UPSI Digital Repository (UDRep)
|
![]() |
|
|
Abstract : Perpustakaan Tuanku Bainun |
The research examined the frequency of hearing loss among college students in Johor via the use of pure tone audiometry (PTA) screening tests. The study included a sample of 30 participants between the ages of 18 and 35, with 46.67% of them using personal listening devices (PLDs) for educational reasons. The Air Conduction (AC) and Bone Conduction (BC) tests were used to evaluate the different types and levels of hearing impairment by using Audiometer, model Interacoustic AD629. This research used one (1) decibel (dB) increment for the up-and-down hearing threshold for both AC and BC measurements. The participants were categorized into two groups: the experimental group, which altered noise thresholds and daily use, and the control group, which kept their usual use of PLDs. The findings indicated that 73.33% of young adults use PLDs, with earphones being the predominant preference. Approximately 30% of the whole amount is comprised of cellphones and laptops. A substantial number of participants use them while sleeping, probably improving hearing sharpness and thresholds in young individuals. The study's findings were assessed using the Statistical Package for the Social Sciences (SPSS) and paired t-tests. The findings indicated that there were no significant changes in the air-bone gap for both ears in the control group at frequencies of 1500 Hz and 2000 Hz. Nevertheless, significant changes were noted at frequencies of 250 Hz, 500 Hz, 3000 Hz, and 4000 Hz, but there were no substantial variations in auditory perception before or after 1500 Hz. The study determined that the use of PLDs without regulating the time and volume settings may lead to auditory impairment and the emergence of Noise-Induced Hearing Loss (NIHL). v |
References |
Agustiawan. (2022). Description of Use of Personal Listening Devices (Pld) During Online Learning During Covid-19 Pandemic. 1–4.
Aline, M., Sales, A., Ribeiro, A., Morsch, P., Hundertmarck, A., & Gonc, Â. J. (2020). Development and accuracy of a hearing screening application. Brazilian Journal of Otorhinolaryngology. https://doi.org/10.1016/j.bjorl.2020.03.009
Almeida, R., Silvestre, A., Ribas, Â., Hammerschmidt, R., Moreira, B., & Lacerda, D. (2016). High-frequency profile in adolescents and its. Jornal de Pediatria (Versão Em Português), 92(2), 206–211. https://doi.org/10.1016/j.jpedp.2016.01.005
Alnuman, N., & Ghnimat, T. (2019). Awareness of noise-induced hearing loss and use of hearing protection among young adults in Jordan. International Journal of Environmental Research and Public Health, 16(16). https://doi.org/10.3390/ijerph16162961
Apoorva Bhushan, M. K. (2019). The Medicinal Mushroom Agaricus bisporus: Review of Phytopharmacology and Potential Role in the Treatment of Various Diseases. Department of Pharmacology, School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India, 2019(1), 4–9. https://doi.org/10.4103/JNSM.JNSM
Aras, V. P. (2003). Audiometry techniques , circuits , and systems. M. Tech. Credit Seminar Report, Electronic Systems Group, EE Dept, 03307411.
Arráez-Aybar, L. A., Sánchez-Montesinos, I., Mirapeix, R. M., Mompeo-Corredera, B., & Sañudo-Tejero, J. R. (2010). Relevance of human anatomy in daily clinical practice. Annals of Anatomy, 192(6), 341–348. https://doi.org/10.1016/j.aanat.2010.05.002
Ars, B., & Dirckx, J. (2016). Eustachian Tube Function. Otolaryngologic Clinics of North America, 49(5), 1121–1133. https://doi.org/10.1016/j.otc.2016.05.003
audstudent.com. (2015). The Hughson-Westlake Method of Obtaining Threshold. http://audsim.com/docs/h-w.shtml
Augusto, C., Pires, C., Tauil, P. L., Monteiro, I., & Silva, D. C. (2017). Amplified music exposure carries risks to hearing. International Journal of Pediatric Otorhinolaryngology, 93, 117–122. https://doi.org/10.1016/j.ijporl.2016.12.023
Autenrieth, D. A., Sandfort, D. R., Lipsey, T., & Brazile, W. J. (2012). Occupational exposures to noise resulting from the workplace use of personal media players at a manufacturing facility. Journal of Occupational and Environmental Hygiene, 9(10), 592–601. https://doi.org/10.1080/15459624.2012.713768
Bawankule, S., Graduate, P., & College, G. M. (2022). Use of Personal Listening Devices Among College Students in India During the COVID-19 Pandemic. Online Journal of Health and Allied Sciences, 9(1), 1–7.
