UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
The objective of this study is to design and develop a piezoelectric micromachined ultrasonic transducer (pMUT). The developed pMUTs are then characterized and verified for underwater applications. PDMS and epoxy thick films are deposited using the spin-coating technique. The wafer bonding method is employed to adhere to the functional and structural layers. Bonding quality is analysed using FESEM images while material interaction is studied using EDS analysis. Electrical characterization is carried out on all developed pMUTs using impedance analysis. Finally, the receiving and transmitting responses are determined and verified using the pulse-echo technique in a freshwater tank. All pMUTs are successfully constructed, with overall thicknesses ranging from 880 to 980 _m. PDMS and Epoxy thick films are uniformly deposited at 1000 rpm. A strong bonding between the piezoelectric active layer and the silicon substrate is observed using PDMS as an adhesive, with a minimum thickness of 26.42 _m and a maximum of 64.76 _m. It is verified that the speed of sound is measured at 1333.3 ms-1 using the developed pMUT. At an operating frequency of 100 kHz, the DUT utilizing PDMS adhesive demonstrated 66% higher sensitivity in receiving mode and 71% more sensitivity in transmitting mode compared to the DUT using epoxy. PDMS adhesive has also contributed to a wider operating frequency while epoxy adhesive carries a deadspace below 80 kHz of operating frequency. In conclusion, pMUTs for underwater applications can be fabricated using the wafer bonding method. The performance of all developed pMUTs has been measured through mechanical characterization, electrical analysis, and underwater verification. It is found that the proposed wafer bonding method simplifies the fabrication of pMUT. The usage of PDMS as an adhesive has contributed to increased sensitivity while maintaining operating bandwidth. |
References |
A. Dangi, A. Hulge, A. Somasundaran, R. S. Valsalam, R. Pratap. (2015). Complete development of a single-cell PMUT transducer: design, fabrication, characterization, and integration. Journal of Institute of Smart Structure and Systems, JISSS, 4(1), 61–69. Ahmad, K. A., Rahman, M. F., Zain, K. A., Haron, M. N., & Manaf, A. A. (2021). A fluidics-based Double Flexural Membrane Piezoelectric micromachined Ultrasonic transducer (pMUT) for wide-bandwidth underwater acoustic applications. Sensors, 21(16), 5582. Akasheh, F., Fraser, J.D., Bose, S. and Bandyopadhyay, A. (2004). Development of a piezoelectric micromachined ultrasonic transducer. Sensor and Actuators A: Physical, 111, 275-287. Akasheh, F., Fraser, J. D., Bose, S. and Bandyopadhyay, A. (2005). Piezoelectric micromachined ultrasonic transducer: Modelling the influence of structural parameters on device performance. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 52 (3), 455-468. Akhbari, S., Sammoura, F., & Lin, L. (2016). Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(3), 432–447. Akasheh, F., Myers, T., Fraser, J. D., Bose, S., & Bandyopadhyay, A. (2004). Development of piezoelectric micromachined ultrasonic transducers. Sensors and Actuators, A: Physical, 111(2–3), 275–287. Duval, F.F.C., Dorey, R.A., Wright, R.W., Huang, Z. And Whatmore, R.W. (2004). Fabrication and modeling of high-frequency PZT composite thin film membrane resonators. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 51 (10), 1255-1261. Friend, J., Jamieson, E., Pennell, M., & Huebner, W. (2001). Ultrasonic characterization of poling in lead zirconate titanate ceramics. Appl. Phys. Letts, 79, 2794–2796. Ganji, B.A., Majlis, B.Y. and Rastegar, S. (2008). First resonance frequency and high sensitivity for MEMS Acoustic Sensors. IEEE Proceedings on ICSE, 239-244. Hernán Lara, R. D. (2013). Design of low-cost open-source spin coater and dip coater devices for deposition of thin films. Haarindraprasad, R., Hashim, U., Gopinath, S. C., Kashif, M., Veeradasan, P., Balakrishnan, S. R., Foo, K. L., & Poopalan, P. (2015). Low temperature annealed zinc oxide nanostructured thin film-based transducers. Characterization for Sensing Applications. PLOS ONE, 10(7). Hong-wei, W. (2016). Performance simulation and fabrication of PZT piezoelectric composite ring. International Journal of Materials Science and Applications, 5(2), 89. Ho Soonmin. (2022). Characterization of cobalt selenide films using FESEM and EDX. International Journal of Thin Film Science and Technology, 11(1), 1–9. Ito, M., Okada, N., Takabe, M., Otonari, M., Akai, D., Sawada, K. and Ishida, M. (2008). High Sensitivity ultrasonic sensor for hydrophone applications, using an epitaxial Pb(Zr, Ti)O3 film grown on SrRuO3/Pt/.-Al2O3/Si. Sensor and Actuators A: Physical,145-146: 278-282. Jang, L. S., & Kuo, K. C. (2007). Fabrication and characterization of PZT thick films for sensing and actuation. Sensors, 7(4), 493–507. Khan, S., Taube, W., Yogeswaran, N., Heidari, H., & Dahiya, R. (2015). Spice model of a piezo-electric transducer for pulse-echo system. 2015 11th Conference on Ph.D. Research in Microelectronics and Electronics, PRIME 2015, 334–337. Ko, S. C., Kim, Y. C., Lee, S. S., Choi, S. H., & Kim, S. R. (2002). Piezoelectric membrane acoustic devices. IEEE Proceeding on 15th International Conference on Micro Elecro Mechanical Systems, 296-299. Ko, S. C., Kim, Y. C., Lee, S. S., Choi, S. H., & Kim, S. R. (2003). Micromachined piezoelectric membrane acoustic device. Sensors and Actuators, A: Physical, 103(1–2), 130-134. Lam, T.Y., Lam, K.H. and Chan, H.L.W. (2005). Micromachined piezoelectric polymer membrane acoustic sensor. Integrated Ferroelectrics, 76, 31-37. Liu, J. C., Cheng, Y. T., Ho, S. Y., Hung, H. Sen, & Chang, S. H. (2017). Fabrication and characterization of high-sensitivity underwater acoustic multimedia communication devices with thick composite PZT films. Journal of Sensors, 7. Li, H., Deng, Z. D., Yuan, Y., & Carlson, T. J. (2012). Design parameters of a miniaturized piezoelectric underwater acoustic transmitter. Sensors (Switzerland), 12(7), 9098–9109. Li, J., Ren, W., Fan, G., & Wang, C. (2017). Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film. Sensors (Switzerland), 17(6). Li, H., Deng, Z. D., & Carlson, T. (2012). Piezoelectric materials used in underwater acoustic transducers. Sensor Letters, 10(3), 679–697. Le Clézio, E., Delaunay, T., Lam, M., & Feuillard, G. (2008). Piezoelectric material characterization by acoustic methods. Archives of Acoustics, 33(4), 603–608. Lee, J., Ko, S.C., Song, H.W., Park, K.H. and Kim, J. (2008). Surface Micromachined Deep Back Chamber MEMS acoustic Sensor Using Two Sacrificial Layers. IEEE Proceedings on Sensors, 569-572. Motamedi, M. E. (1994). Tu4D-6, 6, 521–524. Myoung, J.-M., Yoon, W.-H., Lee, D.-H., Yun, I., Bae, S.-H., & Lee, S.-Y. (2002). Effects of thickness variation on properties of ZnO thin films grown by pulsed laser deposition. Japanese Journal of Applied Physics, 41(Part 1, No. 1), 28–31. Muralt, P., Ladermann, N., Baborowski, J., Barzegar, A., Gentil, S., Gelgacem, B., Petitgrand, S., Bosseboeuf, A. and Setter, N. (2005). Piezoelectric micromachined ultrasonic transducer based on PZT thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 52 (12), 2276-2288. Nithya, N., Radhakrishnan, R. (2012). Effect of thickness on the properties ZnO thin films. Advance in Applied Science Research, 3(6), 4041-4047. Percin, G. and Khuri-Yakub, B.T (2002). Piezoelectrically actuated flex tensional micromachine ultrasound transducers, Ultrasonics, 40, 441-448. Perc¸in, G., Atalar, A., Levent Degertekin, F., Khuri-Yakub, B.T. (1998). Micromachined two-dimensional array piezoelectrically actuated transducers. Appl. Phys. Lett., 72, 1397. Perumal, V., Hashim, U., Gopinath, S. C. B., Haarindraprasad, R., Liu, W. W., Poopalan, P., Ruslinda, A. R. (2015). Thickness dependent nanostructural, morphological, optical and impedometric analyses of zinc oxide-Gold hybrids: Nanoparticle to thin film. PLoS ONE, 10(12), 1-24. Qiu, Y., Gigliotti, J. V., Wallace, M., Griggio, F., Demore, C. E. M., Cochran, S., & Trolier-McKinstry, S. (2015). Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging. Sensors (Switzerland), 15(4), 8020-8041. Raj, M. K. Chakraborty, S. (2020) PDMS microfluidics: A mini review. J. Appl. Polym. Sci., 137, 48958. Ramesh, R. Ebenerzer, D.D (2008) Equivalent circuit for broadband underwater transducers. IEEE Transactions on Untrasonics, ferroelectrics and frequency control. 55 (9), 2079-2083. Rashidi, F. (2015). A study of thickness distribution and crystal structure of sputter- deposited silicon thin films. Simon Fraser University. Roberto, M. (n.d.). Modeling and characterization of piezoelectric micromachined Ultrasonic Transducers (pMUT), thesis. Shevtsova, M., Nasedkin, A. V, Shevtsov, S. N., & Zhilyaev, I. (2016). An optimal design of underwater piezoelectric transducers of new generation. The 23th International Congress on Sound and Vibration. Wang, Z., Zhu, W., Miao, J., Zhu, H., Chao, C., & Tan, O. K. (2006). Micromachined thick film piezoelectric ultrasonic transducer array. Sensors and Actuators, A: Physical, 130-131(SPEC. ISS.), 485-490. Xiaoming, W., Ren, T. and Liu, L. (2006). Active damping of a piezoelectric MEMS acoustic Sensor. Integrated ferroelectrics, 80, 317-329. Xiaoming, W., Yi, Y., YiPing, Z., NinXing, Z., TianLing, R. and Litian, L. (2007). MEMS piezoelectric acoustic transducer. Integrated Ferroelectrics, 89, 150-159. Yaacob, M.I.H., Arshad, M.R. and Manaf, A.A. (2012). Enhancement of Piezoelectric Micromachined Ultrasonic Transducer Using Polymer Membrane for Underwater Aplicatons. Indian Journal of Geo Marine Sciences. 46(1), 533-539. ISI Impact Factr: 0.204 Yaacob, M.I.H., (2013). Piezoelectric Micro Ultrasonic Transducer (pMUT) For Underwater Sonar Applications. Universiti Sains Malaysia. Yaacob, M. I., Arshad, M. R., Manaf, A. A., & Rahman, M. F. (2011). Vibration analysis of pMUT with polymer adhesion layer. IEEE Regional Symposium on Micro and Nano Electronics. Yaacob, M. I., Arshad, M. R., & Abd Manaf, A. (2010). Modeling and theoretical characterization of Circular pMUT for Immersion Applications. OCEANS'10 IEEE SYDNEY. Yaacob, M. I., Arshad, M. R., Manaf, A. A., & Rahman, M. F. (2012). 200 KHz pMUT using PZT on PDMS membrane for sonar applications. 2012 4th International Conference on Intelligent and Advanced Systems (ICIAS2012). Yamashita, K., Chansomphou, L., Murakami, H. and Okuyama, M. (2004) Ultrasonic micro array sensors using piezoelectric thin films and resonant frequency tuning. Sensors and Actuators A; Physical, 114, 147-153. Zhang, Y., Xu, L., Gu, J., and Hu, H (2008). The electrical performance analysis piezoelectric micromachine ultrasound transducer for the audio directional loudspeaker. International Conference on Computer and Electrical Engineering, 812-816.
PUBLICATIONS
Harun, J. W., Yaacob, M. I. (2021). Ultrasonic transducer tuning using wafer bonding method. Indian Journal of Geo-Marine Sciences, 50(11). Harun, J. W., Yaacob, M. I. (2021). In-situ ultrasonic transducer tuning using wafer bonding method for underwater sonar applications. Department of Physics, Faculty of Science and Mathematics Sultan Idris Education University. Harun, J. W., Yaacob, M. I., Nawi, M. N. (2019). pMUT structure enhancement using the wafer transfer approach. Department of Physics, Faculty of Science and Mathematics Sultan Idris Education University.
CONFERENCE
Harun, J. W., Jaafar, R., Yaacob, M. I. (2018). Piezoelectric Micromachined Ultrasonic Transducer (pMUT): A Short Review on Latest Advancement. The 6th International Postgraduate Conference on Science and Mathematics 2018 (IPCSM 2018).
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |