UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
A series of mixed glass formers (MGF) with varying compositions denoted as (79-x)B2O3-xTeO2-20Li2O-0.5Ho2O3-0.5Yb2O3 (x = 0–50 mol%) were prepared using the melt-quenching technique. This aim of this study was to examine the effect of combining glass formers TeO2 and B2O3 on the structural, DC conductivity, elastic, and optical properties of the glass system. XRD measurements confirmed the amorphous nature of the glass samples. Structural analysis revealed a rivalry between the TeO2 and B2O3 formers. It was observed that the bridging oxygen (BO) indicated by the BO4 functional group decreases gradually at x ≥ 40 mol%, implying that non-bridging oxygen (NBO) units, denoted by BO3, become dominant beyond 40 mol%. The variation in DC conductivity showed a non-linear behaviour upon addition of TeO2, with the conductivity increasing to a maximum value at x = 30 mol% before decreasing at x > 30 mol%. Interestingly, the conductivity showed a slight decline at x = 40 mol%, possibly resisting a decrease due to the mixed glass former effect (MGFE). Elastic moduli such as CL, Ke and Y exhibited a non-linear decrease between 10 ≤ x ≤ 30 mol% and reached a lowest value for x = 40 mol%, which coincided with the maximum of DC conductivity attributed to MGFE. Quantitative analysis of ultrasonic data, utilizing bulk compression and ring deformation models, revealed that the Kbc/Ke value is maximum at x = 40 mol%, implying a reduction in ring deformation within the MGFE region. UV–Vis spectroscopy demonstrated that with increasing TeO2 content, Eopt and Eopt’ decreased except for x = 40 mol%. The refractive index, n also increased except at x = 40 mol%. The alternating dominance of BO and NBO in the MGFE region led to this conclusion. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. |
References |
A. Madhu, N. Srinatha, Structural and spectroscopic studies on the concentration dependent erbium doped lithium bismuth boro tellurite glasses for optical fber applications. Infrared Phys. Technol. 107(1), 103300 (2020). https://doi.org/10.1016/j.infrared.2020.103300. S. Rani, N. Ahlawat, R. Parmar, S. Dhankhar, R.S. Kundu, Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses. Indian J. Phys. 92(7), 901–909 (2018). https://doi.org/10.1007/s12648-018-1164-x. K. Selvaraju, K. Marimuthu, T.K. Seshagiri, S.V. Godbole, Thermal, structural and spectroscopic investigations on Eu3+ doped boro-tellurite glasses. Mater. Chem. Phys. 131(1–2), 204–210 (2011). https://doi.org/10.1016/j.matchemphys.2011.09.006. M. Anand Pandarinath, G. Upender, K. Narasimha Rao, D. Suresh Babu, Thermal, optical and spectroscopic studies of boro-tellurite glass system containing ZnO. J. Non Cryst. Solids 433, 60–67 (2016). https://doi.org/10.1016/j.jnoncrysol.2015.11.028. M. I. Sayyed, “Bismuth modifed shielding properties of zinc boro-tellurite glasses,” 688, pp. 111–117, (2016) R. Hisam, A.K. Yahya, Anomalous behaviors of elastic moduli, DC conductivity and optical properties in mixed transition–metal–ion (20–x) MnO2–xFe2O3–80TeO2 tellurite glass system. Chalcogenide Letters 13(4), 145–160 (2016). A.N. D’Souza et al., Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. J. Non Cryst. Solids 542(May), 120136 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120136. V.P. Tuyen et al., Dy3+ ions as optical probes for studying structure of boro-tellurite glasses. J. Lumin. 178, 27–33 (2016). https://doi.org/10.1016/j.jlumin.2016.05.027. M.K. Halimah, A.S. Asyikin, S.N. Nazrin, M.F. Faznny, Infuence of erbium oxide on structural, physical, elastic and luminescence properties of rice husk biosilicate zinc borotellurite glasses for laser application. J. Non Cryst. Solids 553(September), 1–7 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120467. K. Maheshvaran, K. Linganna, K. Marimuthu, Composition dependent structural and optical properties of Sm3+ doped borotellurite glasses. J. Lumin. 131(12), 2746–2753 (2011). https://doi.org/10.1016/j.jlumin.2011.06.047. K. Maheshvaran, P.K. Veeran, K. Marimuthu, Structural and optical studies on Eu3+ doped boro-tellurite glasses. Solid State Sci. 17, 54–62 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.11.013. M.K. Halimah et al., Structural and spectroscopic behavior of Er3+/Yb3+ co-doped boro-tellurite glasses. J. Non Cryst. Solids 34(1), 140–147 (2011). https://doi.org/10.1016/j.jlumin.2011.06.047. S. Rani, R.S. Kundu, N. Ahlawat, S. Rani, K.M. Sangwan, K. Rani, Bismuth modifed physical and optical properties of barium boro-tellurite glasses. AIP Conf. Proc. 2115, 66–73 (2019). https://doi.org/10.1063/1.5113094. L. Abd El Latif, Ultrasonic study on the role of Na2O on the structure of Na2O-B2O3 and Na2O-B2O3-SiO2 glasses. J. Pure Appl. Ultrason 27(3), 80–91 (2005). P. Suthanthirakumar, P. Karthikeyan, P.K. Manimozhi, K. Marimuthu, Structural and spectroscopic behavior of Er3+/Yb3+ codoped boro-tellurite glasses. J. Non Cryst. Solids 410, 26–34 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.12.012. M. de Oliveira, J.S. Oliveira, S. Kundu, N.M.P. Machado, A.C.M. Rodrigues, H. Eckert, Network former mixing efects in ion-conducting lithium borotellurite glasses: structure/property correlations in the system (Li2O)y[2(TeO2)x(B2O3)1–x]1 − y. J. Non Cryst. Solids 482(August 2017), 14–22 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.11.052. M. Storek, M. Adjei-Acheamfour, R. Christensen, S.W. Martin, R. Böhmer, Positive and negative mixed glass former efects in sodium borosilicate and borophosphate glasses studied by 23Na NMR. J. Phys. Chem. B 120(19), 4482–4495 (2016). https://doi.org/10.1021/acs.jpcb.6b00482. D. Larink, M.T. Rinke, H. Eckert, Mixed network former efects in tellurite glass systems: structure/property correlations in the system (Na2O)1/3[(2TeO2)x(P2O5)1–x]2/3. J. Phys. Chem. C 119(31), 17539–17551 (2015). https://doi.org/10.1021/acs.jpcc.5b04074. Q. Zheng, M. Potuzak, J.C. Mauro, M.M. Smedskjaer, R.E. Youngman, Y. Yue, Composition-structure-property relationships in boroaluminosilicate glasses. J. Non Cryst. Solids 358(6–7), 993–1002 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.01.030. W. Zeng et al., Physical and structural efect of modifers on dysprosium ions incorporated boro-tellurite glasses for radiation shielding purposes. J. Non Cryst. Solids 131(7), 95–100 (2016). https://doi.org/10.1016/j.jnoncrysol.2014.12.012. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |