UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
The purpose of this study was to investigate the essential oils, phytochemicals, and biological activities of Lindera subumbellifora and Lindera caesia (Lauraceae). The essential oils were obtained from the leaves part using hydrodistillation technique and their chemical compositions were determined using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS) methods. Cold extraction of the leaves and roots of L. subumbellifora was employed followed by isolation of phytochemicals using gravity column chromatography techniques. The chemical structures of phytochemicals were confirmed by comparison with literature and spectroscopic data. The antioxidant and antibiofilm activities were investigated using DPPH free radical scavenging and semi-quantitative static biofilm assay, respectively. A total of 28 components (99.6%) were successfully identified from the leaf oil of L. subumbelliflora which mainly consisted of _-eudesmol (14.6%), cis-_-bergamotene (11.0%), _-copaene (8.5%), dodecen-1-ol (8.5%), and (E)-nerolidol (8.3%). Meanwhile, the leaf oil of L. caesia constituted a total of 39 components (96.7%), dominated by terpinen-4-ol (26.3%), neo-intermedeol (23.2%), and eudesma-4,11-dien- 3-one (10.4%). Isolation studies on the leaves and roots extracts of L. subumbelliflora had yielded 5,6-dehydrokawain, pinostrobin, _-sitosterol, pinocembrin, 4-hydroxy-3- methoxyacetophenone, ferulic acid, quercetin, and syringic acid. In antioxidant activity, the methanolic root extract of L. subumbelliflora and quercetin displayed significant activity with IC50 values of 77.4 and 55.2 _g/mL, respectively. In antibiofilm activity, the methanolic root extract of L. subumbelliflora displayed substantial inhibitory activity against Streptococcus mutans (99.2%) and Candida albicans (49.2%), while quercetin showed highly effective inhibitory activity against Streptococcus mutans (98.4%). In conclusion, the essential oils of L. subumbellifora and L. caesia contain sesquiterpene hydrocarbons and oxygenated sesquiterpenes as principal components, respectively. Meanwhile, the isolation study of L. subumbellifora extracts led to discovery of dihydrochalcones, steroid, phenolics, and flavonol. These findings suggest the potential applications of Lindera species in preventing oral biofilm formation and their therapeutic potential in drug development. |
References |
Abu Bakar, F.I., Abu Bakar, M.F., Abdullah, N., Endrini, S. & Rahmat, A. (2018). A review of Malaysian medicinal plants with potential anti-inflammatory activity. Advances in Pharmacological and Pharmaceutical Science, 8603602. Acharya, B., Chaijaroenkul, W. & Na-Bangchang, K. (2021). Therapeutic potential and pharmacological activities of ß-eudesmol. Chemical Biology & Drug Design, 97(4), 984-996. Adams, R.P. (2001). Identification of Essential Oil by Gas Chromatography-quadrupole - Mass Spectroscopy, 4th Edition. Publishing Corporation, Carol Stream IL, USA. Adhikari-Devkota, A., Dirar, A., Kurizaki, A., Tsushiro, K. & Devkota, H. (2019). Extraction and isolation of kaempferol glycosides from the leaves and twigs of Lindera neesiana. Separations, 6(1), 10. Alavi, M., Mozafari, M. R., Ghaemi, S., Ashengroph, M., Hasanzadeh Davarani, F., & Mohammadabadi, M. (2022). Interaction of Epigallocatechin Gallate and Quercetin with Spike Glycoprotein (S-Glycoprotein) of SARS-CoV-2: In Silico Study. Biomedicines, 10(12), 3074. Alejo-Armijo, A., Altarejos, J. & Salido, S. (2017). Phytochemical and biological activities of laurel tree (Laurus nobilis). Natural Product Communication, 12(5), 1-5. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan S.A. & Anwar, F. (2015). Essential oil used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine, 5(8), 601-611. Ali, N.A.M. & Jantan, I. (1993). The essential oils of Lindera pipericarpa. Journal of Tropical Forest Science, 6(2), 124-130. Al-Khayri, J.M., Sahana, G.R., Nagella, P., Joseph, B.V., Alessa, F.M., & Al-Mssallem, M.Q. (2022). Flavonoids as potential anti-inflammatory molecules: a review. Molecules, 27(9), 2901. Arzmi, M.H., Alnuaimi, A.D., Dashper, S., Cirillo, N., Reynolds, E.C. & McCullough, M. (2016). Polymicrobial biofilm formation by Candida albicans, Actinomyces naeslundii, and Streptococcus mutans is Candida albicans strain and medium dependent. Medical Mycology, 54(8), 856-64. Azzeme, A. & Zaman, M.A.K. (2019). Plant toxins: alkaloids and their toxicities. GSC Biological and Pharmaceutical Sciences, 6(2), 21-29. Baharum, S.N., Bunawan, H., Ghani, M.A., Mustapha, W.A.W. & Noor, N.M. (2010). Analysis of the chemical compostition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography-time-of-flight mass spectrometry (GC-TOF MS). Molecules, 15(10), 7006-7015. Batiha, G.E., Wasef, L., Teibo, J.O., Shaheen, H.M., Zakariya, A.M., Akinfe, O.A., Teibo, T.K.A., Al-Kuraishy, H.M., Al-Garbee, A.I., Alexiou, A. & Papadakis, M. (2023). Commiphora myrrh: a phytochemical and pharmacological update. Naunyn-Schmiedeberg's Archives of Pharmacology, 396(3), 405-420. Bergman, M.E., Davis, B. & Phillips, M.A. (2019). Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Plant Isoprenoids, 24(21), 3961. Bhavaniramya, S., Vishnupriya, S., Al-Aboody, M.S., Vijayakumar, R. & Baskaran, D. (2019). Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain & Oil Science and Technology, 2(2), 49-55. Buriani, A., Fortinguerra, S., Sorrenti, V., Caudullo, G. & Carrara, M. (2020). Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules, 25(8), 1833. Campiglia, E., Mancinelli, R., Cavalieri, A. & Caporali, F. (2007). Use of essential oils of cinnamon, lavender and peppermint for weed control. Italian Journal of Agronomy, 2(2), 171. Cao, Y., Xuan, B., Peng, B., Li, C., Chai, X. & Tu, P. (2016). The genus Lindera: a source of structurally diverse molecules having pharmacological significance. Phytochemistry Reviews, 15, 869-906. Chang, Y.C., Chen, C.Y., Chang, F.R. & Wu, Y.C. (2001). Alkaloids from Lindera glauca. Journal of the Chinese Chemistry Society, 48(4), 811-815. Chang, S.Y., Cheng, M.J., Peng, C.F., Chang, H.S. & Chen, I.S. (2008). Antimycobacterial butanolides from the root of Lindera akoensis. Chemistry & Biodiversity, 5(12), 2690-2698. Chang, Y.C., Chang, F.R. & Wu, Y.C. (2000). The constituents of Lindera glauca. Journal of the Chinese Chemistry Society, 47(2), 373-380. Chau, D.T.M., An, N.T.G., Huong, L.T. & Ogunwande, I.A. (2022). Compositions and antimicrobial activity of essential oils from the leaves of Beilschmiedia fordii Dunn. and Lindera glauca (Siebold & Zucc.) Blume from Vietnam. Journal of Essential Oil Bearing Plants, 25(1), 93-102. Chen, C., Zheng, Y., Liu, S., Zhong, Y., Wu, Y., Li, J., Xu, L. & Xu, M. (2017). The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species. Peer Journal, 5, e3820. Chen, H. (2015). Study on the consitituents and antitumer activity of Lindera aggregata (Sims) Kosterm. Ph.D. Thesis. Chengdu: Southwest Jiaotong University. Chen, C., Lin, C., Huang, Y., Ko, F. & Teng, C. (1995). Bioactive constituents from the flower buds and peduncles of Lindera megaphylla. Journal of Natural Products, 58(9), 1423-1425. Chen, F., Miao, X., Lin, Z., Xiu, Y., Shi, L., Zhang, Q., Liang, D., Lin, S. & He, B. (2021). Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against shigella flexneri. Food Control, 130, 108282. Chen, I. (1977). Studies on the alkaloids of Formosan lauraceous plants XIX alkaloids of Lindera oldhamii hemsl. (2). Journal of the Chinese Chemical Society, 24(1), 41-44. Cheng, X., Ma, S., Wei, F., Wang, G., Xiao, X. & Lin, R.C. (2007). A new sesquiterpene isolated from Lindera aggregata (Sims) Kosterm. Chemical and Pharmaceutical Bulletin, 55(2), 1390. Choi, H.G., Lee, H.D., Kim, S.H., Na, M.K., Kim, J.A. & Lee, S.H. (2013). Phenolic glycosides from Lindera obtusiloba and their anti-allergic inflammatory activities. Natural Product Communications, 8(2), 181-182. Chou, C.J., Lin, L.C., Chen, K.T. & Chen, C.F. (1994). Northalifoline, a new isoquinolone alkaloid from the pedicels of Lindera megaphylla. Journal of natural products, 57(6), 689-694. Chou, G., Li, Q., Wang, Z., Xu, L., Xu, G., Norio, N. (1999). Compositions and antirheumatic effect of LEF fraction from the root of Lindera aggregata (Sims) Kosterm. International journal of plant and environment, 8, 1-6. Chou, G.X., Noerio, N., Ma, C.M., Wang, Z.T., Hattori, M., Xu, L.S. & Xu, G.J. (2000). Seven new sesquiterpene lactones from Lindera aggregata. Journal of China Pharmaceutical University, 31(5), 339. Chou, G.X., Norio, N., Ma, C.M. & Wang Z.T. (2005). Isoquinoline alkaloids from Lindera aggregata. Chinese Journal of Natural Medicines, 3(5), 272-275. Chuang, C., Wang, L., Wong, Y. & Lin, E. (2018). Anti-metastatic effects of isolinderalactone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells. Oncology Letters, 15(4), 4460-4696. Chun, M., Kim, E.K., Yu, S.M., Oh, M.S., Moon, K., Jung, J.H. & Hong, J. (2011). GC/MS combined with chemometrics methods for quality control of Schizonepeta tenuifolia Briq: Determination of essential oils. Microchemical Journal, 97(2), 274-281. Chung, I.M. & Moon, H.I. (2011). Composition and immunotoxicity activity of essential oils from Lindera obtusiloba Blume against Aedes aegypti L. Immunopharmacology and Immunotoxicology, 33(1), 146-149. Comai, S., Dall’Acqua, S., Grillo, A., Castagliuolo, I., Gurung, K. & Innocenti, G. (2010). Essential oil of Lindera neesiana fruit: Chemical analysis and its potential use in tropical applications. Fitoterapia, 81(1), 11-16. da Silva, J.K., Da Trindade, R.C., Maia, J.G. & Setzer, W.N. (2016). Chemical composition and in vitro biological activities of essential oil chemotypes of Licaria rigida (Kosterm.) Kosterm. (Lauraceae). International Journal of Applied Research in Natural Products, 9(3), 1-9. Deen, J.I., Zawad, A.S., Uddin, M., Chowdhury, M.A., Al Araby, S.Q. & Rahman, M.A. (2023). Terpinen-4-ol, a volatile terpene molecule, extensively electrifies the biological systems against the oxidative stress-linked pathogenesis. Advances in Redox Research, 9, 100082. Deng, Y. & Li, Y. (2019). Linderalactone inhibits human lung cancer growth by modulating the expression of apoptosis-related proteins, G2/M cell cycle arrest and inhibition of JAK/STAT signalling pathway. Journal of the Balkan Union of Oncology, 24(2), 566-571. Deng, Z., Zhong, H., Cui, S., Wang, F., Xie, Y. & Yao, Q. (2011). Cytotoxic sesquiterpenoids from the fruits of Lindera communis. Fitoterapia, 82(7), 1044-1046. Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. & Mnif, W. (2016). Essential oils’ chemical Characterization and inveatigation of some biological activities: a critical review. Essential Oils: Chemistry and Bioactivity, 3(4), 25. Du, C., Li, Y., Fan, J., Tan, R. & Jiang, H. (2020). Chemical composition, antioxidant and antimicrobial activities of essential oil from the leaves of Lindera fragrans Oliv. Records of Natural Products, 15(1), 65-70. Du, J., Wang, M.L., Chen, R.Y. & Yu, D.Q. (2001). Chemical constituents from the leaves of Magnolia denudata. Journal of Asian Natural Products Research, 3(4), 313-319. Duan, X., Zhang, X., He, P., Qin, M., Lin, P. & Zhao, J. (2021). New benzylisoquinoline alkaloid from the root tuber of Lindera aggregata. Journal of Chinese medicinal materials, 44, 76-8. Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of experimental pharmacology, 15, 51-62. Duong, T.H., Beniddir, M.A., Trung, N.T., Phan, C.T.D., Vo, V.G., Nguyen, V.K., Le, Q.L., Nguyen, H.D. & Pogam, P.L. (2020). Atypical lindenane-type sesquiterpenes from Lindera myrrha. Molecules, 25(8), 1830. Echeverría, J., Opazo, J., Mendoza, L., Urzúa, A., & Wilkens, M. (2017). Structure-activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean flora. Molecules, 22(4), 608. Ezaki, N., Kato, M., Takizawa, N., Morimoto, S., Nonaka, G. & Nishioka, I. (1985). Pharmacological studies on Lindera umbellata Ramus, IV. Effects of condensed tannin related compounds on peptic activity and stress-induced gastric lesions in mice. Planta Medica, 1, 34-38. Falsetta, M.L., Klein, M.I., Colonne, P.M., Scott-Anne, K., Gregoire, S., Pai, C.H., Gonzalez-Begne, M., Watson, G., Krysan, D.J., Bowen, W.H. & Koo, H. (2014). Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infection and Immunity, 82(5), 1968-1981. Feng, H., Jiang, Y., Cao, H., Shu, Y., Yang, X., Zhu, D. & Shao, M. (2022). Chemical characteristics of the sesquiterpenes and diterpenes from Lauraceae family and their multifaceted health benefits: a review. SSRN Electronic Journal, 8(12), 1-5. Ferreira, O.O., Franco, C.J.P., Varela, E.L.P., Silva, S.G., Cascaes, M.M., Percário, S., de Oliveira, M.S. & Andrade, E.H.A. (2021). Chemical composition and antioxidant activity of essential oils from leaves of two specimens of Eugenia florida DC. Molecules, 26(19), 5848. Fu, Y.H., Hou, Y.D., Duan, Y.Z., Sun, X.Y. & Chen, S.Q. (2022). Six undescribed derivatives of stilbene isolated from Lindera reflexa Hemsl. and their anti-tumor and anti-inflammatory activities. Fitoterapia, 163, 105331. Fu, Y., Yang, J., Chen, S., Sun, X., Zhao, P. & Xie, Z. (2019). Screening, and identification of the binding position, of xanthine oxidase inhibitors in the roots of Lindera reflexa Hemsl using ultrafiltration LC-MS combined with enzyme blocking. Biomedical Chromatography, 33(9), 1-5. Gad, H.A., Mukhammadiev, E.A., Zengen, G., Musayeib, N.M., Hussain, H., Bin Ware, I., Ashour, M.L. & Mamadalieva, N.Z. (2022). Chemometric analysis based on GC-MS chemical profiles of three stachys species from Uzbekistan and their biological activity. Plants, 11(9), 1215. Gan, L., Zhao, X., Yao, W., Li, L. & Zhou C. (2008). A novel bisbenzylisoquinoline alkaloid from Lindera aggregata. Journal of Chemical Research, 5, 285-286. Gan, L.S., Yao, W., Mo, J.X. & Zhou, C.X. (2009a). Alkaloids from Lindera aggregata. Natural Product Communications, 4(1), 43-46. Gan, L.S., Zheng, Y.L., Mo, J.X., Liu, X., Li, X.H. & Zhou, C. X. (2009b). Sesquiterpene lactones from the root tubers of Lindera aggregata. Journal of Natural Products, 72(8), 1497-1501. Giang, P.M., König, W.A. & Son, P.T. (2006). Chemical constituents of the essential oil from the bark of Cinnamomum illicioides A.Chev. from Vietnam. Journal of Natural Medicines, 60(3), 248-250. Giordano, A. & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376. Gray, N.E., Magana, A.A., Lak. P., Wright. K.M., Quinn, J., Stevens, J.F., Maier, C. S. & Soumyanath, A. (2018). Centella asiatica: phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochemistry Reviews, 17(1), 161-194. Gui, C., Nakamura, N., Chao, M. & Guo, X. (2000). Seven new sesquiterpene lactones from Lindera aggregata. Journal of China Pharmaceutical University, (78), 827-34. Hai, P., Gao, Y., Li, R.T. & Wang, F. (2016). Chemical constituents from roots of Lindera aggregata, 47, 872-875. Haque, M.E., Azam, S., Balakrishnan, R., Akther, M. & Kim, I.S. (2020). Therapeutic potential of Lindera obtusiloba: focus on antioxidative and pharmacological properties. Plants, 9(12), 1765. Hosseinzadeh, M., Hadi, A.H., Mohamad, J., Khalilzadeh, M.A., Cheahd, S.C. & Fadaeinasab, M. (2013). Flavonoids and linderone from Lindera oxyphylla and their bioactivities. Combinatorial Chemistry & High Throughput Screening, 16(2), 160-166. Huang, J., Yang, L., Zou, Y., Luo, S., Wang, X., Liang, Y., Du, Y., Feng, R. & Wei, Q. (2020). Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiologica, 66(1), 59-67. Huang, R.L., Chen, C.C., Huang, Y.L., Ou, J.C., Hu, C.P., Chen, C.F. & Chang, C. (1998). Anti-tumor effects of d-dicentrine from the root of Lindera megaphylla. Planta Medica, 64(3), 212-215. Huh, G., Park, J., Kang, J., Jeong, T., Kang, H.C. & Baek, N. (2014). Flavonoids from Lindera glauca Blume as low-density lipoprotein oxidation inhibitors. Natural Product Research, 28(11), 831-834. Huh, G., Park, J., Shrestha, S., Lee, Y., Ahn, E., Kang, H. & Baek, N. (2011). Sterols from Lindera glauca Blume stem wood. Journal of Applied Biological Chemistry, 54(4), 309-312. Hwang, S.H., Choi, S.J., Hwang, Y.S. & Lim, S.S. (2013). Comparison analysis of essential oils composition in difference parts from Lindera obtusiloba Bl. according to the season by gas chromatography-mass spectrometry (GC-MS). Korean Journal of Pharmacognosy, 44(1), 30-40. Ichino, K., Tanaka, H. & Ito, K. (1989a). A new flavanone, neolinderatone, from Lindera umbellata Thunb. var. lancea Momiyama. Chemical and Pharmaceutical Bulletin, 37(5), 1426-1427. Ichino, K., Tanaka, H. & Ito, K. (1989b). Studies on the flavonoid components of Lindera umbellata Thunb. var. membranacea (Maxim.) Momiyama. Chemical and Pharmaceutical Bulletin, 37(4), 944-947. Ichino, K., Tanaka, H. & Ito, K. (1989c). Isolation and structures of two new flavonoids from Lindera umbellata. Chemistry letters, 2, 363-366. Ichino, K., Tanaka, H., Ito, K. (1988). Two novel flavonoids from the leaves of Lindera umbellata var. lancea. Tetrahedron, 44(11), 3251-3260. Ingersoll, C.M., Niesenbaum, R.A., Weigle, C.E. & Lehman, J.H. (2010). Total phenolics and individual phenolic acids vary with light environment in Lindera benzoin. Botany, 88(11), 1007-1010. Izenman, A.J. (2008). Modern Multivariate Statistical Techniques. Springer Texts in Statistics; Springer: New York, NY, USA. Jamaludin, R., Kim, D.S., Salleh, L.M. & Lim, S.B. (2021). Kinetic study of subcritical water extraction of scopoletin, alizarin and rutin from Morinda citrifolia. Foods, 10(10), 2260. Jian, B.L., Yi, D. & Wei, M. (2002). A new sesquiterpene from the roots of Lindera strychnifolia. Chinese Chemical Letters, 13(10), 965-967. Joshi, S.C. & Mathela, C.S. (2012). Antioxidant and antibacterial activities of the leaf essential oil and its constituent’s furanodienone and curzerenone from Lindera pulcherrima (Nees.) Benth. ex. Hook.f. Pharmacognosy Research, 4(2), 80-84. Joshi, S.C., Padalia, R.C., Bisht, D.S. & Mathela, C.S. (2009). Terpenoid diversity in the leaf essential oils of Himalayan Lauraceae species. Chemistry & Biodiversity, 6(9), 1364-1373. Joshi, S.C., Verma, A.R. & Mathela, C.S. (2010). Antioxidant and antibacterial activities of the leaf essential oils of Himalayan Lauraceae species. Food and Chemical Toxicology, 48(1), 37-40. Juergens U.R. (2014). Anti-inflammatory properties of the monoterpene 1,8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Research, 64(12), 638-646. Kang, S. & Min, H. (2012). Ginseng the ‘Immunity Boost’: the effects of Panax ginseng on immune system. Journal of Ginseng Research, 36(4), 354-368. Khakurel, D., Uprety, Y., Ahn, G., Cha, J.Y., Kim, W.Y., Lee, S.H. & Rajbhandary, S. (2022). Diversity, distribution, and sustainability of traditional medicinal plants in Kaski district, western Nepal. Frontiers in Pharmacology, 13, 1-5. Khameneh, B., Eskin, N.A., Iranshahy, M., & Fazly Bazzaz, B.S. (2021). Phytochemicals: A promising weapon in the Arsenal against antibiotic-resistant bacteria. Antibiotics, 10(9), 1044. Kiang, A.K. & Sim, K.Y. (1967). Lindcarpine, an alkaloid from Lindera pipericarpa Boerl (Lauraceae). Journal of the Chemical Society, Chemical Communications, 4, 282-283. Kim, J.A., Jung, Y.S., Kim, M.Y., Yang, S.Y., Lee, S. & Kim, Y.H. (2011). Protective effect of components isolated from Lindera erythrocarpa against oxidative stress-induced apoptosis of H9c2 cardiomyocytes. Phytotherapy Research, 25(11), 1612-1617. Kim, J.H., Jeon, J.S., Kim, J.H., Jung, E.J., Lee, Y.J., Gao, E.M., Syed, A.S., Son, R.H. & Kim, C.Y. (2021). Bioassay-guided isolation of two eudesmane sesquiterpenes from Lindera strychnifolia using centrifugal partition chromatography. Molecules, 26(17), 5269. Kim, S.S., Song, G., Oh, T., Kim, K., Yang, E., Kim, J., Lee, N.H. & Hyun, C. (2009). Antimicrobial effect of Lindera erythrocarpa essential oil against antibiotic-resistant skin pathogens. Journal of Pure & Applied Microbiology, 3(2), 429-434. Ko, Y.J., Ahn, G., Ham, Y.M., Song, S.M., Ko, E.Y., Cho, S.H., Yoon, W.J. & Kim, K.N. (2017). Anti-inflammatory effect and mechanism of action of Lindera erythrocarpa essential oil in lipopolysaccharide-stimulated RAW264.7 cells. Excli Journal, 16, 1103-1113. Kobayashi, W., Miyase, T., Sano, M., Umehara, K., Warashina, T. & Noguchi, H. (2002). Prolyl endopeptidase inhibitors from the roots of Lindera strychnifolia F. Vill. Biological & Pharmaceutical Bulletin, 25(8), 1049-1052. Kostic, K., Brboric, J., Delogu, G., Simic, M.R., Samardžic, S., Maksimovic, Z., Dettori, M.A., Fabbri, D., Kotur-Stevuljevic, J. & Saso, L. (2023). Antioxidant activity of natural phenols and derived hydroxylated biphenyls. Molecules, 28, 2646. Kozuka, M., Miyazawa, S. & Yokoyama, K. (1985). Alkaloids from Lindera umbellata, Lindera sericea and their varieties. Journal of natural products, 48(1), 160-161. Kumar, S. & Pandey, A.K. (2013). Chemistry and biological activities of flavonoids: an overview. The Scientific World Journal, 162750. Kuo, P.C., Wu, Y.H., Hung, H.Y., Lam, S.H., Ma, G.H., Kuo, L.M., Hwang, T.L., Kuo, H.D. & Wu, T.S. (2020). Anti-inflammatory principles from Lindera aggregata. Bioorganic & Medicinal Chemistry Letters, 30(13), 127224. Kuroda, M., Sakurai, K. & Mimaki, Y. (2011). Chemical constituents of the stems and twigs of Lindera umbellata. Journal of Natural Medicines, 65(1), 198-201. Kusumoto, N., Morikawa, T., Hashida, K., Matsui, N. & Ohira, T. (2022). The variability of terpenoids and flavonoids in native Lindera umbellata from the same region. Journal of Wood Science, 68(1), 58. Kwak, A., Park, J.W., Lee, S., Lee, J., Seo, J., Yoon, G., Lee, M., Choi, J. & Shim, J. (2022). Isolinderalactone sensitizes oxaliplatin-resistance colorectal cancer cells through JNK/p38 MAPK signaling pathways. Phytomedicine, 105, 154383. Kwon, H.C., Baek, N.I., Choi, S.U. & Lee, K.R. (2000). New cytotoxic butanolides from Lindera obtusiloba Blume. Chemical & Pharmaceutical Bulletin, 48(5), 614-616. Laavola, M., Nieminen, R., Yan, M., Sadikum, A., Asmawi, M., Basir, R., Welling, J., Vapaatalo, H., Korhonen, R. & Moilanen, E. (2012). Flavonoids eupatorin and sinensetin present in Orthosiphon stamieus leaves inhibit inflammatory gene expression and STAT1 activation. Planta Medica, 78(8), 779-786. Lai, H., Yang Z., Li, F., Pan, W., Xu, C., Zhang, L., Zhang, S., Zhang, L. & Huang, M. (2021). Roots extract of Lindera aggregata (Sims) Kostem. modulates the Th17/Treg balance to attenuate DSS-induced colitis in mice by IL-6/STAT3 Signaling Pathway. Frontiers in Pharmacology, 12, 615506. Lee, J.O., Oak, M.H., Jung, S.H., Park, D.H., Auger, C., Kim, K.R., Lee, S.W. & Schini-Kerth, V.B. (2011). An ethanolic extract of Lindera obtusiloba stems causes NO-mediated endothelium-dependent relaxations in rat aortic rings and prevents angiotensin II-induced hypertension and endothelial dysfunction in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 383(6), 635-645. Lee, B., Ha, J., Shin, H., Jeong, S., Kim, J., Lee, J., Park, J., Kwon, H., Jung, K., Lee, W., Ryu, Y., Jeong, J. & Lee, I. (2020). Lindera obtusiloba attenuates oxidative stress and airway inflammation in a murine model of ovalbumin-challenged asthma. Antioxidants, 9(7), 563. Lei, J., Wei, G. Q., Yuan, J.J., Tan, K.Z., Chen, Q.Y., Zhang, T., Ma, C.Y. & Jiang, H.Z. (2017). A new phenolic glycoside from Lindera nacusua. Natural Product Research, 31(8), 896-901. Leong, W.Y., Harrison, L.J., Bennett, G.J., Kadir, A.A. & Connolly, J.D. (1998). A dihydrochalcone from Lindera Lucida. Pergamon, 47(5), 891-894. Leung, A.Y. & Foster, S. (1996). Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetic. American Chemical Society and American Society of Pharmacognosy. Li, B., Jeong, G.S., Kang, D.G., Lee, H.S. & Kim, Y.C. (2009). Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. European Journal of Pharmacology, 614, 58-65. Li, J.B., Ding, Y. & Li, W.M. (2002). A new sesquiterpene from the roots of Lindera strychnifolia. Chinese Chemistry Letters, 13(10), 965-967. Li, Y., Huang, S., Du, J., Wu, M. & Huang, X. (2023). Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Frontiers in Cellular and Infection Microbiology, 13, 1106231. Lichman, B.R. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports, 38(1), 103-129. Lin, C.T., Chu, F.H., Chang, S.T., Chueh, P.J., Su, Y.C., Wu, K.T. & Wang, S.Y. (2007). Secoaggregatalactone-A from Lindera aggregata induces apoptosis in human hepatoma hep G2 cells. Planta Medica, 73(15), 1548-1553. Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H. & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type-2 diabetes. Molecules, 21(10), 1374. Liu, Q., Ahn, J., Kim, S., Lee, C., Hwang, B. & Lee, M. (2013a). Sesquiterpenes lactones from the roots of Lindera strychnifolia. Phytochemistry, 87, 112-118. Liu, Q., Jo, Y.H., Kim, S.B., Jin, Q., Hwang, B.Y. & Lee, M.K. (2016a). Sesquiterpenes from the roots of Lindera strychnifolia with inhibitory effects on nitric oxide production in Raw 264.7 cells. Bioorganis & Medicinal Chemistry Letters, 26(20), 4950-4954. Liu, T., Li, W. Y., Liu, X.W. & Qi, C.M. (2016b). Chemical constituents from the roots of Lindera glauca and their antitumor activity on four different cancer cell lines. Journal of Chinese Medicinal Materials, 39(8), 1789-1792. Liu, X., Fu, J., Shen, R.S., Wu, X.J., Yang, J., Bai, L.P., Jiang, Z.H. & Zhu, G.Y. (2021a). Linderanoids A-O, dimeric sesquiterpenoid from the roots of Lindera aggregata (Sims) Kostem. Phytochemistry, 191, 112924. Liu, X., Fu, J., Yang, J., Huang, A.C., Li, R.F., Bai, L.P., Liu, L., Jiang, Z.H. & Zhu, G.Y. (2021b). Linderaggrenolides