UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Article
Subject :S Agriculture (General)
ISBN :2471-2086
Main Author :Salisu, Monsuru Adekunle
Title :Genetic diversity and utilization of ginger (Zingiber officinale) for varietal improvement: A review
Hits :62
Place of Production :Tanjung Malim
Publisher :Fakulti Teknikal & Vokasional
Year of Publication :2024
Notes :Aims Agriculture and Food
Corporate Name :Universiti Pendidikan Sultan Idris
HTTP Link : Click to view web link
PDF Full Text :You have no permission to view this item.

Abstract : Universiti Pendidikan Sultan Idris
Ginger is widely cultivated globally and considered the third most important spice crop due to its medicinal properties. It is cultivated for its therapeutic potential in treating different medical conditions and has been extensively researched for its pharmacological and biochemical properties. Despite its significant value, the potential for genetic improvement and sustainable cultivation has been largely ignored compared to other crop species. Similarly, ginger cultivation is affected by various biotic stresses such as viral, bacterial, and fungal infections, leading to a significant reduction in its potential yields. Several techniques, such as micropropagation, germplasm conservation, mutation breeding, and transgenic have been extensively researched in enhancing sustainable ginger production. These techniques have been utilized to enhance the quality of ginger, primarily due to its vegetative propagation mode. However, the ginger breeding program has encountered challenges due to the limited genetic diversity. In the selection process, it is imperative to have a broad range of genetic variations to allow for an efficient search for the most effective plant types. Despite a decline in the prominence of traditional mutation breeding, induced mutations remain extremely important, aided by a range of biotechnological tools. The utilization of in vitro culture techniques serves as a viable alternative for the propagation of plants and as a mechanism for enhancing varietal improvement. This review synthesizes knowledge on limitations to ginger cultivation, conservation, utilization of cultivated ginger, and the prospects for varietal improvement. © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

References

Kizhakkayil J, Sasikumar B (2011) Diversity, characterization and utilization of ginger: A review. Plant Genet Resour 9: 464–477. https://doi.org/10.1017/S1479262111000670.

Ravindran PN, Nirmal Babu K, Shiva KN (2005) Botany and crop improvement of ginger. In: Ravindran PN, Nirmal Babu K (Eds.), Ginger: The Genus Zingiber, CRC Press, New York, 15–85. https://doi.org/10.1201/9781420023367.

Kiyama R (2020) Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J Nutr Biochem 86: 108486. https://doi.org/10.1016/j.jnutbio.2020.108486.

FAOSTAT Database Collections(2024) Food and Agriculture Organization of the United Nations, Rome, Italy. Available from: http://www.fao.org/faostat/en/#data/QC.

Nair KP (2019) Production, marketing, and economics of ginger. In: Turmeric (Curcuma longa L.) and Ginger (Rosc.)—World's Invaluable Medicinal Spices: The Agronomy and Economy of Turmeric and Ginger, 493–518. https://doi.org/10.1007/978-3-030-29189-1_24.

Padulosi S, Leaman D, Quek P (2002) Challenges and opportunities in enhancing the conservation and use of medicinal and aromatic plants. J Herbs, Spices Med Plants 9: 243–267. https://doi.org/10.1300/J044v09n04_01.

Shao X, Lishuang L, Tiffany P, et al. (2010) Quantitative analysis of ginger components in commercial products using liquid chromatography with electrochemical array detection. J Agric Food Chem 58: 12608–12614. https://doi.org/10.1021/jf1029256.

Sangwan A, Kawatra A, Sehgal S (2014) Nutritional composition of ginger powder prepared using various drying methods. J Food Sci Technol 51: 2260–2262. https://doi.org/10.1007/s13197–012–0703–2.

Bischoff-Kont I, Fürst R (2021) Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. Pharmaceuticals 14: 571. https://doi.org/10.3390/ph14060571.

Russo R, Costa MA, Lampiasi N, et al. (2023) A new ginger extract characterization: Immunomodulatory, antioxidant effects and differential gene expression. Food Biosci 53: 102746. https://doi.org/10.1016/j.fbio.2023.102746.

Eleazu CO, Amadi CO, Iwo G, et al. (2013) Chemical composition and free radical scavenging activities of 10 elite accessions of ginger (Zingiber officinale Roscoe). J Clinic Toxicol 3: 155. https://doi.org/10.4172/2161-0495.1000155.

Wang J, Ke W, Bao R, et al. (2017) Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann N Y Acad Sci 1398: 83–98. https://doi.org/10.1111/nyas.13375.

Lakshmi BVS, Sudhakar MA (2010) Protective effect of Z. officinale on gentamicin induced nephrotoxicity in rats. Int J Pharmacol 6: 58–62. https://doi.org/10.3923/ijp.2010.58.62.

Nammi S, Satyanarayana S, Roufogalis BD (2009) Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic Clin Pharmacol Toxicol 104: 366–373. https://doi.org/10.1111/j.1742-7843.2008.00362.x.

Grant KL, Lutz RB (2000) Alternative therapies: Ginger. Am J Health Syst Pharm 57: 945–947. https://doi.org/10.4236/ojmm.2012.23013.

Iqbal Z, Lateef M, Akhtar MS, et al. (2006) In vivo anthelmintic activity of ginger against gastrointestinal nematodes of sheep. J Ethnopharmacol 106: 285–287. https://doi.org/10.1016/j.jep.2005.12.031.

El–Baroty GS, Abd El-Baky HH, Farag RS, et al. (2010) Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem Res 4: 167–174.

Hsu YL, Chen CY, Hou MF, et al. (2010) 6‐Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c‐Jun N‐terminal kinase pathways in human breast cancer cells. Mol Nutr Food Res 54: 1307–1317. https://doi.org/10.1002/mnfr.200900125.

Koh EM, Kim HJ, Kim S, et al. (2008) Modulation of macrophage functions by compounds isolated from Zingiber officinale. Planta Med 75: 148–151. https://doi.org/10.1055/s-0028-1088347.

Imm J, Zhang G, Chan LY, et al. (2010) [6]-Dehydroshogaol, a minor component in ginger rhizome, exhibits quinone reductase inducing and anti–inflammatory activities that rival those of curcumin. Food Res Int 43: 2208–2213. https://doi.org/10.1016/j.foodres.2010.07.028.

Yang G, Zhong L, Jiang L, et al. (2010) Genotoxic effect of 6–gingerol on human hepatoma G2 cells. Chem Biol Interact 185: 12–17. https://doi.org/10.1016/j.cbi.2010.02.017.

Paret ML, Cabos R, Kratky BA, et al. (2010) Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis 94: 521–527. https://doi.org/10.1094/PDIS-94-5-0521.


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.