|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||||||
| Abstract : Universiti Pendidikan Sultan Idris |
| Cadmium telluride (CdTe) solar cells have attracted a lot of interest in recent years, attributed to their low cost and eco-friendly fabrication technique. However, the back contact is still the key issue for further improvement in device performance due to the work function difference between p-CdTe and metal contacts. In this study, the interatomic characteristics of zinc telluride (ZnTe) and Cu-doped ZnTe (ZnTe:Cu) as a back surface field (BSF) in CdTe structure is investigated using first-principles density functional theory (DFT) to overcome the Schottky barrier in CdTe solar cells. The incorporation of different doping levels of copper (Cu) in ZnTe on an atomic scale, where Zn1−xTe:Cux (x = 0, 2, 4, 6, 8, and 10) as the potential back surface field layers is investigated. The effect of doping concentration on electrical characteristics such as bandgap structure and density of states (DOS) were examined via ab initio with the Hubbard U (DFT + U) correction. The results showed an interesting gradual decrease in the bandgap energy of ZnTe from 2.24 eV to 2.10 eV, 1.98 eV, 1.92 eV, 1.88 eV, and 1.87 eV for the incremented value of Cu content of 3.13%, 6.25%, 9.38%, 12.50%, and 15.63%, respectively. Accordingly, it has been found that controlling of the effective copper doping, i.e., concentration, is crucial for developing efficient back contact junctions for high-efficiency CdTe thin-film solar cells. © 2024, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature. |
| References |
C. Doorody, K.S. Rahman, H.N. Rosly, Impact of back surface field (BSF) layers in cadmium telluride (CdTe) solar cells from numerical calculation. Int. J. Recent Technol. Eng. (2019). https://doi.org/10.35940/ijrte.d5143.118419. B.K. Ghosh, S. Nasir, K.T.K. Teo, I. Saad, ZnO thickness and ZnTe back contact effect of CdTe thin film solar cell Voc and efficiency progression. Mater. Res. Express (2021). https://doi.org/10.1088/2053-1591/ac38de. K. Shen, X. Wang, Y. Zhang, H. Zhu, Z. Chen, C. Huang, Y. Mai, Insights into the role of interface modification in performance enhancement of ZnTe:Cu contacted CdTe thin film solar cells. Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.02.083. A.M. Bothwell, J.A. Drayton, J.R. Sites, Performance analysis of 0.4–1.2-μm CdTe solar cells. IEEE J Photovolt. (2020). https://doi.org/10.1109/JPHOTOV.2019.2947556. J.N. Duenow, W.K. Metzger, Back-surface recombination, electron reflectors, and paths to 28% efficiency for thin-film photovoltaics: a CdTe case study. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5063799. D. Rioux, D.W. Niles, H. Höchst, ZnTe: a potential interlayer to form low resistance back contacts in CdS/CdTe solar cells. J. Appl. Phys. (1993). https://doi.org/10.1063/1.353406. C.A. Wolden, A. Abbas, J. Li, D.R. Diercks, D.M. Meysing, T.R. Ohno, J.D. Beach, T.M. Barnes, J.M. Walls, The roles of ZnTe buffer layers on CdTe solar cell performance. Sol. Energy Mater. Sol. Cells (2016). https://doi.org/10.1016/j.solmat.2015.12.019. J.U. Ahamed, N.P. Begum, M.N.I. Khan, Property elucidation of vacuum-evaporated zinc telluride thin film towards optoelectronic devices. Sadhana Acad. Proc. Eng. Sci. (2017). https://doi.org/10.1007/s12046-017-0717-6. B. Chen, J. Liu, Z. Cai, A. Xu, X. Liu, Z. Rong, D. Qin, W. Xu, L. Hou, Q. Liang, The effects of ZnTe:Cu back contact on the performance of CdTe nanocrystal solar cells with inverted structure. Nanomaterials (2019). https://doi.org/10.3390/nano9040626. T. Potlog, D. Duca, M. Dobromir, Temperature-dependent growth and XPS of Ag-doped ZnTe thin films deposited by close space sublimation method. Appl. Surf. Sci. (2015). https://doi.org/10.1016/j.apsusc.2015.03.133. L. Ion, Structural and composition of Cu-doped ZnTe thin films with different concentrations by immersion in Cu(NO3)2 solution, in Proceedings of the International Semiconductor Conference CAS (2021). https://doi.org/10.1109/CAS52836.2021.9604170. D. Suthar, R. Sharma, A. Sharma, Himanshu, A. Thakur, M.D. Kannan, M.S. Dhaka, Effect of thermal annealing on physical properties of Cu-doped ZnTe thin films: functionality as interface layer. J. Alloys Compd. 918, 165756 (2022). https://doi.org/10.1016/J.JALLCOM.2022.165756. J. Li, D.R. Diercks, T.R. Ohno, C.W. Warren, M.C. Lonergan, J.D. Beach, C.A. Wolden, Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing. Sol. Energy Mater. Sol. Cells (2015). https://doi.org/10.1016/j.solmat.2014.10.045. A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, H. Aourag, Fullpotential investigation of the electronic and optical properties of stressed CdTe and ZnTe. Mater. Chem. Phys. (2005). https://doi.org/10.1016/j.matchemphys.2004.10.031. R.K. Kremer, M. Cardona, R. Lauck, G. Siegle, A.H. Romero, Vibrational and thermal properties of ZnX (X=Se, Te): density functional theory (LDA and GGA) versus experiment. Phys. Rev. B Condens. Matter Mater. Phys. (2012). https://doi.org/10.1103/ PhysRevB.85.035208. A. Gültekin, M. Kemal Öztürk, M. Tamer, T. Baş, The study of structural, electronic, elastic and optical properties in Be1−xZnxTe alloys. Mater. Sci. Semicond. Process. (2015). https://doi.org/10.1016/j.mssp.2015.06.010. A. Halal, K.S. Rahman, S.F. Abdullah, K. Sopian, N. Amin, An investigation on CdS1−xTex interface compound in CdS/CdTe heterojunction solar cells by density functional theory (DFT). Superlattices Microstruct. (2021). https://doi.org/10.1016/j.spmi.2021.106805. K. Choudhary, F. Tavazza, Convergence and machine learning predictions of Monkhorst–Pack k-points and plane-wave cut-off in highthroughput DFT calculations. Comput. Mater. Sci. (2019). https://doi.org/10.1016/j.commatsci.2019.02.006. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen, A. Otero-De-LaRoza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa8f79. Y. Wei, P. Xie, H. Lei, Z. Lu, C. Liu, B. bin Zhang, W. Yang, W. Jie, Luminescence and optical properties of Fe2+:ZnTe crystal grown by temperature gradient solution method. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.07.124. |
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |