UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :T Technology (General)
ISBN :2088-5334
Main Author :Muhammad Modi Lakulu
Title :Machine learning-based stroke prediction: A critical analysis
Hits :23
Place of Production :Tanjung Malim
Publisher :Fakulti Komputeran & Meta-Teknologi
Year of Publication :2024
Notes :International Journal on Advanced Science, Engineering and Information Technology
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Stroke is a critical public health issue that frequently has long-term impairment and negative effects. Devising innovative methods that enable timely and accurate identification and intervention is crucial. In this regard, machine learning (ML) and deep learning (DL) approaches of artificial intelligence (AI) play a crucial role in reducing the incidence of strokes. This study systematically analyzed articles from 2012 to 2022 using the PRISMA Method. PRISMA is a tool that facilitates researchers’ access to an online platform for self-directed learning. The cumulative quantity of articles gathered for ten years reached 1405 from five databases. However, only 79 relevant articles were used for identification. The main objective was to provide a thorough taxonomy that classifies using and implementing machine learning approaches for stroke prediction. The results of this experiment confirm that machine-learning techniques have a great deal of potential for accurate stroke prediction. Nevertheless, challenges such as biased data and algorithms and the need for models that can be adjusted to accommodate various demographics and healthcare systems continue to exist. It is essential to recognize the need for additional research projects that thoroughly explore potential data biases, algorithmic biases, and the generalizability of models across various demographics and healthcare systems. More research is necessary to further the literature on the complete assessment of machine learning models in precisely forecasting stroke occurrences. © (2024), (International Journal on Advanced Science). All rights reserved.

References

B. Hofstra, V. V. Kulkarni, S. M. N. Galvez, B. He, D. Jurafsky, and D. A. McFarland, “The diversity–innovation paradox in science,” Proc Natl   Acad   Sci   U   S   A,  vol.  117,  no.  17,  2020, doi:10.1073/pnas.1915378117.

E. S. Donkor, “Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life,” Stroke Res Treat, vol. 2018, 2018, doi: 10.1155/2018/3238165.

D. Kuriakose and Z. Xiao, “Pathophysiology and treatment of stroke: Present  status  and  future  perspectives,” International  Journal  of Molecular Sciences, vol. 21, no. 20. 2020. doi: 10.3390/ijms21207609.

J.  Benito-Lozano et  al.,  “Diagnostic  Process  in  Rare  Diseases: Determinants Associated with Diagnostic Delay,” Int J Environ Res Public Health, vol. 19, no. 11, 2022, doi: 10.3390/ijerph19116456.

D. Richards, J. A. Morren, and E. P. Pioro, “Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis,” Journal   of   the   Neurological   Sciences,  vol.  417.  2020. doi:10.1016/j.jns.2020.117054.

J. L. Clarke, S. Bourn, A. Skoufalos, E. H. Beck, and D. J. Castillo, “An Innovative Approach to Health Care Delivery for Patients with Chronic  Conditions,” Popul  Health  Manag,  vol.  20,  no.  1,  2017, doi:10.1089/pop.2016.0076.

J. Bajwa, U. Munir, A. Nori, and B. Williams, “Artificial intelligence in healthcare: transforming the practice of medicine,” Future Healthc J, vol. 8, no. 2, 2021, doi: 10.7861/fhj.2021-0095.

R. T.-A. Rahman, M.-M.  Lakulu, and I.-Y. Panessai, “Advancing Preeclampsia Prediction with Machine Learning: A Comprehensive Systematic Literature Review”, Int J Intell Syst Appl Eng, vol. 11, no. 3, pp. 13–23, Jul. 2023.

W. J. Powers et al., “2018 Guidelines for the Early Management of Patients  With Acute  Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association,” Stroke, 2018, doi: 10.1161/STR.0000000000000158.

K. Paul Buchan Jr, “Using machine learning to predict super-utilizers of healthcare,” Legacy Theses & Dissertations (2009-2024), 2021.

Syarfaini,  Nildawati,  S.  Aeni,  Surahmawati,  A.  S.  Adha,  and  M. Amansyah, “Risk factors preparation of stroke incidence in health institution employees who check up at the Health Service EXPO Event Indonesia,” Gac   Sanit,   vol.   35,  pp.   S49–S52,   2021, doi:10.1016/j.gaceta.2020.12.014.

Y.  Wang,  “Toward  Better  Health  Care  Service:  Statistical  and Machine Learning Based Analysis of Swedish Patient Satisfaction Survey,” 2017.

S. E. Chiuve, K. M. Rexrode, D. Spiegelman, G. Logroscino, J. E. Manson, and E. B. Rimm, “Primary prevention of stroke by healthy lifestyle,” Circulation,   vol.   118,   no.   9,   2008, doi:10.1161/circulationaha.108.781062.

E. S. Connolly et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from  the  american  heart  association/american  stroke  association,” Stroke, vol. 43, no. 6. 2012. doi: 10.1161/str.0b013e3182587839.

H. J. Lee, E. K. Choi, S. H. Lee, Y. J. Kim, K. Do Han, and S. Oh, “Risk  of  ischemic  stroke  in  metabolically  healthy  obesity:  A nationwide population-based study,” PLoS One, vol. 13, no. 3, 2018, doi: 10.1371/journal.pone.0195210.

Sunarti,  “Agenda  Setting  Pemberitaan  Covid  19  dan  Pelarangan Mudik pada Media Online di Indonesia,” 2021.

A. R. Al Taleb, M. Hoque, A. Hasanat, and M. B. Khan, “Application of data mining techniques to predict length of stay of stroke patients,” in 2017  International  Conference  on  Informatics,  Health  & Technology    (ICIHT),   IEEE,   Feb.   2017,   pp.   1–5. doi:10.1109/iciht.2017.7899004.

F.  Wang et  al.,  “Personalized  risk  prediction  of  symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning  model,” Ther   Adv   Neurol   Disord,  vol.  13,  p. 175628642090235, Jan. 2020, doi: 10.1177/1756286420902358.

M. S. Sirsat, E. Fermé, and J. Câmara, “Machine Learning for Brain Stroke: A Review.,” J Stroke Cerebrovasc  Dis, vol. 29, no. 10, p. 105162, Oct. 2020, doi: 10.1016/j.jstrokecerebrovasdis.2020.105162.

L. Schwartz, R. Anteby, E. Klang, and S. Soffer, “Stroke mortality prediction using machine learning: systematic review,” J Neurol Sci, vol. 444, p. 120529, Jan. 2023, doi: 10.1016/j.jns.2022.120529.

A. Panesar, Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes. 2019. doi: 10.1007/978-1-4842-3799-1.

F. Jiang et al., “Artificial intelligence in healthcare: Past, present and future,” Stroke and Vascular Neurology, vol. 2, no. 4. BMJ Publishing Group, pp. 230–243, Dec. 01, 2017. doi: 10.1136/svn-2017-000101.

A. A. Selcuk, “A Guide for Systematic Reviews: PRISMA,” Turk Arch Otorhinolaryngol,  vol.  57,  no.  1,  pp.  57–58,  May  2019, doi:10.5152/tao.2019.4058.

M. L. Rethlefsen et al., “PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews,” Syst Rev, vol. 10, no. 1, p. 39, Jan. 2021, doi: 10.1186/s13643-020-01542-z.

R.  Mohamed,  M.  Ghazali,  and  M.  A.  Samsudin,  “A  Systematic Review  on  Mathematical  Language  Learning  Using  PRISMA  in Scopus  Database,” Eurasia  Journal  of  Mathematics,  Science  and Technology  Education,  vol.  16,  no.  8,  p.  em1868,  May  2020, doi:10.29333/ejmste/8300.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to previous page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.