Beer, B. De, Graamans, K., Zielhuis, G., & Snik, A. (2021). Hearing thresholds of otologically healthy 18-year-olds. Journal of Hearing Science, 1(2), 27–34. https://doi.org/10.17430/882058
Bombarde, D. S., & Deoghare, A. B. (2018). Design and development of the human middle ear to examine dynamic responses. Materials Today: Proceedings, 5(5), 12901–12908. https://doi.org/10.1016/j.matpr.2018.02.275
Borges, L. R., Donadon, C., Sanfins, M. D., Valente, J. P., Paschoal, J. R., & Colella-Santos, M. F. (2020). The effects of otitis media with effusion on the measurement of auditory evoked potentials. International Journal of Pediatric Otorhinolaryngology, 133(March), 1–5. https://doi.org/10.1016/j.ijporl.2020.109978
Bornman, M., Swanepoel, D. W., De Jager, L. B., & Eikelboom, R. H. (2019). Extended high-frequency smartphone audiometry: Validity and reliability. Journal of the American Academy of Audiology, 30(3), 217–226. https://doi.org/10.3766/jaaa.17111
Brandow, E. C. (2020). Diseases of the Ear. The Laryngoscope, 86(2), 297–325. https://doi.org/10.1288/00005537-197602000-00028
Brown, C. S., Emmett, S. D., Robler, S. K., & Tucci, D. L. (2018). Global Hearing Loss Prevention. 1–18. https://doi.org/10.1016/j.otc.2018.01.006
Burkard, R. (2016). Hearing Disorders. In International Encyclopedia of Public Health (Second Edi, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00198-3
Cha, D., Pae, C., Seong, S. B., Choi, J. Y., & Park, H. J. (2019). Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database. EBioMedicine, 45, 606–614. https://doi.org/10.1016/j.ebiom.2019.06.050
Chiong, C. M., Acuin, J. M., Labra, P. J. P., & Chan, A. L. (n.d.). Ear, Nose, and Throat Disorders. In Hunter’s Tropical Medicine and Emerging Infectious Disease (Tenth Edit, pp. 105–113). Elsevier Inc. https://doi.org/10.1016/B978-0-323-55512-8.00012-0
Chordekar, S., Perez, R., Adelman, C., Sohmer, H., & Kishon-Rabin, L. (2018). Does hearing in response to soft-tissue stimulation involve skull vibrations? A within-subject comparison between skull vibration magnitudes and hearing thresholds. Hearing Research, 364, 59–67. https://doi.org/10.1016/j.heares.2018.03.030
Chow, A. H. C., Cai, T., McPherson, B., & Yang, F. (2019). Otitis media with effusion in children: Cross-frequency correlation in pure tone audiometry. PLoS ONE, 14(8), 1–13. https://doi.org/10.1371/journal.pone.0221405
Coemert, S., Ameres, V., Roth, R., Strauss, G., Schmitz, P. M., & Lueth, T. C. (2020). Concept and Realization of a Handheld Manipulator System for Transnasal Middle Ear Surgery. Procedia CIRP, 89, 52–58. https://doi.org/10.1016/j.procir.2020.05.118
Colsman, A., Supp, G. G., Neumann, J., & Schneider, T. R. (2020). Evaluation of Accuracy and Reliability of a Mobile Screening Audiometer in Normal Hearing Adults. Frontiers in Psychology, 11(April), 1–12. https://doi.org/10.3389/fpsyg.2020.00744
Couth, S., Prendergast, G., Guest, H., Munro, K. J., Moore, D. R., Plack, C. J., Ginsborg, J., & Dawes, P. (2020). Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hearing Research, 108021. https://doi.org/10.1016/j.heares.2020.108021
Danesh, A. A., Shahnaz, N., & Hall, J. W. (2018). The Audiology of Otosclerosis. Otolaryngologic Clinics of North America, 51(2), 327–342. https://doi.org/10.1016/j.otc.2017.11.007
Dauman, R. (2013). Bone conduction: An explanation for this phenomenon comprising complex mechanisms. European Annals of Otorhinolaryngology, Head and Neck Diseases, 130(4), 209–213. https://doi.org/10.1016/j.anorl.2012.11.002
Diviani, N., Zanini, C., Amann, J., Chadha, S., Cieza, A., & Rubinelli, S. (2019). Awareness , attitudes , and beliefs about music-induced hearing loss : Towards the development of a health communication strategy to promote safe listening. Patient Education and Counseling, 102(8), 1506–1512. https://doi.org/10.1016/j.pec.2019.03.013
Duncan, J. S., & Cox, B. C. (2020). Anatomy and Development of the Inner Ear. In Reference Module in Neuroscience and Biobehavioral Psychology (Second Edi). Elsevier. https://doi.org/10.1016/b978-0-12-809324-5.24161-8
Eggermont, J. J. (2017). Hearing Loss: Cause, Prevention and Treatment (pp. 235–260). Elsevier Inc. https://doi.org/10.1016/B978-0-12-805398-0.00008-6
Eggermont, J. J. (2019). The Auditory Brain and Age-Related Hearing Impairment (Issue Chapter 2). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815304-8.00002-5
Elaine N. Marieb, & Hoehn, K. (2011). The Ear: Hearing and Balance. In Anatomy & Physiology (Fourth Edi, pp. 460–471). Pearson International Edition.
Fink, M. (2022). The Pandemic’s Effects on the Use of Personal Listening Devices And Prevalence of Hearing Damage in College Students. John Carroll University.
Fligor, B. J., & Cox, L. C. (2004). Output levels of commercially available portable compact disc players and the potential risk to hearing. Ear and Hearing, 25(6), 513–527. https://doi.org/10.1097/00003446-200412000-00001
Gilliver, M., Ph, D., Nguyen, J., Beach, E. F., Ph, D., Barr, C., & Ph, D. (2017). Personal Listening Devices in Australia : Patterns of Use and Levels of Risk. 1(212), 282–297.
Goossens, T., Vercammen, C., Wouters, J., & van Wieringen, A. (2017). Masked speech perception across the adult lifespan: Impact of age and hearing impairment. In Hearing Research (Vol. 344). Elsevier Ltd. https://doi.org/10.1016/j.heares.2016.11.004
Gopal, K. V., Mills, L. E., Phillips, B. S., & Nandy, R. (2019). Risk assessment of recreational noise–induced hearing loss from exposure through a personal audio system—iPod Touch. Journal of the American Academy of Audiology, 30(7), 619–633. https://doi.org/10.3766/jaaa.17140
Gordon, J. S., Griest, S. E., Thielman, E. J., Carlson, K. F., Helt, W. J., Lewis, M. S., Blankenship, C., Austin, D., Theodoroff, S. M., & Henry, J. A. (2017). Audiologic characteristics in a sample of recently-separated military Veterans: The Noise Outcomes in Servicemembers Epidemiology Study (NOISE Study). Hearing Research, 349, 21–30. https://doi.org/10.1016/j.heares.2016.11.014
Granados, J., Hopper, M., & He, J. (2018). A usability and safety study of Bone-conduction headphones during driving while listening to audiobooks. Proceedings of the Human Factors and Ergonomics Society, 2, 1373–1377. https://doi.org/10.1177/1541931218621313
Guest, H., Dewey, R. S., Plack, C. J., Couth, S., Prendergast, G., Bakay, W., & Hall, D.A. (2018). The Noise Exposure Structured Interview (NESI): An Instrumentfor the Comprehensive Estimation of Lifetime Noise Exposure. Trends inHearing, 22. https://doi.org/10.1177/2331216518803213
Hamberis, A. O., Mehta, C. H., Valente, T. A., Dornhoffer, J. R., Nguyen, S. A., & Meyer, T. A. (2020). The pattern and progression of hearing loss in Marfan Syndrome: A study of children and young adults. International Journal of Pediatric Otorhinolaryngology, 138(September 2019), 110207. https://doi.org/10.1016/j.ijporl.2020.110207
Hayes, S. H., Ding, D., Salvi, R. J., & Allman, B. L. (2013). Anatomy and physiology of the external, middle and inner ear. In Handbook of Clinical Neurophysiology (1st ed., Vol. 10). © 2013, Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-7020-5310-8.00001-6
Huh, D. A., Choi, Y. H., & Moon, K. W. (2016). The effects of earphone use and environmental lead exposure on hearing loss in the Korean population: Data analysis of the Korea national health and nutrition examination survey (KNHANES), 2010-2013. PLoS ONE, 11(12), 1–14. https://doi.org/10.1371/journal.pone.0168718
Humes, L. E. (2019). The World Health Organization’s hearing-impairment grading system: an evaluation for unaided communication in age-related hearing loss. International Journal of Audiology, 58(1), 12–20. https://doi.org/10.1080/14992027.2018.1518598
Hussain, T., Chou, C., Zettner, E., Torre, P., Hans, S., Gauer, J., Markgraf, M., & Nguyen, Q. T. (2018). Early Indication of Noise-Induced Hearing Loss in Young Adult Users of Personal Listening Devices. Annals of Otology, Rhinology and Laryngology, 127(10), 703–709. https://doi.org/10.1177/0003489418790284
Hutchinson Marron, K., Marchiondo, K., Stephenson, S., Wagner, S., Cramer, I., Wharton, T., Hughes, M., Sproat, B., & Alessio, H. (2015). College students’ personal listening device usage and knowledge. International Journal of Audiology, 54(6), 384–390. https://doi.org/10.3109/14992027.2014.986691
Hye, S., Shil, E., Eog, H., Song, J., & Chae, S. (2020). Prevalence and clinical aspects of hearing loss among the South Korean adolescent : Data from a population-based study. International Journal of Pediatric Otorhinolaryngology, 128(September 2019), 109698. https://doi.org/10.1016/j.ijporl.2019.109698
Informatics, C. (2019). Bone- and air-conduction speech combination method for speaker recognition Satoru Tsuge * Shingo Kuroiwa. 11(1), 35–49.
Isaac, M. J., McBroom, D. H., Nguyen, S. A., & Halstead, L. A. (2017). Prevalence of Hearing Loss in Teachers of Singing and Voice Students. Journal of Voice, 31(3), 379.e21-379.e32. https://doi.org/10.1016/j.jvoice.2016.10.003
Ishak, W. S., Mukari, S. Z. M. S., Maamor, N., & Hashim, W. F. W. (2017). Validation of self-reported hearing loss among multi-ethnic community dwelling older adults in Malaysia. Journal of Clinical and Diagnostic Research, 11(10), MC01–MC05. https://doi.org/10.7860/JCDR/2017/28144.10756
Ismail, H., Othman, N. A. N., Zakaria, M. N., Rashid, M. F. N., Wahab, N. A. A., & Awang, M. A. (2021). Hearing within the normal limit may not indicate that the middle ear is healthy. Otorhinolaryngology Clinics, 13(1), 23–25. https://doi.org/10.5005/jp-journals-10003-1363
Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2019). Age-related hearing loss and tinnitus , dementia risk , and auditory amplification outcomes. Ageing Research Reviews, 56(September), 100963. https://doi.org/10.1016/j.arr.2019.100963
Jennings, M. B., & Shawb, L. (2008). Impact of hearing loss in the workplace: Raising questions about partnerships with professionals. Work, 30(3), 289–295.
Jiang, W., Zhao, F., Guderley, N., & Manchaiah, V. (2016). Daily music exposure dose and hearing problems using personal listening devices in adolescents and young adults : A systematic review Daily music exposure dose and hearing problems using personal listening devices in adolescents and young adults : A syste. 2027(January). https://doi.org/10.3109/14992027.2015.1122237
Ketel, E. C., de Wijk, R. A., de Graaf, C., & Stieger, M. (2020). Relating oral physiology and anatomy of consumers varying in age, gender and ethnicity to food oral processing behavior. Physiology and Behavior, 215, 112766. https://doi.org/10.1016/j.physbeh.2019.112766
Khanpur, R. S. (2005). Audiometers and Hearing Aids. In Biomedical Instrumentation Technology and Applications (pp. 463–485). Tata McGraw-Hill.
Kim, Y., Han, W., Park, S., You, S., Kwak, C., Seo, Y., & Lee, J. (2020). Better understanding of direct bone-conduction measurement: Comparison with frequency-specific bone-conduction tones and brainstem responses. Journal of Audiology and Otology, 24(2), 85–90. https://doi.org/10.7874/JAO.2019.00360
Kocian, A., Cattani, G., Chessa, S., & Grolman, W. (2018). An artificial patient for pure-tone audiometry. Eurasip Journal on Audio, Speech, and Music Processing, 2018(1). https://doi.org/10.1186/s13636-018-0131-y
Kumar, P., Upadhyay, P., Kumar, A., Kumar, S., & Singh, G. B. (2016). EXTENDED HIGH FREQUENCY AUDIOMETRY IN USERS OF PERSONAL LISTENING DEVICES. American Journal of Otolaryngology--Head and Neck Medicine and Surgery. https://doi.org/10.1016/j.amjoto.2016.12.002
Laine, J., Hautefort, C., Attye, A., Guichard, J. P., Herman, P., Houdart, E., Fraysse, M. J., Fraysse, B., Gillibert, A., Kania, R., & Eliezer, M. (2020). MRI evaluation of the endolymphatic space in otosclerosis and correlation with clinical findings. Diagnostic and Interventional Imaging. https://doi.org/10.1016/j.diii.2020.03.009
Lauer, A. M., Dent, M. L., Sun, W., & Xu-friedman, M. A. (2019). Effects of Non-traumatic Noise and Conductive Hearing Loss on Auditory System Function. Neuroscience, 407, 182–191. https://doi.org/10.1016/j.neuroscience.2019.01.020
Layona, R., Yulianto, B., & Tunardi, Y. (2018). Web based Augmented Reality for Human Body Anatomy Learning. Procedia Computer Science, 135, 457–464. https://doi.org/10.1016/j.procs.2018.08.197
Le Clercq, C. M. P., Goedegebure, A., Jaddoe, V. W. V., Raat, H., De Jong, R. J. B., & Van Der Schroeff, M. P. (2018). Association between portable music player use and hearing loss among children of school age in the Netherlands. JAMA Otolaryngology - Head and Neck Surgery, 144(8), 668–675. https://doi.org/10.1001/jamaoto.2018.0646
Lee, H. J., & Jeong, I. S. (2021). Personal Listening Device Use Habits, Listening Belief, and Perceived Change in Hearing Among Adolescents. Asian Nursing Research, 15(2), 113–120. https://doi.org/10.1016/j.anr.2021.01.001
Li, L. Y. J., Wang, S. Y., Yang, J. M., Chen, C. J., Tsai, C. Y., Wu, L. Y. Y., Wu, T. F., & Wu, C. J. (2021). Validation of a personalized hearing screening mobile health application for persons with moderate hearing impairment. Journal of Personalized Medicine, 11(10). https://doi.org/10.3390/jpm11101035
Louw, C., Swanepoel, D. W., & Eikelboom, R. H. (2018). Self-Reported Hearing Loss and Pure Tone Audiometry for Screening in Primary Health Care Clinics. Journal of Primary Care and Community Health, 9, 0–7. https://doi.org/10.1177/2150132718803156
Mader, S. S., & Windelspecht, M. (2016). Sense of Hearing. In Human Biology (Fourteenth, pp. 323–328). Mc Graw Hill Education.
Mamo, S. K., Reed, N. S., Nieman, C. L., & Oh, E. S. (2016). Personal Sound Amplifiers for Adults with Hearing Loss. The American Journal of Medicine, 129(3), 245–250. https://doi.org/10.1016/j.amjmed.2015.09.014
Manganella, J. L., Stiles, D. J., Kawai, K., Barrett, D. L., O’Brien, L. B., & Kenna, M. A. (2018). Validation of a portable hearing assessment tool: Agilis Health Mobile Audiogram. International Journal of Pediatric Otorhinolaryngology, 113, 94–98. https://doi.org/10.1016/j.ijporl.2018.04.010
Manivasagam, D. (2019). Empowering Occupational Health Doctors through the Occupational Safety & Health (Noise Exposure) Regulations 2019. Journal of Occupational Safety and Health, 16(1), 4. http://www.niosh.com.my/images/Journal/2019/Empowering-Occupational-Health-Doctors-through-the-Occupational-Safety--Health-Noise-Exposure-Regulations-2019.pdf
Manning, C., Mermagen, T., & Scharine, A. (2016). The effect of sensorineural hearing loss and tinnitus on speech recognition over air and bone conduction military communications headsets. Hearing Research, 1–9. https://doi.org/10.1016/j.heares.2016.10.019
Margolis, R. H., & Moore, B. C. J. (2011). AMTAS®: Automated method for testing auditory sensitivity: III. Sensorineural hearing loss and air-bone gaps. International Journal of Audiology, 50(7), 440–447. https://doi.org/10.3109/14992027.2011.575085
McNeill, K., Keith, S. E., Feder, K., Konkle, A. T. M., & Michaud, D. S. (2010). MP3 player listening habits of 17 to 23 year old university students. The Journal of the Acoustical Society of America, 128(2), 646–653. https://doi.org/10.1121/1.3458853
MEDEL. (2020). Air Conduction vs. Bone Conduction: Candidacy Guide for Bone Conduction Systems. https://blog.medel.pro/bone-conduction-candidacy-audiogram/
Moore, D. R., Zobay, O., Mackinnon, R. C., Whitmer, W. M., & Akeroyd, M. A. (2017). Lifetime leisure music exposure associated with increased frequency of tinnitus. Hearing Research, 347, 18–27. https://doi.org/10.1016/j.heares.2016.10.030
Morata, T. C. (2007). Young people: Their noise and music exposures and the risk of hearing loss. International Journal of Audiology, 46(3), 111–112. https://doi.org/10.1080/14992020601103079
Mukari, S. Z. M. S., Ishak, W. S., Maamor, N., & Wan Hashim, W. F. (2017). A Preliminary Study Investigating the Association between Hearing Acuity and a Screening Cognitive Tool. Annals of Otology, Rhinology and Laryngology, 126(10), 697–705. https://doi.org/10.1177/0003489417727547
Murphy, W. J., & Franks, J. R. (2002). Revisiting the NIOSH Criteria for a Recommended Standard: Occupational Noise Exposure. The Journal of the Acoustical Society of America, 111(5), 2397. https://doi.org/10.1121/1.4778162
OMS. (2018). Addressing The Rising Prevalence of Hearing Loss. In Organización Mundial de la Salud (Issue February). https://doi.org/10.1080/09687599.2011.589198
Pai, Y. C., & Lee, C. F. (2013). Intratympanic steroid injection for inner ear disease. Tzu Chi Medical Journal, 25(3), 146–149. https://doi.org/10.1016/j.tcmj.2013.01.012
Paping, D. E., Vroegop, J. L., Geleijnse, G., le Clercq, C. M. P., Koenraads, S. P. C., & van der Schroeff, M. P. (2022). Objective Measurement of Listening Device Use and Its Relation to Hearing Acuity. Otolaryngology - Head and Neck Surgery (United States), 166(3), 515–522. https://doi.org/10.1177/01945998211012274
Pawlaczyk-Luszczynska, M., Zaborowski, K., Zamojska-Daniszewska, M., Rutkowska-Kaczmarek, P., Dudarewicz, A., & Sliwinska-Kowalska, M. (2017). Hearing Status in Young People Using Portable Audio Players. Archives of Acoustics, 42(1), 113–120. https://doi.org/10.1515/aoa-2017-0012
Peñaranda, D., Pérez-Herrera, L. C., Hernández, D., Moreno-López, S., Perea, I., Jacome, M., Suetta-Lugo, N., García, J. M., & Peñaranda, A. (2020). Prevalence of extended high-frequency hearing loss among adolescents from two rural areas in Colombia. International Journal of Audiology, 0(0), 1–9. https://doi.org/10.1080/14992027.2020.1828631
Pereira, O., Pasko, L. E., Supinski, J., Hammond, M., Morlet, T., & Nagao, K. (2018). International Journal of Pediatric Otorhinolaryngology Is there a clinical application for tablet-based automated audiometry in. International Journal of Pediatric Otorhinolaryngology, 110(January), 87–92. https://doi.org/10.1016/j.ijporl.2018.04.029
Poggi, B., Lemos, P. De, Cristina, K., Andrade, L. De, & Fernandes, C. (2015). Positioning of earphones and variations in auditory thresholds. Brazilian Journal of Otorhinolaryngology, 81(6), 642–646. https://doi.org/10.1016/j.bjorl.2015.08.016
Prendergast, G., Guest, H., Munro, K. J., Kluk, K., Léger, A., Hall, D. A., Heinz, M. G., & Plack, C. J. (2017). Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hearing Research, 344, 68–81. https://doi.org/10.1016/j.heares.2016.10.028
Prendergast, G., Millman, R. E., Guest, H., Munro, K. J., Kluk, K., Dewey, R. S., Hall, D. A., Heinz, M. G., & Plack, C. J. (2017). Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hearing Research, 356, 74–86. https://doi.org/10.1016/j.heares.2017.10.007
Riga, M., Korres, G., Chouridis, P., Naxakis, S., & Danielides, V. (2018). Congenital cytomegalovirus infection inducing non-congenital sensorineural hearing loss during childhood; a systematic review. International Journal of Pediatric Otorhinolaryngology. https://doi.org/10.1016/j.ijporl.2018.10.005
Rosdina, A. K., Leelavathi, M., Zaitun, A., Lee, V. K. M., Azimah, M. N., Majmin, S. H., & Mohd, K. A. (2010). Self reported hearing loss among elderly malaysians. Malaysian Family Physician, 5(2), 91–94.
Rusinek, R. (2021). Effect of transducer fixation in the human middle ear on sound transfer. European Journal of Mechanics, A/Solids, 85(2018), 104068. https://doi.org/10.1016/j.euromechsol.2020.104068
Shabana, M. I., Dabbous, A. O., Khalifa, B. S., & Humaid, A. S. (2021). Air- and bone-conduction vestibular evoked myogenic potentials in chronic suppurative otitis media, pre- and post-operatively. Journal of Hearing Science, 4(4), 21–35. https://doi.org/10.17430/892634
Shah, R. R., Suen, J. J., Cellum, I. P., Spitzer, J. B., & Lalwani, A. K. (2018). The effect of brief subway station noise exposure on commuter hearing. Laryngoscope Investigative Otolaryngology, 3(6), 486–491. https://doi.org/10.1002/lio2.216
Shojaeemend, H., & Ayatollahi, H. (2018). Automated audiometry: A review of the implementation and evaluation methods. Healthcare Informatics Research, 24(4), 263–275. https://doi.org/10.4258/hir.2018.24.4.263
Silvestre, R. A. A., Ribas, Â., Hammerschmidt, R., & De Lacerda, A. B. M. (2016). High-frequency profile in adolescents and its relationship with the use of personal stereo devices. Jornal de Pediatria, 92(2), 206–211. https://doi.org/10.1016/j.jped.2015.07.008
Skoe, E., & Tufts, J. (2018). Evidence of noise-induced subclinical hearing loss using auditory brainstem responses and objective measures of noise exposure in humans. Hearing Research, 361, 80–91. https://doi.org/10.1016/j.heares.2018.01.005
Skoloudik, L., Mejzlik, J., Janouch, M., Drsata, J., Vodicka, J., & Chrobok, V. (2020). Hearing screenings for preschool children: A comparison between whispered voice and pure tone audiogram tests. International Journal of Pediatric Otorhinolaryngology, 130(November 2019), 109798. https://doi.org/10.1016/j.ijporl.2019.109798
Stenfelt, S., & Ha, B. (2002). Air versus bone conduction : an equal loudness investigation. 167.
Swierniak, W., Gos, E., Skarzynski, P. H., Czajka, N., & Skarzynski, H. (2020). Personal music players use and other noise hazards among children 11 to 12 years old. International Journal of Environmental Research and Public Health, 17(18), 1–11. https://doi.org/10.3390/ijerph17186934
Temirbekov, D., & Celikyurt, C. (2020). Middle ear osteoma causing Eustachian tube obstruction: A case report and literature review. Journal of Otology, xxxx, 1–5. https://doi.org/10.1016/j.joto.2020.06.003
Test, T. N. H. (2017). How to Read an Audiogram and Determine Degrees of Hearing Loss. https://www.nationalhearingtest.org/wordpress/?p=786
Tonelli, M., & Warick, R. (2022). Focusing on the Needs of People with Hearing Loss during the COVID-19 Pandemic and beyond. Jama, 327(12), 1129–1130. https://doi.org/10.1001/jama.2022.3026
Tung, C., & Chao, K. (2013). Effect of recreational noise exposure on hearing impairment among teenage students. Research in Developmental Disabilities, 34(1), 126–132. https://doi.org/10.1016/j.ridd.2012.07.015
Vinck, B., Freeman, J., & Soer, M. (2016). ScienceDirect Short-term effects of simultaneous cardiovascular workout and personal music device use on the outer hair cell function of young adults. Health SA Gesondheid, 21, 323–330. https://doi.org/10.1016/j.hsag.2016.01.004
Vogel, I., Brug, J., Van Der Ploeg, C. P. B., & Raat, H. (2011). Adolescents risky MP3-player listening and its psychosocial correlates. Health Education Research, 26(2), 254–264. https://doi.org/10.1093/her/cyq091
Vohr, B. (2018). Ear and Hearing Disorders. In Avery’s Diseases of the Newborn: Tenth Edition (Tenth Edit). Elsevier Inc. https://doi.org/10.1016/B978-0-323-40139-5.00109-1
Wagatsuma, Y., Daimaru, K., Deng, S., & Chen, J. Y. (2022). Hearing loss and the COVID-19 pandemic. BMC Research Notes, 15(1), 4–9. https://doi.org/10.1186/s13104-022-06120-1
Wallhagen, M. I., Ritchie, C. S., & Smith, A. K. (2019). Hearing Loss : Effect on Hospice and Palliative Care Through the Eyes of Practitioners. Journal of Pain and Symptom Management. https://doi.org/10.1016/j.jpainsymman.2018.12.340
Wang, D., Zhou, Y., Ma, J., Xiao, L., Cao, L., Zhou, M., Kong, W., Wang, Z., Li, W., He, M., Zhang, X., Guo, H., Yuan, J., & Chen, W. (2019). Association between shift work and hearing loss: The Dongfeng-Tongji cohort study. Hearing Research, 384, 107827. https://doi.org/10.1016/j.heares.2019.107827
Wang, M. C., Liu, C. Y., Shiao, A. S., & Wang, T. (2005). Ear problems in swimmers. Journal of the Chinese Medical Association, 68(8), 347–352. https://doi.org/10.1016/S1726-4901(09)70174-1
Wasano, K., Kaga, K., & Ogawa, K. (2021). Patterns of hearing changes in women and men from denarians to nonagenarians. The Lancet Regional Health - Western Pacific, 9, 100131. https://doi.org/10.1016/j.lanwpc.2021.100131
Wroblewska-seniuk, K., Dabrowski, P., Greczka, G., Glowacka, A., & Mazela, J. (2018). Sensorineural and conductive hearing loss in infants diagnosed in the program of universal newborn hearing screening. International Journal of Pediatric Otorhinolaryngology. https://doi.org/10.1016/j.ijporl.2017.12.007
Wu, C. C., Yeh, P. C., Huang, K. C., & Lee, P. J. (2020). Effects of frequency and duration of sound stimuli on hearing threshold increments among hearing-impaired individuals in Taiwan. Applied Acoustics, 159, 107098. https://doi.org/10.1016/j.apacoust.2019.107098
Yeung, J. C., Heley, S., Beauregard, Y., Champagne, S., & Bromwich, M. A. (2015). Self-administered hearing loss screening using an interactive, tablet play audiometer with ear bud headphones. International Journal of Pediatric Otorhinolaryngology, 79(8), 1248–1252. https://doi.org/10.1016/j.ijporl.2015.05.021
You, S., & Kwak, C. (2020). Use of Personal Listening Devices and Knowledge / Attitude for Greater Hearing Conservation in College Students : Data Analysis and Regression Model Based on 1009 Respondents. 2007.
Yu, Y., Yang, H., Xiao, M., Wang, J., Huang, D., Bhambhani, Y., Sonnenberg, L., Clark, B., Jin, Y., Fu, W., & Zhang, J. (2015). Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. Chinese Medical Sciences Journal, 30(3), 179–188. https://doi.org/10.1016/S1001-9294(15)30044-4
Zaw, A. K., Myat, A. M., Thandar, M., Htun, Y. M., Aung, T. H., Tun, K. M., & Han, Z. M. (2020). Assessment of Noise Exposure and Hearing Loss Among Workers in Textile Mill (Thamine), Myanmar: A Cross-Sectional Study. Safety and Health at Work, 11(2), 199–206. https://doi.org/10.1016/j.shaw.2020.04.002
Zhao, F., Manchaiah, V. K. C., French, D., & Price, S. M. (2010). Music exposure and hearing disorders: An overview. International Journal of Audiology, 49(1), 54–64. https://doi.org/10.3109/14992020903202520
Zibrandtsen, I. C., Kidmose, P., & Kjaer, T. W. (2018). Detection of generalized tonic-clonic seizures from ear-EEG based on EMG analysis. Seizure, 59, 54–59. https://doi.org/10.1016/j.seizure.2018.05.001
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |