar, R. & Naqvi, S.F. 2017. First report of Botrytis bunch rot of grapes caused by Botrytis cinerea in Pakistan. Plant Disease, 101(6): 1036. https://doi.org/10.1094/PDIS-05-16-0762-PDN.

Judet-Correia,  D.,  Bollaert,  S.,  Duquenne,  A.,  Charpentier,  C.,  Bensoussan,  M.  &  Dantigny,  P.  2010.  Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries.  International  Journal  of  Food  Microbiology,  142(1-2):  106-113.  https://doi.org/10.1016/j.ijfoodmicro.2010.06.009.

Khazaeli, P., Zamanizadeh, H., Morid, B. & Bayat, H. 2010. Morphological and molecular identification of Botrytis  cinerea  causal  agent  of  gray  mold  in  rose  greenhouses  in  central  regions  of  Iran.  International Journal of Agricultural Science, 1(1): 19-24.

Lalève,  A.,  Fillinger,  S.  &  Walker,  A.S.  2014.  Fitness  measurement  reveals  contrasting  costs  in  homologous  recombinant  mutants  of  Botrytis  cinerea  resistant  to  succinate  dehydrogenase  inhibitors. Fungal Genetics and Biology, 67: 24-36. https://doi.org/10.1016/j.fgb.2014.03.006.

Leyronas,  C.,  Duffaud,  M.,  Parès,  L.,  Jeannequin,  B.  &  Nicot,  P.C.  2015.  Flow  of  Botrytis  cinereainoculum  between  lettuce  crop  and  soil.  Plant  Pathology,  64(3):  701-708.  https://doi.org/10.1111/ppa.12284.

Ma, S., Hu, Y., Liu, S., Sun, J., Irfan, M., Chen, L.J. & Zhang, L. 2018. Isolation, identification and the biological  characterization  of  Botrytis  cinerea.  International  Journal  of  Agricultural  and  Biological  Engineering, 20(5): 1033-1040.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.