A-N, oxygen-conjugated sesquiterpenoid dimers from the roots of Lindera aggregata. ACS Omega, 6(8), 5898-5909. Liu, X., Yang, J., Fu, J., Yao, X., Wang, J. & Liu, L. (2019a). Aggreganoids A-F, carbon-bridged sesquiterpenoid dimers and trimers from Lindera aggregata. Organic Letters, 21(14), 5753-5756. Liu, X., Yang, J., Yao, X J., Yang, X., Fu, J., Bai, L.P., Liu, L., Jiang, Z.H. & Zhu, G.Y. (2019b). Linderalides A-D, disesquiterpenoid-geranylbenzofuranone conjugates form Lindera aggregata. The Journal of Organic Chemistry, 84(12), 8242-8247. Liu, Y. & Chou, G. (2007). Isolation and preparation of flavones from the leaves of Lindera aggregata using high speed counter-current chromatography. Journal of the Chinese Chemical Society, 25, 735-9. Liu, Y., Wang, H., Wei, S. & Cai, X. (2013b). Characterisation of the essential oil from different aerial parts of Lindera chunii Merr. (Lauraceae). Natural Products Research, 27(19), 1804-1807. Lu, S.T. & Chen, I.S. (1977). Studies on the alkaloid of Formosan lauraceous plants. XX. Alkaloids of Lindera oldhamii Hemsl. Journal of the Chinese Chemical Society, 24, 187-194. Lu, Q., Tong, B., Luo, Y., Sha, L., Chou, G., Wang, Z., Xia, Y. & Dai, Y. (2013). Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-.B/Notch1 pathway. PloS Medicine, 8(12), 1-5. Luo, L., Zhang, L., Tian, J.K. & Yang, S.L. (2009). Chemical constituents from leaves of Lindera aggregata. Chinese Traditional and Herbal Drugs, 40(6), 856-858. Lv, Y., Zou, Y., Zhang, X., Liu, B., Peng, X. & Chu, C. (2023). A review on the chemical constituents and pharmacological efficacies of Lindera aggregata (Sims) Kosterm. Frontiers in Nutrition, 9(16), 1-5. Lv, Q., Qiao, S., Xia, Y., Shi, C., Xia, Y., Chou, G., Wang, Z., Dai, Y. & Wei, Z. (2015). Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T-cells in colons. International Immuno-pharmacology, 29(2), 787-797. Ma, G.H., Lin, C.W., Hung, H.Y., Wang, S.Y., Shieh, P.C. & Wu, T.S. (2015). New benzenoids from the roots of Lindera aggregata. Natural Product Communications, 10(12), 2131-2133. Maeda, H., Yamazaki, M. & Katagata, Y. (2013). Kuromoji (Lindera umbellata) essential oil inhibits LPS-induced inflammation in RAW 264.7 cells. Bioscience, Biotechnology, and Biochemistry, 77(3), 482-486. Mahizan, N.A., Yang, S.K., Moo, C.L., Song, A.A., Chong, C.M., Chong, C.W., Abushelaibi, A., Lim, S.E. & Lai, K.S. (2019). Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules, 24(14), 2631. Makarewicz, M., Drozdz, I., Tarko, T. & Duda-Chodak, A. (2021). The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants, 10(2), 188. Maria, S. & Christoph, S. (2020). Review on natural produts databases: where to find data in 2020. Journal of Cheminformatics, 12(1), 1-5. McMullen, R.L. & Dell’Acqua, G. (2023). History of natural in cosmestics. Cosmestics, 10(3), 71. Medeiros, P.M. (2018). Gas Chromatography – Mass Spectrometry (GC-MS). In: White, W.M. (Eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer. Mennai, I., Hanfer, M., Esseid, C., Benayache, S., Ameddah, S., Menad, A. & Benayache, F. (2020). Chemical composition, in vitro antiparasitic, antimicrobial and antioxidant activities of Frankenia thymifolia Desf. Natural Product Research, 34(23), 3363-3368. Mimura, A., Sumioka, H., Matsunami, K. & Otsuka, H. (2010). Conjugates of an abscisic acid derivative and phenolic glucosides, and a new sesquiterpene glucoside from Lindera strychnifolia. Journal of Natural Medicines, 64(2), 153-160. Mishra, R., Panda, A.K., De Mandal, S., Shakeel, M., Bisht, S.S. & Khan, J. (2020). Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Frontiers in Microbiology, 11, 566325. Mokhtar, M., Rismayuddin, N.A.R., Yassim, A.M.S., Ahmad, H., Wahab, R.A., Dashper, S.G. & Arzmi, M.H. (2021). Streptococcus salivarius K12 inhibits Candida albicans aggregation, biofilm formation and dimorphism. Biofouling, 37(7), 767-776. Morimoto, S., Nonaka, G., Nishioka, I., Ezaki, N. & Takizawa, N. (1985). Tannins and related compounds. XXIX. Seven new methyl derivatives of flavan-3-ols and a 1,3-diarylpropan-2-ol from Cinnamomum cassia, C. obtusifolium and Lindera umbellata var. membranacea. Chemical & Pharmaceutical Bulletin, 33(6), 2281-2286. Nakamura, M., Nanami, S., Okuno, S., Hirota, S.K., Matsuo, A., Suyama, Y., Takumoto, H., Yoshihara, S. & Itoh, A. (2021). Genetic diversity and structure of apomictin and sexually reproducing Lindera species (Lauraceae) in Japan. Forest, 12(2), 227. Nanashima, N., Kitajima, M., Takamagi, S., Fujioka, M. & Tomisawa, T. (2020). Comparison of chemical composition between Kuromoji (Lindera umbellata) essential oil and hydrosol and determination of the deodorizing effect. Molecules, 25(18), 4195. Nayak, B.S., Raju, S.S. & Chalapathi, R.A.V. (2008). Wound healing activity of Persea americana (avocado) fruit: a preclinical study on rats. Journal of Wound Care, 17(3), 123-126. Nguyen, H., Nguyen, V., Pham, N., Sichaem, J. & Duong, T. (2021). Lindermyrrhin, a novel 3,4-dihydroisocoumarin from Lindera myrrha roots. Natural Product Research, 35(7), 1122-1126. Nguyen, H.D., Nguyen, H.T., Nguyen, T.H.T., Sichaem, J., Nguyen, H.H., Nguyen, N.H. & Duong, T.H. (2023). Myrrhalindenane C, a new eudesmane sesquiterpenoid from Lindera myrrha roots. Records of Natural Products, 17(2), 312-317. Nii, H., Furukawa, K., Iwakiri, M. & Kubota, T. (1983). Constituents of the essential oils from Lindera glauca (Sieb. et Zucc.) Blume. Nippon Nogei Kagaku Kaishi, 57(8), 733-741. Nimse, S.B. & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986-28006. Niu, J., Hou, X., Fang, C., An, J., Ha, D., Qiu, L., Ju, Y., Zhao, H., Du, W. Z., Qi, J., Zhang, Z., Liu, G. & Lin, S. (2015). Transcriptome analysis of distinct Lindera glauca tissues revealed the differences in the unigenes related to terpenoid biosynthesis. Gene, 559(1), 22-30. Nyokat, N., Khong, H.Y., Hamzah, A.S., Lim, I.F. & Saaidin, A. S. (2017). Isolation and synthesis of pinocembrin and pinostrobin from Artocarpus odoratissimus. Malaysian Journal of Analytical Sciences, 21(5), 1156-1161. Oh, H.M., Choi, S.K., Lee, J.M., Lee, S.K., Kim, H.Y., Han, D.C., Kim, H.M., Son, K.H. & Kwon, B.M. (2005). Cyclopentenediones, inhibitors of farnesyl protein transferase and anti-tumor compounds, isolated from the fruit of Lindera erythrocarpa Bioorganic & medicinal chemistry, 13(22), 6182-6187. Oh, J., Bowling, J.J., Carroll, J.F., Demirci, B. Baser, K.H., Leininger, T.D., Bernier, U.R. & Hamann, M.T. (2012). Natural product studies of U.S. endangered plants: Volatile components of Lindera melissifolia (Lauraceae) repel mosquitoes and ticks. Phytochemistry, 80, 28-36. Ohno, T., Nagatsu, A., Nakagawa, M., Inoue, M., Li, Y.M., Minatoguchi, S., Mizukami, H. & Fujiwara, H. (2005). New sesquiterpenes lactones from water extract of the root of Lindera strychnifolia with cytotoxicity against the human small cell lung cancer cell, SBC-3. Tetrahedron Letters, 46, 8657-8660. Panche, A., Diwan, A. & Chandra, S. (2016). Flavonoids: an overview. Journal of Nutritional Science, 5, 47. Patel, D.K. (2021). Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metabolism Letters, 14(2), 117-125. Patil, K.R., Mahajan, U.B., Unger, B.S., Goyal, S.N., Belemkar, S., Surana, S.J., Ojha, S. & Patil, C.R. (2019). Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. International Journal of Molecular Sciences, 20(18), 4367. Peana, A.T., D'Aquila, P.S., Panin, F., Serra, G., Pippia, P. & Moretti, M.D. (2002). Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 9(8), 721-726. Peng, X., Luo, Y., Wang, J., Ji, T., Yuan, L. & Kai, G. (2020). Integrated analysis of the transcriptome, metabolome and analgesic effect provide insight into potential applications of different parts of Lindera aggregata. Food Research International, 138, 109799. Petrovska, B.B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1-5. Phan, B.H., Seguin, E., Tillequin, F. & Koch, M. (1994). Aporphine alkaloids from Lindera Myrrha. Phytochemistry, 35(5), 1363-1365. Platzer, M., Kiese, S., Tybussek, T., Herfellner, T., Schneider, F., Schweiggert-Weisz, U. & Eisner, P. (2022). Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study. Frontiers in Nutrition, 9, 882458. Prashar, A., Locke, I.C. & Evans, C.S. (2003). Cytotoxicity of lavender oil and its major components to human skin cells. Cell Proliferation, 37(3), 221-229. Qiang, Y., Yang, Z.D., Yang, J.L. & Gao, K. (2011). Sesquiterpenoids from the root tubers of Lindera aggregata. Natural Products Chemistry, 77(14), 1610-1616. Rajina, S., Kim, W.J., Shim, J., Chun, K., Joo, S.H., Shin, H.K., Lee, S. & Choi, J. (2020). Isolinderalactone induces cell death via mitochondrial superoxide- and STAT3-mediated pathways in human ovarian cancer cells. International Journal of Molecular Sciences, 21(20), 7530. Ranasinghe, P., Pigera, S., Premakumara, G.A., Galappaththy, P., Constantine, G.R. & Katulanda, P. (2013). Medicinal properties of 'true' cinnamon (Cinnamomum zeylanicum): a systematic review. BMC Complementary and Alternative Medicine, 13, 275. Raveau, R., Fontaine, J. & Sahraoui, A.L. (2020). Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods, 9(3), 365. Raza, A., Razzaq, A., Mehmood, S.S., Zou, X., Zhang, X., Lv, Y. & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants, 8(2), 34. Ruan, Q., Jiang, S., Zheng, X., Tang, Y., Yang, B., Yi, T., Jin, J., Cui, H. & Zhao, Z. (2020). Pseudoguaianelactones A-C: Three unusual sesquiterpenoids from Lindera glauca with anti-inflammatory activities by inhibiting the LPS-induced expression of iNOS and COX-2. Chemical Communications, 56(10), 1517-1520. Ryen, A.H., Gols, T., Julia, S., Ammar, T., Per-Johan, J., Andres, B., Ernst, U. & Sabine, G. (2020). Bisabolane sesquiterpenes from the leaves of Lindera benzoin reduce prostaglandin E2 formation in A549 cells. Phytochemistry Letters, 38, 6-11. Sajjadi, S.E., Shokoohinia, Y. & Moayedi, N. S. (2012). Isolation and Identification of Ferulic Acid from Aerial Parts of Kelussia odoratissima Mozaff. Jundishapur Journal of Natural Pharmaceutical Products, 7(4), 159-162. Salleh, W.M.N.H.W., Ahmad, F., Khong, H.Y. & Zulkifli, R.M. (2016). Comparative study of the essential oils of three Beilschmiedia species and their biological activities. International Journal of Food Science and Technology, 51, 240-249. Septembre-Malaterre, A., Boumendjel, A., Seteyen, A.S., Boina, C., Gasque, P., Guiraud, P. & Sélambarom, J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus, 2(1), 1-5. Shahidi, F. & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757-781. Shakri, N.M., Salleh, W.M.N.H.W. & Ali, N.A.M. (2020). Chemical composition and biological activities of the essential oils of genus Xylopia L. (Annonaceae) - a review. Rivista Italiana delle Sostanze Grasse, 97(4), 25-34. Sharmeen, J.B., Mahomoodally, F.M., Zengin, G. & Maggi, F. (2021). Essential oils as natural sources of fragrance compounds for cosmectic and cosmeceuticals. Flavours and Fragrances, 26(3), 666. Siddeeg, A., AlKehayez, N. M., Abu-Hiamed, H. A., Al-Sanea, E. A. & Al-Farga, A. M. (2021). Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi journal of biological sciences, 28(3), 1633-1644. Singathi, R., Raghunathan, R., Krishnan, R., Kumar, R.S., Baburaj, S., Sibi, M.P., Webster, D.C. & Sivaguru, J. (2022). Frontispiece: Towards Upcycling biomass-derived Crosslinked polymers with light. Angewandte Chemie International Edition, 61(31). Sirat, H.M. & Jani, N.A. (2013). Chemical constituents of the leaf of Alpinia mutica Roxb. Natural Product Research, 27(16), 1468-1470. Song, M.C., Nigussie, F., Jeong, T.S., Lee, C.Y., Regassa, F., Markos, T. & Baek, N.I. (2006). Phenolic compounds from the roots of Lindera fruticosa. Journal of Natural Products, 69(5), 853-855. Song, M.C., Nigussie, F., Yang, H.J., Kim, H.H., Kim, J.Y., Chung, D.K. & Baek, N.I. (2008). Phenolic glycosides from Lindera fruticosa root and their inhibitory activity on osteoclast differentiation. Chemical & Pharmaceutical Bulletin, 56(5), 707-710. Su, Y.C., Hsu, K.P., Wang, E.I. & Ho, C.L. (2013). Composition and in vitro anticancer activities of the leaf essential oil of Neolitsea variabillima from Taiwan. Natural Product Communications, 8(4), 531-532. Sumioka, H., Harinantenaina, L., Matsunami, K., Otsuka, H., Kawahata, M. & Yamaguchi, K. (2011). Linderolides A-F, eudesme-type sesquiterpenes lactones and linderoline, a germacrene-type sesquiterpene from the roots of Lindera strychnifolia and their inhibitory activity on NO production in Raw 264.7 cells in vitro. Phytochemistry, 72, 2165-2171. Sun, Z., Su, X., Lin, Y., Long, C., Zhang, Y. & Zhao, T. (2023). Chemical composition and antioxidant and cholinesterase inhibitory activities of Lindera glauca fruit essential oil and molecular docking studies of six selected compounds. Horticulturae, 9(2), 289. Tada, H., Minato, H. & Takeda, K. (1971). Components of the root of Lindera strychnifolia Vill. Part XVIII. Neosericenyl acetate and dehydrolindestrenolide. Journal of the Chemical Society, Chemical Communications, (6), 1070-1073. Taha, A.M. & Eldahshan, O.A. (2017). Chemical characteristics, antimicrobial, and cytotoxic activities of the essential oil of Egyptian Cinnamomum glanduliferum bark. Chemistry & Biodiversity, 14(5), 443. Takizawa, N. (1984). Studies on the constituents of Lindera species (I) on the flavonoid compounds of Lindera families. Shoyakugaku Zasshi, 38(2), 194-197. Tanaka, H., Ichino, K. & Ito, K. (1984). A novel dihydrochalcone, linderatin from Lindera umbellata var. lancea. Chemical and Pharmaceutical Bulletin, 32(9), 3747-3750. Tighe, S., Gao, Y.Y. & Tseng, S.C. (2013). Terpinen-4-ol is the most active ingredient of tea tree oil to kill demodex mites. Translational Vision Science & Technology, 2(7), 2. Wang, F., Gao, Y., Zhang, L., Bai, B., Hu, Y.N., Dong, Z.J., Zhai, Q.W., Zhu, H.J. & Liu, J.K. (2010). A pair of windmill-shaped enantiomers from Lindera aggregata with activity toward improvement of insulin sensitivity. Organic Letters, 12(14), 3196-3199. Wang, H., Li, P., Sun, S.H. & Zhang, Q.D. (2014). Comparison of liquid-liquid extraction, simultaneous distillation extraction, ultrasound-assisted solvent extraction, and Headspace solid-phase Microextraction for the determination of volatile compounds in jujube extract by gas chromatography/Mass spectrometry. Analytical Letters, 47(4), 654-674. Wang, S.W., Xu, S.Y. & Gan, T. (2023). Chemical constituents and antidepressant like activity of the ethanol extract of Lindera fragrans leaves. Pharmaceutical Chemistry Journal, 56, 1358-1368. Wang, L., Zhang, Y., Sun, X. & Chen, S. (2016b). Simultaneous quantitative analysis of main components in linderae reflexae radix with one single marker. Journal of Liquid Chromatography & Related Technologies, 39(8), 422-427. Wang, S., Lan, X., Xiao, J., Yang, J., Kao, Y. & Chang, S. (2007). Anti-inflammatory activity of Lindera erythrocarpa fruits. Phytotherapy Research, 22(2), 213-216. Wei, G., Kong, L., Zhang, J., Ma, C., Wu, X., Li, X. & Jiang, H. (2016a). Essential oil composition and antibacterial activity of Lindera nacusua (D.Don) Merr. Natural Product Research, 30(23), 2704-2706. Wei, Z. F., Lv, Q., Xia, Y., Yue, M.F., Shi, C., Xia, Y.F., Chou, G.X., Wang, Z.T. & Dai, Y. (2015). Norisoboldine, an anti-arthritis alkaloid isolated from radix linderae, attenuates osteoclast differentiation and inflammatory bone erosion in an aryl hydrocarbon receptor-dependent manner. International Journal of Biological Sciences, 11(9), 1113-1126. Wei, G., Zhang, J., Lei, J., Ma, C., Tong, Y. & Jiang, H. (2016b). Chemical constituents from Lindera nacusua (D.Don) Merr. Biochemical Systematics and Ecology, 66, 94-97. Wen, S.S., Wang, Y., Xu, J.P., Liu, Q., Zhang, L., Zheng, J., Li, L., Zhang, N., Liu, X., Xu, Y.W. & Sun, Z.L. (2021). Two new sesquiterpenoid lactone derivatives from Lindera aggregata. Natural Products Research, 36(21), 5407-5415. Wisetsai, A., Schevenels, F.T. & Lekphrom, R. (2021). Chemical constituents and their biological activities from the roots of Diospyros filipendula. Natural Product Research, 35(16), 2739-2743. Wu, N., Fu, K., Fu, Y.J., Zu, Y.G., Chang, F.R., Chen, Y.H., Liu, X.L., Kong, Y., Liu, W. & Gu, C.B. (2009). Antioxidant activities of extracts and main components of Pigeonpea (Cajanus cajan L. Millsp.) leaves. Molecules, 14(3), 1032-1043. Xu, D., Hu, M.J., Wang, Y.Q. & Cui, Y.L. (2019). Antioxidant activities of quercetin and its complexes for medicinal application. Molecules, 24(6), 1123. Yan, R. & Hua, J. (2014). In vitro antitumor activity of Lindera strychnifolia root essential oil and its active constituent. Journal of Wuhan University (Natural Science Edition), 4, 345-348. Yan, R., Yang, Y. & Zou, G. (2014). Cytotoxic and apoptotic effects of Lindera strychnifolia leaf essential oil. Journal of Essential Oil Research, 26(4), 308-314. Yan, R., Yang, Y., Zeng, Y. & Zou, G. (2009). Cytotoxicity and antibacterial activity of Lindera strychnifolia essential oils and extracts. Journal of Ethnopharmacology, 121(3), 451-455. Yang, C.P., Shie, P.H., Huang, G.J., Chien, S.C. & Kuo, Y.H. (2019). New anti-inflammatory flavonol glycosides from Lindera akoensis Hayata. Molecules, 24(3), 563. Yang, D., Wang, F., Peng, J. & Ren, S. (1999a). GC-MS analysis and inhibitory activity of the essential oil extracted from the leaves of Lindera communis. Journal of Chinese Medicinal Materials, 22(3), 128-131. Yang, D., Wang, F., Ren, S., Zhang, H. & Peng, J. (199b). Chemical constituents of the essential oil from the fruits of Lindera glauca and its antifungal activities. Zhong Yao Cai. Journal of Chinese medicinal materials, 22(6), 295-298. Yang, H.J., Kwon, E.B. & Li, W. (2020a). Linderolide U, a new sesquiterpenes from Lindera aggregata root. Natural Product Research, 36(7), 1914-1918. Yang, J., Lai, J., Kong, W. & Li, S. (2022b). Asymmetric Synthesis of Sakuranetin-Relevant Flavanones for the Identification of New Chiral Antifungal Leads. Journal of agricultural and food chemistry, 70(11), 3409-3419. Yang, J., Lee, S.Y., Na, H., Jang, S.K. & Park, M.J. (2022a). Evaluation of anti-asthmatic activity of essential oils from the Lauraceae family in lipopolysaccharide (LPS)-stimulated NCI-H292 Cells. Journal of the Korean Wood Science and Technology, 50(6), 414-426. Yang, J.J., Chen, Y., Guo, M.L. & Chou, G.X. (2020b). Chemical constituents from the roots of Lindera aggregata and their biological activities. Journal of Natural Medicines, 74(2), 441-447. Yen, M.C., Shih, Y.C., Hsu, Y.L., Lin, E.S., Lin, Y.S., Tsai, E.M., Ho, Y.W., How, M.F. & Kuo, P.L. (2016). Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing miR-30C in breast cancer. Oncology Reports, 35(3), 1356-1364. Yen, M., Shih, Y., Hsu, Y., Lin, E., Lin, Y., Tsai, E., Ho, Y., Hou, M. & Kuo, P. (2015). Isolinderalactone enhances the inhibition of SOCS3 on STAT3 activity by decreasing Mir-30c in breast cancer. Oncology Reports, 35(3), 1356-1364. Yu, J.S., Baek, J., Park, H.B., Moon, E., Kim, S.Y., Choi, S.U. & Kim, K.H. (2016). A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. Archives of Pharmacal Research, 39, 1628-1634. Zahari, A., Cheah, F.K., Mohamad, J., Sulaiman, S.N., Litaudon, M., Leong, K.H. & Awang, K. (2014). Antiplasmodial and antioxidant alkaloids from two Lauraceae species. Planta Medica, 80(7), 599-603. Zhang, C., Chou, G., Sun, Q., Wang, Z. & Masao, H. (2003d). Tannins from the stems of Lindera aggregata I. Chinese Journal of Natural Medicines, 1, 204-6. Zhang, C., Sun, Q., Chou, G. & Wang, Z. (2003b). Studies on the flavonoids from leaves of Lindera aggregata (Sims) Kosterm. Journal Shenyang Pharm University, 20(4), 342. Zhang, C., Sun, Q., Zhao, Y. & Wang, Z. (2001). Studies on flavonoids from leaves of Lindera aggregata (Sims) Kosterm. Chinese Journal of Medicinal Chemistry, 11, 28-30. Zhang, C.F. & Wang, Z.T. (2000) An advance in the study on medicinal plant of Lindera. Journal of Shenyang University, 17(3), 230-234. Zhang, C.F., Nakamura, N., Tewtrakul, S., Hattori, M., Sun, Q.S., Wang, Z.T. & Fujiwara, T. (2002). Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chemical and Pharmaceutical Bulletin, 50(9), 1195-1200. Zhang, C.F., Sun, Q.S., Wang, Z.T., Masao, H. & Supinya, T. (2003c). Inhibitory activities of tannins extracted from stem of Lindera aggregata against HIV-1 integrase. Chinese Pharmaceutical Journal, 38(12), 911-914. Zhang, Q.W., Lin, L.G. & Ye, C.W. (2018). Technique for extraction and isolation of naturals products: a comprehensive review. Chinese Medicine, 13(1), 20. Zhang, Y., Zhou, J., Tng, D.Y.P., Wang, S., Wang, Y., Peng, Y., Liu, H. & Wang, Z. (2023). Phylogeny and systematics of sassafras (Lauracaea), an interesting genus with disjunct distribution in Eastern North America and East Asia. Plants, 12(6), 1419. Zhang, Z., Murtagh, F., Van Poucke, S., Lin, S. & Lan, P. (2017). Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R. Annals of Translational Medicine, 5(4), 75-75. Zhang, C., Nakamura, N., Tewtrakul, S., Hattori, M., Sun, Q., Wang, Z. & Fujiwara, T. (2003a). Sesquiterpenes and alkaloids from Lindera chunii and their inhibitory activities against HIV-1 integrase. Chemical & Pharmaceutical Bulletin, 50(9), 1195-1200. Zhang, Q., Fang, Y., Lv, C., Zhu, Y., Xia, Y., Wei, Z. & Dai, Y. (2022). Norisoboldine induces the development of Treg cells by promoting fatty acid oxidation-mediated H3K27 acetylation of Foxp3. FASEB Journal, 36(4), 1-16. Zhao, J., Lu, X., Xu, X., Luo, L., Fu, H. & Li, J. (2012). Chemical constituents of leaves of Lindera aggregata (Sims) Kosterm. Chinese Pharmaceutical Journal, 47, 1702-5. Zhao, Q., Zhao, Y. & Wang, K. (2005). Alkaloids from the root of Lindera augustifolia. Acta pharmaceutica Sinica. B, 40(10), 931-934. Zhao, Q., Zhao, Y. & Wang, K. (2006). Antinociceptive and free radical scavenging activities of alkaloids isolated from Lindera angustifolia Chen. Journal of Ethnopharmacology, 106(3), 408-413. Zhou, Q., Hotta, K., Deng, Y., Yuan, R., Quan, S. & Chen, X. (2021). Advances in Biosynthesis of Natural Products from Marine Microorganisms. Microorganisms, 9(12), 2551. Zhu, B., Hou, X., Niu, J., Li, P., Fang, C., Qiu, L., Ha, D., Zhang, Z., Sun, J., Li, Y. & Lin, S. (2016). Volatile constituents from the fruits of Lindera glauca (Sieb. et Zucc.) with different maturities. Journal of Essential Oil Bearing Plants, 19(4), 926-935. Zhu, Y., Liu, M., Hu, D., Lin, H., Xue, W. & Yang, S. (2012). Chemical constituents of Lindera aggregata. Chinese Journal of Experimental Traditional Medical Formulae, 180, 123-6. Zou, W., Gong, L., Zhou, F., Long, Y., Li, Z., Xiao, Z., Ouyang, B. & Liu, M. (2021). Anti-inflammatory effect of traditional Chinese medicine preparation penyaling on pelvic inflammatory disease. Journal of Ethnopharmacology, 266, 113405.
PUBLICATIONS
1. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Salihu, A.S. & Shaharudin, S.M. (2024). Assessment of variability of essential oil components in the genus Lindera (Lauraceae) by multivariate analysis. Malaysian Journal of Chemistry (Scopus), 26(1), 271-280.
2. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Arzmi, M.H., Salihu, A.S. & Ghani, N.A. (2023). Chemical composition of essential oil from Lindera caesia Reinw. ex Fern.-Vill. and its antifungal, antibiofilm, and molecular docking studies. Natural Product Research (Q3). doi: 10.1080/14786419.2023.2298720 (in press)
3. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Arzmi, M.H., Salihu, A.S. & Ghani, N.A. (2023). Chemical composition of essential oil from Lindera subumbelliflora Kosterm and its effect on the susceptibility and biofilm activities of Candida albicans and Streptococcus mutans. Natural Product Research (Q3). doi: 10.1080/14786419.2023.2278164 (in press)
4. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Salihu, A.S., & Abed, S.A. (2024). A review on chemical constituents and pharmacological action of the genus Lindera. Journal of Science and Mathematics Letters, 12(2), 50-73.
5. Zaini, N.N.M. & Salleh, W.M.N.H.W.*. (2023). A systematic review of the essential oils and biological activities of the genus Lindera (Lauraceae). La Rivista Italiana delle Sostanze Grasse (Q4). Accepted
6. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Arzmi, M.H. & Salihu, A.S. (2023). Investigation of antioxidant, antifungal, and antibiofilm properties of Lindera subumbelliflora and Lindera caesia from Malaysia. Agriculturae Conspectus Scientificus (Scopus). Accepted
7. Zaini, N.N.M., Salleh, W.M.N.H.W.*, Ghani, N.A., Rasol, N.E., Arzmi, M.H., Salihu, A.S., Khamis, S. & Mahsop, H.S.M. (2023). Chemical constituents from Lindera subumbelliflora. Chemistry of Natural Compounds (Q4). Accepted
CONFERENCES
1. 38th International Conference on Natural Products (ICNP) Aloft, Kuala Lumpur, 11-13th September 2023. Title: Chemical composition of essential oil from Lindera subumbelliflera Kosterm and its effect on the susceptibility and biofilm activities of Candida albicans and Streptococcus mutans (Poster Presenter – Best Poster)
2. 39th International Conference on Natural Products (ICNP) Aloft, Kuala Lumpur, 9-11th September 2024. Title: Chemical Constituents Of Lindera Subumbelliflora Kosterm And Its Effect On The Antioxidant And Antibiofilm Activities (Oral Presenter)
3. International Postgraduate Colloquium (IPAC) E-Learning UPSI, 19th September 2024. Title: Investigation of Antioxidant and Antibiofilm Properties of Lindera subumbelliflora Kosterm
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |