UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :Q Science (General)
ISBN :1823-5670
Main Author :Nor Zila Abd Hamid
Title :Performance comparison of haze prediction using chaos theory and multiple linear regression; [Perbandingan prestasi peramalan jerebu menggunakan teori kalut dan regresi linear berganda]
Hits :68
Place of Production :Tanjung Malim
Publisher :Fakulti Sains & Matematik
Year of Publication :2024
Notes :Journal of Quality Measurement and Analysis
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Forecasting haze is essential for protecting the environment, the economy, and public health. It assists authorities in taking preventative action to lessen the adverse effects of haze episodes and boost community resistance to air pollution. The goal of this study was to create a model for haze prediction by using two methods, multiple linear regression and chaos theory. In this study, chaos theory forecasts haze using univariate time series which is PM10, whereas multiple linear regression (MLR) utilizes multivariate time series for its predictions, namely ambient temperature, wind speed, ozone, nitrogen dioxide, carbon monoxide, and sulphur dioxide. Data for this study will be collected during the southwest monsoon from an industrial area in Klang, Selangor. The results of these two models will be compared to determine which model gave better performance. With these predictive models, policymakers and relevant authorities can receive timely alerts, allowing them to implement preventive measures that can reduce the impact of haze on public health and the environment. © 2024, Penerbit Universiti Kebangsaan Malaysia. All rights reserved.

References

Abd Hamid N.Z. 2020. Prediction of PM10 time series at industrial area through an improved local linear approximation method. ASM Science Journal 13: 1-7.

Abd Hamid N.Z. & Md Noorani M.S. 2014. Suatu kajian perintis menggunakan pendekatan kalut bagi pengesanan sifat dan peramalan siri masa kepekatan PM10. Sains Malaysiana 43(3): 475-481.

Abdullah S., Ismail M. & Fong S.Y. 2017. Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. Journal of Sustainability Science and Management 12(1): 60–69.

Abdullah S., Napi N.N.L.M., Ahmed A.N., Mansor W.N.W., Mansor A.A., Ismail M., Abdullah A.M. & Ramly

Z.T.A. 2020. Development of multiple linear regression for particulate matter (PM10) forecasting during episodic transboundary haze event in Malaysia. Atmosphere 11(3): 289.

Cao L. 1997. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena 110(1–2): 43–50.

Chen J. & Wang J. 2019. Prediction of PM2.5 concentration based on multiple linear regression. 2019 International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 457–460.

Cheong K.H., Ngiam N.J., Morgan G.G., Pek P.P., Tan B.Y.-Q., Lai J.W., Koh J.M., Ong M.E.H. & Ho A.F.W. 2019. Acute health impacts of the Southeast Asian transboundary haze problem—A review. International Journal of Environmental Research and Public Health 16(18): 3286.

Darman H. & Abd Hamid N.Z. 2024. Predicting haze phenomenon using chaos theory in industrial area in Malaysia. Journal of Quality Measurement and Analysis 20(1): 159-169.

Department of Environment. 2019. Annual Environmental Quality Report 2019. Fraser A.M. & Swinney H.L. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33(2): 1134–1140.

Hasmarullzakim A.M. & Abdullah A. 2018. Haze pattern prediction using deep learning. UTM Computing Proceedings 3.

Idris A.C. & Yassin H. 2021. Deep learning method for haze prediction in Singapore. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1–6. Dewan Negeri Selangor. 2016. Kawasan perindustrian di Selangor. https://dewan.selangor.gov.my/question/kawasan-perindustrian-di-selangor/ (1 July 2023).

Ministry of Health Malaysia. 2020. Pelan Tindakan Pengurusan Kesihatan Akibat Jerebu. Latif M.T., Othman M. & Kamin K.H. 2017. Fenomena Jerebu di Asia Tenggara: Punca dan penyelesaian. UKM Bangi, Selangor: Insitute for Environment and Development (LESTARI).

Latif M.T., Othman M., Idris N., Juneng L., Abdullah A.M., Hamzah W.P., Khan M.F., Nik Sulaiman N.M., Jewaratnam J., Aghamohammadi N., Sahani M., Xiang C.J., Ahamad F., Amil N., Darus M., Varkkey H., Tangang F. & Jaafar A.B. 2018. Impact of regional haze towards air quality in Malaysia: A review. Atmospheric Environment 177: 28–44.

Li W., Liu X., Zhang Y., Tan Q., Feng M., Song M., Hui L., Qu Y., An J. & Gao H. 2019. Insights into the phenomenon of an explosive growth and sharp decline in haze: A case study in Beijing. Journal of Environmental Sciences 84: 122–132.

Liu X., Liu Q., Zou Y. & Liu Q. 2019. A LSTM-based approach to haze prediction using a self-organizing single hidden layer scheme. In Yang C.N., Peng S.L. & Jain L. (eds.). Security with Intelligent Computing and Bigdata Services. SICBS 2018. Advances in Intelligent Systems and Computing, vol 895. Cham: Springer.

Pinghua Z. 2018. Empirical study on haze forecasting model based on neural network. IOP Conference Series: Materials Science and Engineering 439: 032073.

Pino-Vallejo M., Tierra A., Haro A. & Perugachi N. 2018. Prediction of concentrations of PM2.5 in Downtown Quito using the chaos theory. AIP Conference Proceedings 2003: 020013.

Quah E., Chia W.-M. & Tan T.-S. 2021. Economic impact of 2015 transboundary haze on Singapore. Journal of Asian Economics 75: 101329.

Shang K., Chen Z., Liu Z., Song L., Zheng W., Yang B., Liu S. & Yin L. 2021. Haze prediction model using deep recurrent neural network. Atmosphere 12(12): 1625.

Sivakumar B. 2002. A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology 258(1–4): 149–162.

Soleiman A., Othman M., Samah A.A., Sulaiman N.M. & Radojevic M. 2003. The Occurrence of Haze in Malaysia: A Case Study in an Urban Industrial Area. In Rao G.V., Raman S. & Singh, M.P. (eds.). Air Quality, pp. 221-238. Birkhäuser, Basel: Pageoph Topical Volumes.

Talhelm T. 2024. Particle Air Pollution: PM10 vs PM2.5. https://smartairfilters.com/en/blog/pm10-pm2-5- difference-particle-air-pollution/ (15 April 2024).

Ul-Saufie A.Z., Yahaya A.S., Ramli N. & Hamid H.A. 2012. Performance of multiple linear regression model for long-term PM10 concentration prediction based on gaseous and meteorological parameters. Journal of Applied Sciences 12(14): 1488–1494.

Varkkey H. & Copeland A. 2020. Exchanging health for economic growth? Haze in the context of public health and political economy in Malaysia. Journal of Social Health 3(1): 1-13.

Wu X., Liu Z., Yin L., Zheng W., Song L., Tian J., Yang B. & Liu S. 2021. A haze prediction model in Chengdu based on LSTM. Atmosphere 12(11): 1479.

Zhang Z., Tian J., Huang W., Yin L., Zheng W. & Liu S. 2021. A Haze prediction method based on one-dimensional convolutional neural network. Atmosphere 12(10): 1327.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.