UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Universiti Pendidikan Sultan Idris |
In recent years, the progressive escalation of climate change scenarios has emerged as a significant global concern. The threat to global food security posed by abiotic stresses such as drought, salinity, waterlogging, temperature stress (heat stress, freezing, and chilling), and high heavy metal accumulation is substantial. The implementation of any of these stresses on agricultural land induces modifications in the morphological, biochemical, and physiological processes of plants, leading to diminished rates of germination, growth, photosynthesis, respiration, hormone and enzyme activity disruption, heightened oxidative stress, and ultimately, a reduction in crop productivity. It is anticipated that the frequency of these stresses will progressively escalate in the future as a result of a rise in climate change events. Therefore, it is crucial to develop productive strategies to mitigate the adverse effects of these challenges on the agriculture industry and improve crop resilience and yield. Diverse strategies have been implemented, including the development of cultivars that are resistant to climate change through the application of both conventional and modern breeding techniques. An additional application of the prospective and emerging technology of speed breeding is the acceleration of tolerance cultivar development. Additionally, plant growth regulators, osmoprotectants, nutrient and water management, planting time, seed priming, microbial seed treatment, and arbuscular mycorrhiza are regarded as effective methods for mitigating abiotic stresses. The application of biochar, kaolin, chitosan, superabsorbent, yeast extract, and seaweed extract are examples of promising and environmentally benign agronomic techniques that have been shown to mitigate the effects of abiotic stresses on crops; however, their exact mechanisms are still not yet fully understood. Hence, collaboration among researchers should be intensified to fully elucidate the mechanisms involved in the action of the emerging technologies. This review provides a comprehensive and current compilation of scientific information on emerging and current trends, along with innovative strategies to enhance agricultural productivity under abiotic stress conditions. © 2024 by the authors. |
References |
Rai, K.K. Integrating Speed Breeding with Artificial Intelligence for Developing Climate-smart Crops. Mol. Biol. Rep. 2022, 49, 11385–11402. Younis, A.; Ramzan, F.; Ramzan, Y.; Zulfiqar, F.; Ahsan, M.; Lim, K.B. Molecular Markers Improve Abiotic Stress Tolerance in Crops: A Review. Plants 2020, 9, 1374. El-Saadony, M.T.; Saad, A.M.; Soliman, S.M.; Salem, H.M.; Desoky, E.S.M.; Babalghith, A.O.; AbuQamar, S.F. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front. Plant Sci. 2022, 13, 946717. Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. Alotaibi, M. Climate Change, its Impact on Crop Production, Challenges, and Possible Solutions. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13020. Giordano, M.; Petropoulos, S.A.; Rouphael, Y. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. Waqas, M.A.; Wang, X.; Zafar, S.A.; Noor, M.A.; Hussain, H.A.; Azher Nawaz, M.; Farooq, M. Thermal Stresses in Maize: Effects and Management Strategies. Plants 2021, 10, 293. dos Santos, T.B.; Ribas, A.F.; de Souza, S.G.H.; Budzinski, I.G.F.; Domingues, D.S. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2022, 2, 113–135. Rajput, V.D.; Minkina, T.; Kumari, A.; Harish; Singh, V.K.; Verma, K.K.; Mandzhieva, S.; Sushkova, S.; Srivastava, S.; Keswani, C. Coping with the Challenges of Abiotic Stress in Plants: New Dimensions in the Field Application of Nanoparticles. Plants 2021, 10, 1221. Faiz, H.; Ayyub, C.M.; Khan, R.W.; Ahmad, R. Morphological, Physiological and Biochemical Responses of Eggplant (Solanum melongena L.) Seedling to Heat Stress. Pak. J. Agric. Sci. 2020, 57, 371–380. Bhat, K.A.; Mahajan, R.; Pakhtoon, M.M.; Urwat, U.; Bashir, Z.; Shah, A.A.; Agrawal, A.; Baht, A.; Sofi, P.A.; Masi, A.; et al. Low Temperature Stress Tolerance: An Insight into the Omics Approaches for Legume Crops. Front. Plant Sci. 2022, 13, 888710. Ahmad, N.; Naeem, M.; Ali, H.; Alabbosh, K.F.; Hussain, H.; Khan, I.; Siddiqui, S.A.; Khan, A.A.; Iqbal, B. From Challenges to Solutions: The Impact of Melatonin on Abiotic Stress Synergies in Horticultural Plants Via Redox Regulation and Epigenetic Signaling. Sci. Hortic. 2023, 321, 112369. Kompas, T.; Pham, V.H.; Che, T.N. The Effects of Climate Change on GDP by Country and the Global Economic Gains from Complying with the Paris Climate Accord. Earth’s Future 2018, 6, 1153–1173. Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.; Kolapo, K. Drought Resistance in Rice from Conventional to Molecular Breeding: A review. Int. J. Mol. Sci. 2019, 20, 3519. Oyebamiji, Y.O.; Shamsudin, N.A.A.; Ikmal, A.M.; Rafii, M. Heat Stress in Vegetables: Impacts and Management Strategies-A Review. Sains Malays. 2023, 52, 1925–1938. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |