|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||||||
| Abstract : Universiti Pendidikan Sultan Idris |
| Staphylococcus aureus is a Gram-positive pathogen inhabiting soft tissues like the epidermis and nasal cavity. Currently, there is limited knowledge of the protein-protein interaction (PPI) networks in S. aureus biofilm. The present study aimed to characterize S. aureus proteins and their interaction networks using an in silico approach and to identify the proteins expressed in S. aureus biofilm using tandem mass spectrometry. Initially, a preliminary characterization of the PPI networks in S. aureus was conducted using the STRING 12.0 database. Subsequently, S. aureus biofilm was developed in a 6-well microplate and harvested at 6 h, 12 h, 18 h, and 24 h. The expression of proteins in S. aureus biofilm was determined using a combination of one-dimensional SDSPAGE and HPLC-ESI-MS/MS. The in silico results demonstrated that 147 biological processes, 46 molecular functions, 17 cellular components, and 15 biological pathways were significantly enriched (p |
| References |
Evelhoch, S. R. (2020). Biofilm and chronic nonhealing wound infections. Surgical Clinics of North America, 100(4): 727-732. Yaacob, M. F., Murata, A., Nor, N. H., Jesse, F. F. S. and Yahya, M. F. Z. R. (2021). Biochemical composition, morphology and antimicrobial susceptibility pattern of Corynebacterium pseudotuberculosis biofilm. Journal of King Saud University - Science, 33(1): 101225. Rashid, S. A. A., Yaacob, M. F., Aazmi, M. S., Jesse, F. F. A. and Yahya, M. F. Z. R. (2022). Inhibition of Corynebacterium pseudotuberculosis biofilm by DNA synthesis and protein synthesis inhibitors. Journal of Sustainability Science and Management, 17(4): 49-56. Chajęcka-Wierzchowska, W., Gajewska, J., Zakrzewski, A.J., Caggia, C. and Zadernowska, A. (2023). Molecular analysis of pathogenicity, adhesive matrix molecules (MSCRAMMs) and biofilm genes of coagulase-negative staphylococci isolated from ready-to-eat food. International Journal of Environmental Search and Public Health, 20: 1375. Pal, M., Ketchakmadze, D., Durglishvili, N., and Ketchakmadze, K. (2022). Staphylococcus aureus: A major pathogen of food poisoning: a rare research report. Nutrition & Food Processing, 5(1): 1-3. Foster, T. J. (2019). Surface proteins of Staphylococcus aureus. Microbiology spectrum, 7(4): 7-4. Pi, Y., Chen, W., and Ji, Q. (2020). Structural basis of Staphylococcus aureus surface protein SdrC. Biochemistry 59: 1465–1469. Barbu, E. M., Mackenzie, C., Foster T, J. and Höök, M. (2014). SdrC induces staphylococcal biofilm formation through a homophilic interaction. Molecular Microbiology, 94: 172–185. Zulkiply, N., Ramli, M. E. and Yahya, M. F. Z. R. (2022). In silico identification of antigenic proteins in Staphylococcus aureus. Journal of Sustainability Science and Management, 17: 18-26. Burke, D. F., Bryant, P., Barrio-Hernandez, I., Memon, D., Pozzati, G., Shenoy, Aditi., Zhu, W., Dunham, A. S., Albanese, P., Keller. A., Scheltema, R. A., Bruce, J. E., Leitner, A., Kundrotas, P., Beltrao, P. and Elofsson, A. (2023). Towards a structurally resolved human protein interaction network. Nature Structural & Molecular Biology, 30: 216-225. Kang, X., Ma Q, Wang, G., Li, N., Mao, Y., Wang, X., Wang, Y. and Wang, G. (2022). Potential mechanisms of quercetin influence the ClfB protein during biofilm formation of Staphylococcus aureus. Frontiers in Pharmacology, 13: 825489. Yahya, M. F. Z R., Karsani, S. A. and Alias, Z. (2017). Subtractive protein profiling of Salmonella typhimurium biofilm treated with DMSO. The Protein Journal. 36(4): 286-298. Bai, J. R., Zhong, K., Wu, Y. P., Elena, G. and Gao, H. (2019). Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control, 95: 327-333. Rao, V. S., Srinivas, K., Sujini, G. N. and Kumar, G. N. (2014). Protein-Protein Interaction Detection: Methods and Analysis. International Journal of Proteomics, 2014: 147648. Thomas, S. and Doytchinova, I. (2021). In silico identification of the b-cell and t-cell epitopes of the antigenic proteins of Staphylococcus aureus for potential vaccines. Vaccine Design, 439-447. Lattar, S. M., Noto Llana, M., Denoël, P., Germain, S., Buzzola, F. R., Lee, J. C. and Sordelli, D. O. (2014). Protein antigens increase the protective efficacy of a capsule-based vaccine against Staphylococcus aureus in a rat model of osteomyelitis. Infection and Immunity, 82(1): 83-91. Prava, J., G, P. and Pan, A. (2018). Functional assignment for essential hypothetical proteins of Staphylococcus aureus N315. International Journal of Biological Macromolecules, 108: 765-774. |
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |