UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Thesis
Subject :QD Chemistry
Main Author :Nurul Adilah Mohd Noor
Title :Incorporation of Fe and gC3N4 into Mesoporous Titania Nanoparticles for photodegradation of Dibenzothiophene
Hits :14
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2024
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file
PDF Full Text :You have no permission to view this item.

Abstract : Perpustakaan Tuanku Bainun
This study aimed to incorporate Fe and gC3N4 into Mesoporous Titania Nanoparticles (MTN) and investigate photodegradation of Dibenzothiophene (DBT). MTN with various aging time (x = 2, 4, 6 and 8 days) were synthesized via sol-gel method before being incorporated with 5wt% Fe (5Fe/MTN-x) and 5wt% gC3N4 (5FeMTNx/ 5gC3N4) using wet-impregnation method. The photocatalysts were characterized using X-ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM) with EDX analysis, UV-Visible Diffuse Reflectance Spectroscopy (UVDRS), Fourier-Transform Infrared Spectroscopy (FTIR), Surface Area Analysis (BET), Photoluminescence Spectroscopy (PL) and Raman Spectroscopy. Photocatalytic performance was evaluated through DBT photodegradation under ultraviolet (UV) light irradiation for 180 min. Parameters such as H2O2 volume, DBT concentration and photocatalyst dose were manipulated with prolonging the reaction time to 240 min. The results of XRD showed the formation of MTN with the presence of common peaks at 2_: 25.34o - 75.00o corresponded to TiO2 anatase phase. FTIR and BET analyses also confirmed the formation of MTN and successful incorporation of Fe and gC3N4 into the hybrid catalysts. UV-DRS and PL results showed the extending of light absorption towards visible light region and lower rate of electronhole recombination was reached by the addition of Fe and gC3N4. The results displayed 5FeMTN-6/5gC3N4 owned the highest DBT photodegradation with 38.2% compared to the other photocatalysts. At the optimized conditions, 5FeMTN- 6/5gC3N4 reached 57.0% at 40 mg/L DBT concentration with 1 g/L photocatalyst dose and 0.01 mL H2O2. The presence of Fe and gC3N4 enhanced the photocatalytic performance by forming a heterojunction that promoted the generation and inhibit the electron-hole recombination. In conclusion, Fe and gC3N4 were successfully incorporate into MTN and reached 57.0% DBT photodegradation at optimized conditions. The implication of this study is this photocatalyst has good potential to be further investigated as a low-cost alternative for DBT removal in fuels.

References

Aazam, E. S. (2014). Visible light photocatalytic degradation of thiophene using Ag– TiO2/multi-walled carbon nanotubes nanocomposite. Ceramics International, 40(5), 6705-6711.

 

Abbas, N., Shao, G. N., Haider, M. S., Imran, S. M., Park, S. S. & Kim, H. T. (2016). Sol–gel synthesis of TiO2-Fe2O3 systems: Effects of Fe2O3 content and their photocatalytic properties. Journal of Industrial and Engineering Chemistry, 39, 112-120.

 

Abdelaal, M. Y. & Mohamed, R. M. (2014). Environmental remediation from thiophene solution by photocatalytic oxidation using a Pd/ZrO2–chitosan nanocomposite. Ceramics International, 40(6), 7693-7699.

 

Abdennouri, M., Baalala, M., Galadi, A., El Makhfouk, M., Bensitel, M., Nohair, K., et al. (2016). Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 9, 313–318.

 

Abdul Mutalib, M., Rahman, M. A., Othman, M. H. D., Ismail, A. F. & Jaafar, J. (2017). Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) spectroscopy. Membrane characterization, 20, 161-179.

 

Abedini, F., Allahyari, S. & Rahemi, N. (2021). Oxidative desulfurization of dibenzothiophene and simultaneous adsorption of products on BiOBr- C3N4/MCM-41 visible-light-driven core–shell nano photocatalyst. Applied Surface Science, 569, 1-13.

 

Abhilash, M. R., Akshatha, G. & Srikantaswamy, S. (2019). Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC advances, 9(15), 8557-8568.

 

Abro, R., Abdeltawab, A. A., Al-Deyab, S. S., Yu, G., Qazi, A. B., Gao, S., et al. (2014). A review of extractive desulfurization of fuel oils using ionic liquids. RSC Advances, 4(67), 35302-35317.

 

Ahadi, S., Moalej, N. S. & Sheibani, S. (2019). Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sciences, 96, 1-10.

 

Akshay, V. R., Arun, B., Mandal, G., Mutta, G. R., Chanda, A. & Vasundhara, M. (2018). Observation of optical band-gap narrowing and enhanced magnetic moment in co-doped sol–gel-derived anatase TiO2 nanocrystals. The Journal of Physical Chemistry C, 122(46), 26592-26604.

 

Ali, T., Tripathi, P., Azam, A., Raza, W., Ahmed, A. S., Ahmed, A., et al. (2017). Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Materials Research Express, 4(1), 1-13.

 

Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P. & Muneer, M. (2018). Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light . Materials Chemistry and Physics, 212, 325-335.

 

Almashjary, K. H., Khalid, M., Dharaskar, S., Jagadish, P., Walvekar, R. & Gupta, T. C.

S. M. (2018). Optimisation of extractive desulfurization using Choline Chloride- based deep eutectic solvents. Fuel, 234, 1388-1400.

 

Altin, I., Sokmen, M. & Biyiklioglu, Z. (2016). Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Materials Science in Semiconductor Processing, 45, 36-44.

 

Ammar, S. H., Kareem, Y. S. & Ali, A. D. (2018). Photocatalytic oxidative desulfurization of liquid petroleum fuels using magnetic CuO-Fe3O4 nanocomposites. Journal of Environmental Chemical Engineering, 6(6), 6780- 6786.

 

Anandalakshmi, K., Venugobal, J. & Ramasamy, V. (2016). Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Applied Nanoscience, 6(3), 399–408.

 

Anandan, S., Sivasankar, T. & Lana-Villarreal, T. (2014). Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics Sonochemistry, 21(6), 1964-1968.

 

 

Anisah, S., Kanezashi, M., Nagasawa, H. & Tsuru, T. (2019). TiO2-ZrO2 membranes of controlled pore sizes with different Ti/Zr ratios for nanofiltration. Journal of Sol- Gel Science and Technology, 92(1), 12-24.

 

Anjugam Vandarkuzhali, S. A., Pugazhenthiran, N., Mangalaraja, R. V., Sathishkumar, P., Viswanathan, B. & Anandan, S. (2018). Ultrasmall plasmonic nanoparticles decorated hierarchical mesoporous TiO2 as an efficient photocatalyst for photocatalytic degradation of textile dyes. ACS Omega, 3(8), 9834−9845.

 

Anku, W., Oppong, S. O. B., Shukla, S. K. & Govender, P. P. (2016). Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe3+/C/S doped-TiO2 nanoparticles. Acta Chimica Slovenica, 63(2), 380–391.

 

Aoki, T. (2012). Photoluminescence spectroscopy. Characterization of Materials, 1-12.

 

Arabkhani, P. & Abedini-Khorrami, S. (2019). Synthesis of SrAl2 O4 nanoparticles by reverse micelle method: An investigation of the effect of aging time, hydrophilic chain length and calcination temperature. Nano-Structures & Nano-Objects, 17, 84–91.

 

Arfanis, M. K., Adamou, P., Moustakas, N. G., Triantis, T. M., Kontos, A. G. & Falaras,

P. (2017). Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chemical Engineering Journal, 310, 525- 536.

 

Arfanis, M. K., Athanasekou, C. P., Sakellis, E., Boukos, N., Ioannidis, N., Likodimos, V., et al. (2019). Photocatalytic properties of copper–modified core-shell titania nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 370, 145-155.

 

Azami, M. S., Ismail, K., Ishak, M. A. M., Zuliahani, A., Hamzah, S. R. & Nawawi, W. I. (2020). Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye. Journal of Water Process Engineering, 35, 1-8.

 

Bagheri, S., Hir, Z. A. M., Yousefi, A. T. & Hamid, S. B. A. (2015). Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous and Mesoporous Materials, 218, 206-222.

 

 

Balu, S., Velmurugan, S., Palanisamy, S., Chen, S. W., Velusamy, V., Yang, T. C., et al. (2 19 ). Synthesis of -Fe2O3 decorated g-C3N4/ZnO ternary Z-scheme photocatalyst for degradation of tartrazine dye in aqueous media. Journal of the Taiwan Institute of Chemical Engineers, 99, 258-267.

 

Banic, N., Abramovic, B., Krstic, J., Sojic, D., Loncarevic, D., Cherkezova-Zheleva, Z., et al. (2011). Photodegradation of thiacloprid using Fe/TiO2 as a heterogeneous photo-Fenton catalyst. Applied Catalysis B: Environmental, 107(3-4), 363-371.

 

Bardestani, R., Patience, G. S. & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 2781-2791.

 

Barkhade, T. & Banerjee, I. (2018). Photocatalytic degradation of Rhodamine B dye using Fe doped TiO2 nanocomposites. AIP Conference Proceedings, 1961, 1-7.

 

Betiha, M. A., Rabie, A. M., Ahmed, H. S., Abdelrahman, A. A. & El-Shahat, M. F. (2018). Oxidative desulfurization using graphene and its composites for fuel containing thiophene and its derivatives: An update review. Egyptian Journal of Petroleum, 715-730.

 

Bhutto, A. W., Abro, R., Gao, S., Abbas, T., Chen, X. & Yu, G. (2016). Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers, 62, 84-97.

 

Biru, M., Qaderi, J., Mamat, C. R. & Jalil, A. A. (2021). Preparation and characterization of copper, iron, and nickel doped titanium dioxide photocatalysts for decolorization of methylene blue. Sains Malaysiana, 50(1), 135-149.

 

Blanco-Vega, M. P., Guzman-Mar, J. L., Villanueva-Rodriguez, M., Maya-Trevino, L., Garza-Tovar, L. L., Hernandez-Ramirez, A., et al. (2017). Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Materials Science in Semiconductor Processing, 71, 275-282.

 

Blitz, J. P. (1998). Diffuse reflectance spectroscopy. Modern Techniques in Applied Molecular Spectroscopy, 14, 185-219.

 

 

Bumbrah, G. S. & Sharma, R. M. (2016). Raman spectroscopy–Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 6(3), 209-215.

Byranvand, M. M., Nemati Kharat, A., Fatholahi, L. & Beiranvand, M. Z. (2013). A Review on Synthesis of Nano-TiO2 via Different Methods. Journal of Nanostructures, 3(1), 1-9.

 

Camarillo, R., Rizaldos, D., Jimenez, C., Martinez, F. & Rincon, J. (2019). Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium. The Journal of Supercritical Fluids, 147, 70- 80.

 

Castro, Y. & Duran, A. (2016). Ca doping of mesoporous TiO2 films for enhanced photocatalytic efficiency under solar irradiation . Journal of Sol-Gel Science and Technology, 78(3), 482-491.

 

Castro, Y., Arconada, N. & Duran, A. (2015). Synthesis and photocatalytic characterisation of mesoporous TiO2 films doped with Ca, W and N. Boletín de la Sociedad Española de Cerámica y Vidrio, 54(1), 11-20.

 

Chanu, L. A., Singh, W. J., Singh, K. J. & Devi, K. N. (2019). Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 12, 1230–1237.

 

Chen, Y., Chen, D., Chen, J., Lu, Q., Zhang, M., Liu, B., et al. (2015). Facile synthesis of Bi nanoparticle modified TiO2 with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 651, 114-120.

 

Chen, W., Liu, M., Wang, Y., Gao, L., Dang, H. & Mao, L. (2019). Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production. Materials Research Bulletin, 116, 16-21.

 

Chen, Q. L., Liu, Y. L. & Tong, L. G. (2018). Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide. Materials Research Express, 5(4), 1-19.

 

Chen, K., Liu, N., Zhang, M. & Wang, D. (2017). Oxidative desulfurization of dibenzothiophene over monoclinic VO2 phase-transition catalysts. Applied Catalysis B: Environmental, 212, 32-40.

 

Chen, L., Man, Y., Chen, Z. & Zhang, Y. (2016). Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance. Materials Research Express, 3(11), 1-11.

 

Chen, Y., Shen, C., Wang, J., Xiao, G. & Luo, G. (2018). Green synthesis of Ag–TiO2 supported on porous glass with enhanced photocatalytic performance for oxidative desulfurization and removal of dyes under visible light. ACS Sustainable Chemistry & Engineering, 6(10), 13276-13286.

 

Chowdhury, I. H. & Naskar, M. K. (2018). Sol-gel synthesis of mesoporous hollow titania microspheres for photodegradation of 4-chlorophenol. Indian Journal Of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 57(7), 910-914.

 

Chowdhury, I. H., Ghosh, S. & Naskar, M. K. (2016). Aqueous-based synthesis of mesoporous TiO2 and Ag–TiO2 nanopowders for efficient photodegradation of methylene blue. Ceramics International, 42(2), 2488-2496.

 

Cialla-May, D., Schmitt, M. & Popp, J. (2019). Theoretical principles of Raman spectroscopy. Physical Sciences Reviews, 4(6), 1-9.

 

Ciriminna, R., Albanese, L., Meneguzzo, F. & Pagliaro, M. (2016). Hydrogen peroxide: a key chemical for today's sustainable development. ChemSusChem, 9(24), 3374- 3381.

 

Dehghan, R. & Anbia, M. (2017). Zeolites for adsorptive desulfurization from fuels: A review. Fuel Processing Technology, 167, 99-116.

 

Demirbas, A., Alidrisi, H. & Balubaid, M. A. (2015). API gravity, sulfur content, and desulfurization of crude oil. Petroleum Science and Technology, 33(1), 93-101.

 

 

Ding, W., Zhu, W., Xiong, J., Yang, L., Wei, A., Zhang, M., et al. (2015). Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chemical Engineering Journal, 266, 213-221.

 

Dorraj, M., Goh, B. T., Sairi, N. A., Woi, P. M. & Basirun, W. J. (2018). Improved visible-light photocatalytic activity of TiO2 co-doped with Copper and Iodine. Applied Surface Science, 439, 999-1009.

 

El-Yazeed, W. A. & Ahmed, A. I. (2019). Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorganic Chemistry Communications, 105, 102-111.

 

Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. Materials characterization using nondestructive evaluation (NDE) methods, 81- 124.

 

Eshaghi, A. & Moradi, H. (2018). Optical and photocatalytic properties of the Fe-doped TiO2 nanoparticles loaded on the activated carbon. Advanced Powder Technology, 29(8), 1879-1885.

 

Fajriati, I., Mudasir, M. & Wahyuni, E. T. (2017). The effect of pH and aging time on the synthesis of TiO2–Chitosan nanocomposites as photocatalyst by sol-gel method at room temperature. Molekul, 12(2), 117-125.

 

Fang, W., Xing, M. & Zhang, J. (2017). Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 32, 21-39.

 

Fernandes, A., Gagol, M., Makos, P., Khan, J. A. & Boczkaj, G. (2019). Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds. Separation and Purification Technology, 224, 1-14.

 

Gahlot, S., Dappozze, F., Mishra, S. & Guillard, C. (2021). High surface area g-C3N4 and g-C3N4-TiO2 photocatalytic activity under UV and visible light: Impact of individual component. Journal of Environmental Chemical Engineering, 9(4), 1- 9.

 

 

Geng, Y., Zhang, P., Li, N. & Sun, Z. (2015). Synthesis of Co doped BiVO4 with enhanced visible-light photocatalytic activities. Journal of Alloys and Compounds, 651, 744-748.

 

Govindaraj, R., Pandian, M. S., Ramasamy, P. & Mukhopadhyay, S. (2014). Sol–gel synthesized mesoporous anatase titanium dioxide nanoparticles for dye sensitized solar cell (DSSC) applications. Int. J. ChemTech Res, 38(2), 5220-5225.

 

Halim, W., Coste, S., Zeroual, S., Kassiba, A. & Ouaskit, S. (2020). Latex copolymer-assisted synthesis of metal-doped TiO2 mesoporous structures for photocatalytic applications under solar simulator. Journal of Materials Science: Materials in Electronics, 31(5), 4161-4169.

 

Han, F., Kambala, V. S. R., Dharmarajan, R., Liu, Y. & Naidu, R. (2018). Photocatalytic degradation of azo dye acid orange 7 using different light sources over Fe3+-doped TiO2 nanocatalysts. Environmental Technology & Innovation, 12, 27-42.

 

Hassena, H. (2016). Photocatalytic degradation of methylene blue by using Al2O3/Fe2O3 nano composite under visible light. Modern Chemistry & Applications, 4(5), 1-5.

 

Hitam, C. N. C., Jalil, A. A., Triwahyono, S., Rahman, A. F. A., Hassan, N. S., Khusnun,

N. F., et al. (2018). Effect of carbon-interaction on structure-photoactivity of Cu doped amorphous TiO2 catalysts for visible-light-oriented oxidative desulphurization of dibenzothiophene. Fuel, 216, 407-417.

 

Hitam, C. N. C., Jalil, A. A. & Triwahyono, S. (2018). Synthesis of zinc oxide supported on titanium dioxide for photocatalytic oxidative desulfurization of dibenzothiophene. Journal of Energy and Safety Technology, 1(1), 1-6.

 

Hitam, C. N. C., Jalil, A. A. & Abdulrasheed, A. A. (2019). A review on recent progression of photocatalytic desulphurization study over decorated photocatalysts. Journal of Industrial and Engineering Chemistry, 74, 172-186.

 

Holder, C. F. & Schaak, R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. Acs Nano, 13(7), 7359-7365.

 

 

Hossain, M. N., Park, H. C. & Choi, H. S. (2019). A comprehensive review on catalytic oxidative desulfurization of liquid fuel oil. Catalysts, 9(3), 229.

 

Hosseini, A. & Faghihian, H. (2019). Application of FSM-16 impregnated by TiO2 as an efficient photocatalyst for elimination of benzothiophene and dibenzothiophene, adsorptive removal of degradation products by MCM-41. Journal of Industrial and Engineering Chemistry, 76, 122-132.

 

Hosseini, A., Faghihian, H. & Sanati, A. M. (2018). Elimination of dibenzothiophene from transportation fuel by combined photocatalytic and adsorptive method. Materials Science in Semiconductor Processing, 87, 110-118.

 

Huang, Z., Sun, Q., Lv, K., Zhang, Z., Li, M. & Li, B. (2015). Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (0 0 1) vs (1 0 1) facets of TiO2. Applied Catalysis B: Environmental, 164, 420-427.

 

Humayun, M., Raziq, F., Khan, A. & Luo, W. (2018). Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 11(2), 86-102.

 

Huu, H. T., Thi, M. D. N., Nguyen, V. P., Thi, L. N., Phan, T. T. T., Hoang, Q. D., et al. (2021). One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst. Scientific Reports, 11(1), 1-12.

 

Isari, A. A., Payan, A., Fattahi, M., Jorfi, S. & Kakavandi, B. (2018). Photocatalytic degradation of Rhodamine B and Real Textile Wastewater using Fe-Doped TiO2 anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): Characterization and feasibility, mechanism and pathway studies. Applied Surface Science, 462, 549- 564.

 

Jaafar, N. F., Jalil, A. A. & Triwahyono, S. (2017). Visible-light photoactivity of plasmonic silver supported on Mesoporous TiO2 Nanoparticles (Ag-MTN) for enhanced degradation of 2-chlorophenol: Limitation of Ag-Ti interaction. Applied Surface Science, 392, 1068-1077.

 

 

Jaafar, N. F., Jalil, A. A., Triwahyono, S. & Shamsuddin, N. (2015). New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: effect of microwave power density on formation of oxygen vacancies and Ti3+ defects. RSC Advances, 5(110), 90991–91000.

 

Jiang, H., Liu, J., Li, M., Tian, L., Ding, G., hen, P., et al. (2 18 ). Facile synthesis of ‐ decorated Fe, N co‐doped TiO2 with enhanced visible‐light photocatalytic activity by a novel co‐precursor method. Chinese Journal of Catalysis, 39(4), 747-759.

 

Kalantari, K., Kalbasi, M., Sohrabi, M. & Royaee, S. J. (2016). Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceramics International, 42(13), 14834-14842.

 

Kalantari, K., Kalbasi, M., Sohrabi, M. & Royaee, S. J. (2017). Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceramics International, 43(1), 973-981.

 

Kamal, S., Balu, S., Palanisamy, S., Uma, K., Velusamy, V. & Yang, T. C. (2019). Synthesis of boron doped C3N4/NiFe2O4 nanocomposite: An enhanced visible light photocatalyst for the degradation of methylene blue. Results in Physics, 12, 1238-1244.

 

Kamble, R., Mahajan, S., Puri, V., Shinde, H. & Garadkar, K. (2018). Visible light- driven high photocatalytic activity of Cu-doped TiO2 nanoparticles synthesized by hydrothermal method . Material Science Research India, 15(3), 197-208.

 

Kang, M., Wang, X., Zhang, J., Lu, Y., Chen, X., Yang, L., et al. (2019). Boosting the photocatalytic oxidative desulfurization of dibenzothiophene by decoration of MWO4 (M=Cu, Zn, Ni) on WO3. Journal of Environmental Chemical Engineering, 7(1), 1-36.

 

Karasek, F. W. & Clement, R. E. (2012). Basic gas chromatography-mass spectrometry: principles and techniques. Canada: Elsevier.

 

 

Kaur, N., Verma, A., Thakur, I. & Basu, S. (2021). In-situ dual effect of Ag-Fe-TiO2 composite for the photocatalytic degradation of Ciprofloxacin in aqueous solution. Chemosphere, 276, 1-9.

 

Kesarla, M. K., Fuentez-Torres, M. O., Alcudia-Ramos, M. A., Ortiz-Chi, F., Espinosa- Gonzalez, C. G., Aleman, M., et al. (2018). Article Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. Journal of Materials Research and Technology, 8(2), 1-8.

 

Keynejad, K., Nikazar, M. & Dabir, B. (2017). Diesel desulfurization using a UV- photocatalytic process. Petroleum Science and Technology, 35(9), 813-819.

 

Khaki, M. R. D., Shafeeyan, M. S., Raman, A. A. A. & Daud, W. M. A. W. (2017). Application of doped photocatalysts for organic pollutant degradation- A review. Journal of Environmental Management, 198, 78-94.

 

Khalid, N. R., Majid, A., Tahir, M. B., Niaz, N. A. & Khalid, S. (2017). Carbonaceous- TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceramics International, 43(17), 14552-14571.

 

Khan, H. & Berk, D. (2014). Characterization and mechanistic study of Mo+6 and V+5 codoped TiO2 as a photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 294, 96-109.

 

Khayyat, S. & Roselin, L. S. (2017). Photocatalytic degradation of Benzothiophene and Dibenzothiophene using Supported Gold Nanoparticle. Journal of Saudi Chemical Society, 21(3), 349-357.

 

Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Reddy, M. R. & Sayanna, R. (2019). Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceramics International, 45(18), 25060- 25068.

 

Kumar, A. & Pandey, G. (2018). Different methods used for the synthesis of TiO2 based nanomaterials: A review. American Journal of Nano Research and Applications, 6(1), 1-10.

 

Lakshmanareddy, N., Rao, V. N., Cheralathan, K. K., Subramaniam, E. P. & Shankar, M.

 

V. (2019). Pt/TiO2 nanotube photocatalyst – Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. Journal of Colloid and Interface Science, 538, 83-98.

 

Lavand, A. B., Bhatu, M. N. & Malghe, Y. S. (2019). Visible light photocatalytic degradation of malachite green using modified titania. Journal of Materials Research and Technology, 8(1), 299-308.

