UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Thesis
Subject :TJ Mechanical engineering and machinery
Main Author :Noor Aqma Mohd Yazid
Additional Authors :
  • -
Title :Development non-invasive blood type detector of spectral responsivity
Hits :27
Place of Production :Tanjong Malim
Publisher :Fakulti Teknikal dan Vokasional
Year of Publication :2024
Original Version Note :-
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file
PDF Full Text :You have no permission to view this item.

Abstract : Perpustakaan Tuanku Bainun
The conventional method of blood grouping, reliant on antigen-antibody reactions, entails invasive blood sampling and is susceptible to time-consuming procedures and potential mismatches, leading to severe consequences during transfusions. This study endeavors to develop a non-invasive human blood type detector, assessing spectral responsivity relative to blood types and comparing it with conventional methods. A cross-sectional descriptive study involving 120 participants was conducted, with the spectral responsivity serving as the dependent variable. The non-invasive detector, comprising input (power supply, OPT101, IR LED), processing (Arduino), and output (LCD Display) components, was employed. Participants, meeting inclusion criteria of healthy adults aged 18-50 with blood typing records, underwent trials using the setup, excluding those under anticoagulant medication, pregnant, or with blood cancer. Subjects placed their middle finger into the setup for comfortable positioning, undergoing three trials on each side to determine output voltage ranges for ABO Blood groups. Results revealed voltage ranges: Blood type A (0.10V - 0.15V), Blood type B (0.16V - 0.23V), Blood type O (0.00V - 0.09V), and Blood type AB (0.23V - 0.5V). The study signifies the potential of non-invasive blood typing technology in enhancing efficiency and accuracy in blood group detection.

References

Abdalla, S., Al-ameer, S. S., & Al-Magaishi, S. H. (2010). Electrical properties with relaxation through human blood. Biomicrofluidics, 4(3). https://doi.org/10.1063/1.3458908 

Ahl, D., Eriksson, O., Sedin, J., Seignez, C., Schwan, E., Kreuger, J., Christoffersson, G., & Phillipson, M. (2019). Turning up the heat: Local temperaturecontrol during in vivo imaging of immune cells. Frontiers in Immunology, 10(AUG). https://doi.org/10.3389/fimmu.2019.02036 

Althubaiti, A. (2023). Sample size determination: A practical guide for health researchers. Journal of General and Family Medicine, 24(2), 72–78. https://doi.org/10.1002/jgf2.600 

Amos, W. B., & White, J. G. (2003). How the Confocal Laser Scanning Microscope entered Biological Research. 95, 335–342. https://doi.org/10.1016/S0248­4900(03)00078-9 

Andrade, C. (2020). Sample size and its importance in research. Indian Journal of Psychological Medicine, 42(1), 102–103. https://doi.org/10.4103/IJPSYM.IJPSYM_504_19 

Anne D. Martens, R. (2014). Needle phobia can significantly affect the well-being of patients who are serviced by specialty Stacey Ness, PharmD, RPh, CSP, MSCS, AAHIVP, and Anne D. Martens, R. (2014). Needle phobia can significantly affect the well-being of patients who are serviced. 

ARFA, S., & telecommunications, K. K.-J. of E. and. (2021). Blood Group Identification Using Deep Learning and Image Processing-a Review of Literature. Ijarst.In, 11(2), 1325–1327. https://www.ijarst.in/public/uploads/paper/946661634013564.pdf 

Bajpai, M., Kaur, R., & Gupta, E. (2012). Automation in immunohematology. Asian Journal of Transfusion Science, 6(2), 140–144. https://doi.org/10.4103/0973­6247.98914 

Banu, A. N. (2018). An Automatic System To Detect Human Blood Group Of Many Individuals In A Parellel Manner Using Image Processing. 118(20), 3119–3127. 

Bhatia, K., & Singh, M. (2015). Non-Invasive Techniques for Detection of Hemoglobin in Blood : A Review. 4(6), 1946–1949. 

Bhuvaneswari, K., Visithra, M., & Deepa, S. K. (2021). IoT Based Non-Invasive Approach for Blood Group Detection using Led. 9(10), 77–80. 

Bularzik, T. M., Price, D., & Rivera, M. (2010). Accessible Blood GlucoseMonitor. Accessible Blood Glucose Monitor, 94. 

Burnouf, T., Chou, M. L., Goubran, H., Cognasse, F., Garraud, O., & Seghatchian, J. (2015). An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful? Transfusion and Apheresis Science, 53(2), 137–145. https://doi.org/10.1016/j.transci.2015.10.010 

Burr-Brown. (2015). Data sheet:OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier. Texas Instruments Incorporated, 1–31. 

Cao, H., Mu, Y., Li, X., Wang, Y., Chen, S., & Liu, J. P. (2016). A systematic review of randomized controlled trials on oral Chinese herbal medicine for prostate cancer. PLoS ONE, 11(8), 1–16. https://doi.org/10.1371/journal.pone.0160253 

Cousins, S., Blencowe, N. S., & Blazeby, J. M. (2019). What is an invasive procedure? A definition to inform study design, evidence synthesis and research tracking. BMJ Open, 9(7), 2018–2020. https://doi.org/10.1136/bmjopen-2018­028576 

Da Silva, J. A. T. (2021). Room temperature in scientific protocols and experiments should be defined: A reproducibility issue. BioTechniques, 70(6), 307–309. https://doi.org/10.2144/btn-2020-0131 

Dal Pont, M. P., & Marques, J. L. B. (2020). Reflective photoplethysmography acquisition platform with monitoring modules and noninvasive blood pressure calculation. IEEE Transactions on Instrumentation and Measurement, 69(8), 5649–5657. https://doi.org/10.1109/TIM.2019.2963508 

Damborský, P., Švitel, J., & Katrlík, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91–100. https://doi.org/10.1042/EBC20150010 

Daniels, A. (2018). Field Guide to Infrared Systems, Detectors, and FPAs, Third Edition. 

DeSimone, R. A., Costa, V. A., Kane, K., Sepulveda, J. L., Ellsworth, G. B., Gulick, R. M., Zucker, J., Sobieszcyk, M. E., Schwartz, J., & Cushing, M. M. (2021). Blood component utilization in COVID-19 patients in New York City: Transfusions do not follow the curve. Transfusion, 61(3), 692–698. https://doi.org/10.1111/trf.16202 

Doyle, A. J., Danaee, A., Furtado, C. I., Miller, S., Maggs, T., Robinson, S. E., & Retter, A. (2020). Blood component use in critical care in patients with COVID­19 infection: a single-centre experience. British Journal of Haematology, 191(3), 382–385. https://doi.org/10.1111/bjh.17007 

Duguid, J. K. M. (1990). 8 Developing techniques in blood transfusion. Bailliere’s Clinical Haematology, 3(4), 999–1017. https://doi.org/10.1016/S0950­3536(05)80144-1 

Ferraz, A., Carvalho, V., & Soares, F. (2010). Development of a human blood type detection automatic system. Procedia Engineering, 5(December), 496–499. https://doi.org/10.1016/j.proeng.2010.09.155 

Feyisa, T., Kiya, G. T., & Maleko, W. A. (2021). Assessment of recipients’ characteristics, transfusion appropriateness, and utilization pattern of blood and blood products in Jimma Medical Center, Jimma, Ethiopia. PLoS ONE, 16(4 April), 1–17. https://doi.org/10.1371/journal.pone.0250623 

Fidanboylu, K.a, * , and Efendioglu, H. S. . (2009). Distributed fiber-opticsensors and their applications. 5th International Advanced Technologies Symposium (IATS’09), 1–6. https://doi.org/10.1201/b18074 

Garratty, G. (2010). Advances in red blood cell immunology 1960 to 2009. Transfusion, 50(3), 526–535. https://doi.org/10.1111/j.1537-2995.2009.02493.x 

Giallorenzi, T. G., & Bucaro, J. A. (2017). Fiber-optic sensor technology. WI1. https://doi.org/10.1364/ofc.1981.wi1 

Hansen, A. L., Kurach, J. D. R., Turner, T. R., Jenkins, C., Busch, M. P., Norris, P. J., Dugger, J., Tomasulo, P. A., Devine, D. V., & Acker, J. P. (2015). The effect of processing method on the in vitro characteristics of red blood cell products. Vox Sanguinis, 108(4), 350–358. https://doi.org/10.1111/vox.12233 

Haxha, S., & Jhoja, J. (2016). Optical Based Noninvasive Glucose Monitoring Sensor Prototype. IEEE Photonics Journal, 8(6), 1–10. https://doi.org/10.1109/JPHOT.2016.2616491 

He, Y., Zhang, Y. Q., He, X., & Wang, X. Y. (2021). A new image encryption algorithm based on the OF-LSTMS and chaotic sequences. Scientific Reports, 11(1), 1–22. https://doi.org/10.1038/s41598-021-85377-1 

Jaspard, F., Nadi, M., & Rouane, A. (2003). Dielectric properties of blood: An investigation of haematocrit dependence. Physiological Measurement, 24(1), 137–147. https://doi.org/10.1088/0967-3334/24/1/310 

Kakarla, P., Yaswanth, M., P, S., Kumar, R., & Pratibhan. (2014). Blood Group Detection Using Fiber Optics. TheIIER International Conference, Indonesia, 72– 75. 