 

Lei, J., Chen, Y., Shen, F., Wang, L., Liu, Y. & Zhang, J. (2015). Surface modification of TiO2 with g-C3N4 for enhanced UV and visible photocatalytic activity. Journal of Alloys and Compounds, 631, 328-334.

 

Leng, K., Sun, Y., Zhang, X., Yu, M. & Xu, W. (2016). Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel, 174, 9-16.

 

Li, Y., Liu, C., Xu, P., Li, M., Zen, M. & Tang, S. (2014). Controlled fabrication of ordered mesoporous titania / carbon fiber composites with high photoactivity: synergistic relationship between surface adsorption and photocatalysis. Chemical Engineering Journal, 243, 108-116.

 

Li, X., Zhang, Z., Yao, C., Lu, X., Zhao, X. & Ni, C. (2016). Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization. Applied Surface Science, 364, 589-596.

 

Li, D., Song, H., Meng, X., Shen, T., Sun, J., Han, W., et al. (2020). Effect of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials, 10(3), 546-560.

 

Li, C., Sun, Z., Xue, Y., Yao, G. & Zheng, S. (2016). A facile synthesis of g-C3N4/TiO2 hybrid photocatalysts by sol–gel method and its enhanced photodegradation towards methylene blue under visible light . Advanced Powder Technology, 27(2), 330–337.

 

Li, J. J., Xiao, H., Tang, X. D. & Zhou, M. (2016). Green carboxylic acid-based deep eutectic solvents as solvents for the extractive desulfurization. Energy Fuels, 30(7), 5411-5418.

 

 

Li, J., Yang, D. & Zhu, X. (2017). Effects of aging time and annealing temperature on structural and optical properties of sol-gel ZnO thin films. Aip Advances, 7(6), 65- 70.

 

Lin, H. & Zhao, L. (2019). Novel g-C3N4/TiO2 nanorods with enhanced photocatalytic activity for water treatment and H2 production. Journal of Materials Science: Materials in Electronics, 30(19), 18191–18199.

 

Liu, D., Lu, C. & Wu, J. (2018). CuO/g-C3N4 nanocomposite for elemental mercury capture at low temperature. Journal of Nanoparticle Research, 20(10), 1-11.

 

Lu, X., Li, X., Chen, F., Chen, Z., Qian, J. & Zhang, Q. (2020). Biotemplating synthesis of N-doped two-dimensional CeO2-TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. Journal of Alloys and Compounds, 815, 1-11.

 

Lu, X., Chen, F., Qian, J., Fu, M., Jiang, Q. & Zhang, Q. (2021). Facile fabrication of CeF3/g-C3N4 heterojunction photocatalysts with upconversion properties for enhanced photocatalytic desulfurization performance. Journal of Rare Earths, 39(10), 1204-1210.

 

Lu, H., Deng, C., Ren, W. & Yang, X. (2014). Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Processing Technology, 119, 87-91.

 

Lutic, D., Petrovschi, D., Ignat, M., Cretescu, I. & Bulai, G. (2016). Mesoporous cerium- doped titania for the photocatalytic removal of persistent dyes. Catalysis Today, 306, 300-309.

 

Ma, R., Guo, J., Wang, D., He, M., Xun, S., Gu, J., et al. (2019). Preparation of highly dispersed WO3/few layer g-C3N4 and its enhancement of catalytic oxidative desulfurization activity. Colloids and Surfaces A, 572, 250-258.

 

 

Ma, J., He, H. & Liu, F. (2015). Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts. Applied Catalysis B: Environmental, 179, 21-28.

 

Maeda, K., An, D., Kuriki, R., Lu, D. & Ishitani, O. (2018). Graphitic carbon nitride prepared from urea as a photocatalyst for visible-light carbon dioxide reduction with the aid of a mononuclear ruthenium (II) complex. Beilstein Journal of Organic Chemistry, 14(1), 1806-1812.

 

Mandizadeh, S., Salavati-Niasari, M. & Sadri, M. (2017). Hydrothermal synthesis, characterization and magnetic properties of BaFe2O4 nanostructure as a photocatalytic oxidative desulfurization of dibenzothiophene. Separation and Purification Technology, 175, 399-405.

 

Mani, S. S., Rajendran, S., Nalajala, N., Mathew, T. & Gopinath, C. S. (2021). Electronically integrated mesoporous Ag–TiO2 nanocomposite thin films for efficient solar hydrogen production in direct sunlight. Energy Technology, 10(1), 1-12.

 

Mao, N. (2019). Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Scientific reports, 9(1), 1-9.

 

Marami, M. B., Farahmandjou, M. & Khoshnevisan, B. (2018). Sol–gel synthesis of Fe- doped TiO2 nanocrystals. Journal of electronic Materials, 47(7), 3741-3748.

 

Marfur, N. A., Jaafar, N. F. & Habibullah, N. H. H. M. (2019). Electrogenerated iron supported on mesoporous titania nanoparticles for the photocatalytic degradation of 2-chlorophenol. Comptes Rendus Chimie, 22(11-12), 813-821.

 

Meriem-Benziane, M., Bou-Said, B. & Boudouani, N. (2017). The effect of crude oil in the pipeline corrosion by the naphthenic acid and the sulfur: A numerical approach. Journal of Petroleum Science and Engineering, 158, 672-679.

 

Miao, G., Huang, D., Ren, X., Li, X., Li, Z. & Xiao, J. (2016). Visible-light induced photocatalytic oxidative desulfurization using BiVO4/C3N4@SiO2 with air/cumene hydroperoxide under ambient conditions. Applied Catalysis B: Environmental, 192, 72-79.

 

Mironyuk, I., Danyliuk, N., Tatarchuk, T., Mykytyn, I. & Kotsyubynsky, V. (2021). Photocatalytic degradation of Congo red dye using Fe-doped TiO2 nanocatalysts. Physics and Chemistry of Solid State, 22(4), 697-710.

 

Mohamed, M. A., Salleh, W. N. W., Jaafar, J., Rosmi, M. S., Hir, Z. A. M., Abd Mutalib, M., et al. (2017). Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity. Applied Surface Science, 393, 46-59.

 

Mohamed, M. A., Jaafar, J., Ismail, A. F., Othman, M. H. D. & Rahman, M. A. (2017). Fourier Transform Infrared (FTIR) Spectroscopy. Membrane Characterization, 3- 29.

 

Mohseni-Salehi, M. S., Taheri-Nassaj, E. & Hosseini-Zori, M. (2018). Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 356, 57-70.

 

Moradi, H., Eshaghi, A., Hosseini, S. R. & Ghani, K. (2016). Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation. Ultrasonics Sonochemistry, 32, 314-319.

 

Mostafa, M. M., El saied, M. & Morshedy, A. S. (2019). Novel Calcium Carbonate- titania nanocomposites for enhanced sun light photo catalytic desulfurization process. Journal of Environmental Management, 250, 1-9.

 

 

Nasirian, M., Lin, Y. P., Bustillo-Lecompte, C. F. & Mehrvar, M. (2018). Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review. International Journal of Environmental Science and Technology, 15(9), 2009-2032.

 

 

Nasr, M., Viter, R., Eid, C., Habchi, R., Miele, P. & Bechelany, M. (2017). Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers. New Journal of Chemistry, 41(1), 81-89.

 

 

 

Nasr, M., Eid, C., Habchi, R., Miele, P. & Bechelany, M. (2018). Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications. ChemSusChem, 11(18), 3023 – 3047.

 

Niessen, W. M. (2001). Current practice of gas chromatography-mass spectrometry.

USA: CRC Press.

 

 

Niu, B., Wang, X., Wu, K., He, X. & Zhang, R. (2018). Mesoporous titanium dioxide: synthesis and applications in photocatalysis, energy and biology. Materials, 11(10), 1-23.

 

 

Noor, N. A. M., Sidik, S. M., Rosmi, M. S., Hitam, C. N. C. & Jaafar, N. F. (2022). Advancement of TiO2-based photocatalyst for photodegradation of organic pollutants in wastewater. Central Asia & the Caucasus, 23(1), 2021-2049.

 

 

Ong, C. B., Ng, L. Y. & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.

 

 

Ovodok, E., Maltanava, H., Poznyak, S., Ivanovskaya, M., Kudlash, A., Scharnagl, N., et al. (2017). Synthesis and characterization of efficient TiO2 mesoporous photocatalysts. Materials Today: Proceedings, 4(11), 11526-11533.

 

Parangi, T. & Mishra, M. K. (2019). Titania nanoparticles as modified photocatalysts: A review on design and development. Comments on Inorganic Chemistry, 39(2), 90- 126.

 

 

Perkowitz, S. (2012). Optical characterization of semiconductors: infrared, Raman, and photoluminescence spectroscopy. USA: Elsevier.

 

Petronella, F., Truppi, A., Ingrosso, C., Placido, T., Striccoli, M., Curri, M. L., et al. (2017). Nanocomposite materials for photocatalytic degradation of pollutants. Catalysis Today, 281, 85-100.

 

 

Petronella, F., Truppi, A., Dell'Edera, M., Agostiano, A., Curri, M. L. & Comparelli, R. (2019). Scalable synthesis of mesoporous TiO2 for environmental photocatalytic applications. Materials, 12(11), 1-21.

 

Pham, X. N., Nguyen, B. M., Thi, H. T. & Doan, H. V. (2018). Synthesis of Ag- AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Advanced Powder Technology, 29(8), 1827- 1837.

 

Pham, X. N., Pham, T. D., Nguyen, B. M., Tran, H. T. & Pham, D. T. (2018). Synthesis of Al-MCM-41@Ag/TiO2 nanocomposite and its photocatalytic activity for degradation of dibenzothiophene. Journal of Chemistry, 2018, 1-10.

 

Piumetti, M., Freyria, F. S., Armandi, M., Geobaldo, F., Garrone, E. & Bonelli, B. (2014). Fe- and V-doped mesoporous titania prepared by direct synthesis: Characterization and role in the oxidation of AO7 by H2O2 in the dark. Catalysis Today, 227, 71-79.

 

Pradubkorn, P., Maensiri, S., Swatsitang, E. & Laokul, P. (2020). Preparation and characterization of hollow TiO2 nanospheres: The effect of Fe3+ doping on their microstructure and electronic structure. Current Applied Physics, 20(1), 178-185.

 

Prakash, K., Kumar, J. V., Latha, P., Kumar, P. S. & Karuthapandian, S. (2019). Fruitful fabrication of CDs on GO/g-C3N4 sheets layers: A carbon amalgamation for the remediation of carcinogenic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 370, 94-104.

 

Puri, S., Thakur, I., Verma, A. & Barman, S. (2021). Degradation of pharmaceutical drug paracetamol via UV irradiation using Fe-TiO2 composite photocatalyst: statistical analysis and parametric optimization. Environmental science and pollution research, 28(34), 47327-47341.

 

Rahdar, A., Aliahmad, M. & Azizi, Y. (2015). NiO Nanoparticles: Synthesis and characterization. Journal of Nanostructures, 5(2), 145-151.

 

 

Raziq, F., Li, C., Humayun, M., Qu, Y., Zada, A., Yu, H., et al. (2015). Synthesis of TiO2/g-C3N4 nanocomposites as efficient photocatalysts dependent on the enhanced photogenerated charge separation. Materials Research Bulletin, 70, 494–499.

 

Reddy, P. A. K., Reddy, P. V. L., Kwon, E., Kim, K. H., Akter, T. & Kalagara, S. (2016). Recent advances in photocatalytic treatment of pollutants in aqueous media. Environment International, 91, 94-103.

 

Reddy, P. V. L., Kavitha, B., Reddy, P. A. K. & Kim, K. H. (2017). TiO2-based photocatalytic disinfection of microbes in aqueous media: A review. Environmental Research, 154, 296-303.

 

 

Reddy, B. P., Rajendar, V., Shekar, M. C. & Park, S. H. (2018). Particle size effects on the photocatalytic activity of BiFeO3 particles. Digest Journal of Nanomaterials and Biostructures, 13(1), 87 - 95.

 

 

Retamoso, C., Escalona, N., Gonzalez, M., Barrientos, L., Allende-Gonzalez, P., Stancovich, S., et al. (2019). Effect of particle size on the photocatalytic activity of modified rutile sand (TiO2) for the discoloration of methylene blue in water. Journal of Photochemistry and Photobiology A: Chemistry, 378, 136-141.

 

 

Ribao, P., Corredor, J., Rivero, M. J. & Ortiz, I. (2019). Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. Journal of Hazardous Materials, 372, 45-51.

 

 

Rodriguez, P. A. O., Pecchi, G. A., Casuscelli, S. G., Elias, V. R. & Eimer, G. A. (2019). A simple synthesis way to obtain iron-doped TiO2 nanoparticles as photocatalytic surfaces. Chemical Physics Letters, 732, 1-6.

 

 

Sadanandam, G., Zhang, L. & Scurrell, M. S. (2018). Enhanced photocatalytic hydrogen formation over Fe-loaded TiO2 and g-C3N4 composites from mixed glycerol and water by solar irradiation. Journal of Renewable and Sustainable Energy, 10(3), 30-42.

 

 

Saha, D., Desipio, M. M., Hoinkis, T. J., Smeltz, E. J., Thorpe, R., Hensley, D. K., et al. (2018). Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: An insight into reaction intermediates. Journal of Environmental Chemical Engineering, 6(4), 4927-4936.

 

 

 

Samet, L., March, K., Brun, N., Hosni, F., Stephan, O. & Chtourou, R. (2018). Effect of gamma radiation on the photocatalytic properties of Cu doped titania nanoparticles. Materials Research Bulletin, 107, 1-7.

 

Saravanan, R., Khan, M. M., Gupta, V. K., Mosquera, E., Gracia, F., Narayanan, V., et al. (2015). ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of Colloid and Interface Science, 452, 126-133.

 

 

Saravanan, R., Gracia, F. & Stephen, A. (2017). Basic principles, mechanism, and challenges of photocatalysis. Nanocomposites for Visible Light-induced Photocatalysis, 19-40.

 

Sescu, A. M., Favier, L., Lutic, D., Soto-Donoso, N., Ciobanu, G. & Harja, M. (2021). TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water, 13(1), 1-18.

 

 

Shafei, A. & Sheibani, S. (2019). Visible light photocatalytic activity of Cu doped TiO2- CNT nanocomposite powder prepared by sol-gel method. Materials Research Bulletin, 110, 198-206.

 

 

Shayegan, Z., Lee, C. S. & Haghighat, F. (2018). TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review. Chemical Engineering Journal, 334, 2408-2439.

 

 

Singh, D., Chopra, A., Mahendra, P. K., Kagdiyal, V. & Saxena, D. (2016). Sulfur compounds in the fuel range fractions from different crude oils. Petroleum Science and Technology, 34(14), 1248-1254.

 

 

Sinha, P., Datar, A., Jeong, C., Deng, X., Chung, Y. G. & Lin, L. C. (2019). Surface area determination of porous materials using the Brunauer−Emmett−Teller (BET) method: Limitations and improvements. The Journal of Physical Chemistry, 123(33), 20195-20209.

 

Skoog, D. A., Holler, F. J. & Crouch, S. R. (2016). Principles of Instrumental Analysis.

USA: Cengage Learning.

 

 

Sood, S., Umar, A., Mehta, S. K. & Kansal, S. K. (2015). Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of Colloid and Interface Science, 450, 213-223.

 

Subramaniam, M. N., Goh, P. S., Abdullah, N., Lau, W. J., Ng, B. C. & Ismail, A. F. (2017). Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. Journal of Nanoparticle Research, 19, 1-13.

 

Sun, H., Dong, B., Song, L., Du, J., Gao, R., Su, G., et al. (2017). High photodegradation ability of dyes by Fe(III)-tartrate/TiO2 nanotubular photocatalyst supported via photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 334, 20-25.

 

 

Sun, B., Yu, X., Wang, L., Feng, L. J. & Li, C. H. (2016). Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite. Journal of Fuel Chemistry and Technology, 44(9), 1074-1081.

 

 

Szczepanik, B. (2017). Photocatalytic degradation of organic contaminants over clay- TiO2 nanocomposites: A review. Applied Clay Science, 141, 227–239.

 

 

Torrent, J. O. S. E. & Barrón, V. (2008). Diffuse reflectance spectroscopy. Methods of Soil Analysis Part 5—Mineralogical Methods, 5, 367-385.

 

 

Verma, A., Kar, M. & Agnihotry, S. A. (2007). Aging effect of diethanolamine stabilized sol on different properties of TiO2 films: Electrochromic applications. Solar energy materials and solar cells, 91(14), 1305-1312.

 

Wang, X. J., Li, F. T., Liu, J. X., Kou, C. G., Zhao, Y., Hao, Y., et al. (2012). Preparation of TiO2 in Ionic Liquid via Microwave Radiation and in Situ Photocatalytic Oxidative Desulfurization of Diesel Oil. Energy & Fuels, 26(11), 6777−6782.

 

Wang, C., Zhu, W., Xu, Y., Xu, H., Zhang, M., Chao, Y., et al. (2014). Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization. Ceramics International, 40(8), 11627-11635.

 

 

 

Wei, H., McMaster, W. A., Tan, J. Z., Cao, L., Chen, D. & Caruso, R. A. (2017). Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. The Journal of Physical Chemistry C, 121(40), 22114-22122.

 

Wu, Z., Chen, X., Liu, X., Yang, X. & Yang, Y. (2019). A ternary magnetic recyclable ZnO/Fe3O4/g-C3N4 composite photocatalyst for efficient photodegradation of monoazo dye. Nanoscale research letters, 14(1), 1-14.