Kakarla, P., Yaswanth, M., P, S., Kumar, R., Pratibhan, KumarB, A., Scholar, U., Professor, A., Engineering, C., Engineering, C., Rubi, J., Keerthana, A., Srividhya, G., Hemalatha, R. J., Bhuvaneswari, K., Visithra, M., Deepa, S. K., Liastra, S. M., Faadhillah, A., … Naizathul Akmha S*3, K. N. (2019). Blood Group Detection Using Fiber Optics. TheIIER International Conference, Indonesia, 12(1), 72–75. https://doi.org/10.3390/s121216557 

Katsnelson, A. (2003). Current approaches to the study of movement control. PLoS Biology, 1(2), 161–163. https://doi.org/10.1371/journal.pbio.0000050 

Katti, S., Naragund, P., & Saradesai, V. (2015). MEMS based sensor for Blood group Investigation. Proceedings of the 2015 COMSOL Conference, 3–7. 

Kim, J. (2021). Simultaneous voltage and current measurement instrumentation amplifier for ECG and PPG monitoring. Electronics (Switzerland), 10(6), 1–14. https://doi.org/10.3390/electronics10060679 

Kondratov, K. A., Petrova, T. A., Mikhailovskii, V. Y., Ivanova, A. N., Kostareva, A. A., & Fedorov, A. V. (2017). A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning electron microscopy. Cell and Tissue Biology, 11(3), 181–190. https://doi.org/10.1134/S1990519X17030051 

Kraitl, J., Ewald, H., & Gehring, H. (2005). An optical device to measureblood components by a photoplethysmographic method. Journal of Optics A: Pure and Applied Optics, 7(6). https://doi.org/10.1088/1464-4258/7/6/010 

Langer, T., Ferrari, M., Zazzeron, L., Gattinoni, L., & Caironi, P. (2014). Effects of intravenous solutions on acid-base equilibrium: From crystalloids to colloids and blood components. Anaesthesiology Intensive Therapy, 46(5), 350–360. https://doi.org/10.5603/AIT.2014.0059 

Lee, J., & Wang, Y. L. (2020). Prognostic and Predictive Molecular Biomarkers in Chronic Lymphocytic Leukemia. Journal of Molecular Diagnostics, 22(9), 1114–1125. https://doi.org/10.1016/j.jmoldx.2020.06.004 

Lopez, S. (2011). Freescale Application Note: Pulse Oximeter Fundamentals and Design. 

Louis, L. (2016). Working Principle of Arduino and Using it as a Tool for Study and Research. International Journal of Control, Automation, Communication and Systems, 1(2), 21–29. https://doi.org/10.5121/ijcacs.2016.1203 

M, V. (2017). Automated Blood Group Detection System Using Image Processing. 6(4), 278–282. 

Malomgré, W., & Neumeister, B. (2009). Recent and future trends in blood group typing. Analytical and Bioanalytical Chemistry, 393(5), 1443–1451. https://doi.org/10.1007/s00216-008-2411-3 

Marianne Belleza, R. N. (n.d.). Blood Anatomy and Physiology. 

Mehare, G. S., Pinjarkar, C. G., Tembhe, A. V, & Khachane, N. S. (2018). A Non­invasive Way to Determine Blood Type Based on Image Processing. International Research Journal of Engineering and Technology, 2040–2043. http://www.ijmlc.org/papers/342-L472.pdf 

Memon, M. A., Ting, H., Cheah, J. H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling, 4(2), i–xx. https://doi.org/10.47263/jasem.4(2)01 

Merriam-Webster.com Dictionary, M.-W. (2020a). invasive. 

Merriam-Webster.com Dictionary, M.-W. (2020b). Non-Invasive. 

Mete, B., Vanli, E., Yemisen, M., Balkan, I. I., Dagtekin, H., Ozaras, R., Saltoglu, N., Mert, A., Ozturk, R., & Tabak, F. (2012). The role of invasive and non-invasive procedures in diagnosing fever of unknown origin. International Journal of Medical Sciences, 9(8), 682–689. https://doi.org/10.7150/ijms.4591 

Moslemi, S., Ghotbi Ravandi, M. R., Zare, S., & Tohidi Nik, H. (2023). Measuring and assessing the effects of extremely low-frequency electromagnetic fields (ELF-EMF) on blood parameters and liver enzymes of personnel working in high voltage power stations in a petrochemical industry. Heliyon, 9(4), e15414. https://doi.org/10.1016/j.heliyon.2023.e15414 

Naderi, M., & Kwong, R. W. M. (2020). A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environment International, 145(May), 106078. https://doi.org/10.1016/j.envint.2020.106078 

Naizathul Akmha S*3, K. N. (2018). Non invasive blood group detection using light emitting diode. 119(15), 565–574. 

Nakamura, T., Shirouzu, T., Kawai, S., Imanishi, Y., Matsuyama, T., Harada, S., Nobori, S., Yoshimura, N., & Ushigome, H. (2019). Detection of Intragraft Anti-Blood Group A and B Antibodies Following Renal Transplantation. Transplantation Proceedings, 51(5), 1371–1377. https://doi.org/10.1016/j.transproceed.2019.01.128 

Nishiyama, K., Okudera, T., Watanabe, T., Isobe, K., Suzuki, M., Masuki, H., Okudera, H., Uematsu, K., Nakata, K., & Kawase, T. (2016). Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects. Clinical and Experimental Dental Research, 2(2), 96–103. https://doi.org/10.1002/cre2.26 

Operating Principle of CPC. (n.d.). http://www.dustmonitor.com/Research/Nano_broch/nano1.htm 

Patel, T., Joshi, G., & Khambhati, D. (2019). Identification of Voltage Level Present in Blood during Mistransfusion of Blood. International Journal of Engineering Trends and Technology, 67(3), 96–99. https://doi.org/10.14445/22315381/ijett­v67i3p218 

Pathan, R. A., & Rathod, R. A. (2017). Determination and Classification of Human Blood Types using SIFT Transform and SVM Classifier. Ijareeie, 5(1), 1–8. https://doi.org/10.15662/IJAREEIE.2016.0511031 

Pedro, B. G., Marcôndes, D. W. C., & Bertemes-Filho, P. (2020). Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors (Switzerland), 20(23), 1–11. https://doi.org/10.3390/s20236928 

Perelman, I., Fergusson, D., Lampron, J., Mack, J., Rubens, F., Giulivi, A., Tokessy, M., Shorr, R., & Tinmouth, A. (2021). Exploring Peaks in Hospital Blood Component Utilization: A 10-Year Retrospective Study at a Large Multisite Academic Centre. Transfusion Medicine Reviews, 35(1), 37–45. https://doi.org/10.1016/j.tmrv.2020.10.002 

Pifferi, A., & Fisica, D. (2004). Optical biopsy of bone tissue : a step toward the diagnosis of bone pathologies. 9(3), 474–480. https://doi.org/10.1117/1.1691029 

Pifferi, A., Torricelli, A., Taroni, P., Bassi, A., Chikoidze, E., Giambattistelli, E., & Cubeddu, R. (2004). Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. Journal of Biomedical Optics, 9(3), 474. https://doi.org/10.1117/1.1691029 

Pinto, C., Parab, J., & Naik, G. (2020). Non-invasive hemoglobin measurement using embedded platform. Sensing and Bio-Sensing Research, 29(May), 100370. https://doi.org/10.1016/j.sbsr.2020.100370 

Plapp, F. V., Sinor, L. T., & Rachel, J. M. (1989). The evolution of pretransfusion testing: From agglutination to solid-phase red cell adherence tests. Critical Reviews in Clinical Laboratory Sciences, 27(2), 179–209. https://doi.org/10.3109/10408368909106593 

Prasad, M., Sumaiya, M. N., Naikodi, S. M., Triveni, A., Gireesh, Y. S., & Prakash, T. (n.d.). Non-Invasive Blood Group Detection Using CNN. 10(3), 80–84. 

Project, B. O. T. (Rice U. ). (n.d.). Anatomy and Physiology. 

Quirino, M. G., Colli, C. M., Macedo, L. C., Sell, A. M., & Visentainer, J. E. L. (2019). Methods for blood group antigens detection: cost-effectiveness analysis of phenotyping and genotyping. Hematology, Transfusion and Cell Therapy, 41(1), 44–49. https://doi.org/10.1016/j.htct.2018.06.006 

Satoh, K., & Itoh, Y. (2006). Forensic ABO blood grouping by 4 SNPs analyses using an ABI PRISM® 3100 genetic analyzer. International Congress Series, 1288, 49–51. https://doi.org/10.1016/j.ics.2005.08.034 

Schermelleh, L., Heintzmann, R., & Leonhardt, H. (2010). A guide to super-resolution fluorescence microscopy. 190(2), 165–175. https://doi.org/10.1083/jcb.201002018 

Schwan, H. P. (1983). Electrical properties of blood and its constitutents:Alternating current spectroscopy. Blut, 46(4), 185–197. https://doi.org/10.1007/BF00320638 

Solves, P., Lozano, M., Zhiburt, E., Anguita Velasco, J., Maria Pérez-Corral, A., Monsalvo-Saornil, S., Yamazaki, S., Okazaki, H., Selleng, K., Aurich, K., Krüger, W., Buser, A., Holbro, A., Infanti, L., Stehle, G., Pierelli, L., Matteocci, A., Rigacci, L., DeVooght, K. M. K., … Dunbar, N. (2021). International Forum on Transfusion Practices in Haematopoietic Stem-Cell Transplantation: Summary. Vox Sanguinis, 116(5), 609–612. https://doi.org/10.1111/vox.13061 

Stojanovic, R. D., Karadaglic, D. M., Perakis, K., Lutovac, B. M., Haritou, M., & Koutsoris, D. (2008). Led-led ppg-spo 2 sensor-actuator. Biomedical Engineering, Isbme, 328–331. 

Sultan, E., Albahrani, M., Alostad, J., Ebraheem, H. K., Alnaser, M., & Alkhateeb, N. (2019). Novel optical biosensor method to identify human blood types using free-space frequency-modulated wave of NIR photon technology. Medical Devices: Evidence and Research, 12, 9–20. https://doi.org/10.2147/MDER.S181796 

T.M. Selvakumari. (2011). Blood Group Detection Using Fiber Optics. Armenian Journal of Physics, 4(3), 165–168. 

Teissie, J. (1993). New clinical applications of electricity. In Presse medicale (Paris, France : 1983) (Vol. 22, Issue 24). 

Tewabe, H., Mitiku, A., & Worku, H. (2022). Assessment of Blood Transfusion Utilization and Patient Outcomes at Yekatit-12 Hospital, Addis Ababa, Ethiopia. Journal of Blood Medicine, 13, 171–180. https://doi.org/10.2147/JBM.S355178 

Tovey, G. H. (1969). Automated blood group serology. Journal of Clinical Pathology, S2-3(1), 34–38. https://doi.org/10.1136/jcp.s2-3.1.34 

Turgeon, V., Kertzscher, G., Carroll, L., Hopewell, R., Massarweh, G., & Enger, S. A. (2019). Characterization of scintillating fibers for use as positron detector in positron emission tomography. Physica Medica, 65(August), 114–120. https://doi.org/10.1016/j.ejmp.2019.08.009 

Version, D. (1992). University of Groningen Electric properties of blood and impedance cardiography Visser, Klaas Rinse. 

Wang, E. J., Li, W., Hawkins, D., Gernsheimer, T., Norby-Slycord, C., & Patel, S. N. (2017). HemaApp. GetMobile: Mobile Computing and Communications, 21(2), 26–30. https://doi.org/10.1145/3131214.3131223 

Wang, J., Rousseau, A., Eizner, E., Phaneuf-L’Heureux, A. L., Schue, L., Francoeur, S., & Kéna-Cohen, S. (2019). Spectral Responsivity and Photoconductive Gain in Thin Film Black Phosphorus Photodetectors. ACS Photonics, 6(12), 3092– 3099. https://doi.org/10.1021/acsphotonics.9b00951 

Zelepukin, I. V., Yaremenko, A. V., Yuryev, M. V., Mirkasymov, A. B., Sokolov, I. L., Deyev, S. M., Nikitin, P. I., & Nikitin, M. P. (2020). Fast processes of nanoparticle blood clearance: Comprehensive study. Journal of Controlled Release, 326, 181–191. https://doi.org/10.1016/j.jconrel.2020.07.014 

Zhang, H., Qiu, X., Zou, Y., Ye, Y., Qi, C., Zou, L., Yang, X., Yang, K., Zhu, Y., Yang, Y., Zhou, Y., & Luo, Y. (2017). A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Science Translational Medicine, 9(381). https://doi.org/10.1126/scitranslmed.aaf9209 

Zhao, G., Joca, H. C., Nelson, M. T., & Lederer, W. J. (2020). ATP-And voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7461–7470. https://doi.org/10.1073/pnas.1922095117 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.