 

 

Wu, J., Li, J., Liu, J., Bai, J. & Yang, L. (2017). A novel Nb2O5/Bi2WO6 heterojunction photocatalytic oxidative desulfurization catalyst with high visible light-induced photocatalytic activity. RSC Advances, 7(81), 51046-51054.

 

 

Xu, J., Zhang, T. & Zhang, J. (2020). Photocatalytic degradation of methylene blue with spent FCC catalyst loaded with ferric oxide and titanium dioxide. Scientific Reports, 10(1), 1-10.

 

 

Xue, X., Ji, W., Mao, Z., Mao, H., Wang, Y., Wang, X., et al. (2012). Raman investigation of nanosized TiO2: Effect of crystallite size and quantum confinement. The Journal of Physical Chemistry C, 116(15), 8792-8797.

 

 

Yang, H., Han, C. & Xue, X. (2014). Photocatalytic activity of Fe-doped CaTiO3 under UV–visible light. Journal of Environmental Sciences, 26(7), 1489-1495.

 

 

Yazici, M., Comakli, O., Yetim, T., Yetim, A. F. & Celik, A. (2016). Effect of sol aging time on the wear properties of TiO2 – SiO2 composite films prepared by a sol-gel method. Tribiology International, 104, 175-182.

 

Yu, F., Liu, C., Yuan, B., Xie, P., Xie, C. & Yu, S. (2016). Energy-efficient extractive desulfurization of gasoline by polyether-based ionic liquids. Fuel, 177, 39-45.

 

Yu, J. H., Nam, S. H., Lee, J. W., Kim, D. I. & Boo, J. H. (2018). Oxidation state and structural studies of vanadium-doped titania particles for the visible light-driven photocatalytic activity. Applied Surface Science, 472, 46-53.

 

 

Zaid, H., Kait, C. & Mutalib, M. (2016). Preparation and characterization of Cu-Fe/TiO2 photocatalyst for visible light deep desulfurization. Malaysian Journal of Analytical Sciences, 20(4), 713-725.

 

 

 

Zarrabi, M., Entezari, M. H. & Goharshadi, E. K. (2015). Photocatalytic oxidative desulfurization of dibenzothiophene by C/TiO2@MCM-41 nanoparticles under visible light and mild conditions. RSC Advances, 5(44), 34652-34662.

 

Zeelani, G. G., Ashrafi, A., Dhakad, A., Gupta, G. & Pal, S. L. (2016). Catalytic Oxidative desulfurization of liquid fuels: A review. International Research Journal of Engineering and Technology, 3(5), 331-336.

 

 

Zeng, G., Zhang, Q., Liu, Y., Zhang, S. & Guo, J. (2019). Preparation of TiO2 and Fe- TiO2 with an impinging stream-rotating packed bed by the precipitation method for the photodegradation of gaseous toluene. Nanomaterials, 9(8), 1-17.

 

 

Zhang, F., Cheng, Z., Kang, L., Cui, L., Liu, W., Xu, X., et al. (2015). A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity. RSC Advances, 5(41), 32088-32091.

 

Zhang, L., Zhang, Q., Xie, H., Guo, J., Lyu, H., Li, Y., et al. (2017). Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Applied Catalysis B: Environmental, 201, 470-478.

 

Zhang, Y., Hu, H., Chang, M., Chen, D., Zhang, M., Wu, L., et al. (2017). Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation. Ceramics International, 43(12), 9053-9059.

 

Zhang, Z., Li, X., Chen, H., Shao, G., Zhang, R. & Lu, H. (2018). Synthesis and properties of Ag/ZnO/g-C3N4 ternary micro/nano composites by microwave- assisted method. Materials Research Express, 5(1), 15-21.

 

Zhang, W., Tian, Y., He, H., Xu, L., Li, W. & Zhao, D. (2020). Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 7(11), 1–24.

 

Zhao, H. & Baker, G. A. (2015). Oxidative desulfurization of fuels using ionic liquids: A review. Frontiers of Chemical Science and Engineering, 9(3), 262-279.

 

 

Zhao, D., Zhang, J., Wang, J., Liang, W. & Li, H. (2009). Photocatalytic oxidation desulfurization of diesel oil using Ti-containing Zeolite. Petroleum Science and Technology, 27(1), 1-11.

 

Zhiming, S., Rui, M., Xiyu, Z., Lina, W. & Xiaohuan, W. (2017). Effects of pre- annealing atmosphere on microstructure and photocatalytic activities of Fe-doped titania nanotubes. Rare Metal Materials and Engineering, 46(11), 3244-3252.

 

Zhou, D., Chen, Z., Yang, Q., Dong, X., Zhang, J. & Qin, L. (2016). In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties. Solar Energy Materials and Solar Cells, 157, 399-405.

 

Zhu, W., Xu, Y., Li, H., Dai, B., Xu, H., Wang, C., et al. (2014). Photocatalytic oxidative desulfurization of dibenzothiophene catalyzed by amorphous TiO2 in ionic liquid. Korean Journal of Chemical Engineering, 31(2), 211-217.

 

Zhu, Y., Li, X. & Zhu, M. (2016). Mesoporous graphitic carbon nitride as photo-catalyst for oxidative desulfurization with oxygen. Catalysis Communications, 85, 5-8.

 

Zhu, Z., Murugananthan, M., Gu, J. & Zhang, Y. (2018). Fabrication of a Z-scheme g- C3N4/Fe-TiO2 photocatalytic composite with enhanced photocatalytic activity under visible light irradiation. Catalysts, 8(3), 1-16.

 

Zieba, M., Wojtasik, K., Tyszkiewicz, C., Gondek, E., Niziol, J., Suchanek, K., et al. (2021). High refractive index silica-titania films fabricated via the sol–gel method and dip-coating technique—physical and chemical characterization. Materials, 14(23), 7125-7129.

 

 

Zou, M., Xiong, F., Ganeshraja, A. S., Feng, X., Wang, C., Thomas, T., et al. (2017). Visible light photocatalysts (Fe, N):TiO2 from ammonothermally processed, solvothermal self-assembly derived Fe-TiO2 mesoporous microspheres. Materials Chemistry and Physics, 195, 259-267.

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.