|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||
| Abstract : Perpustakaan Tuanku Bainun |
| Kajian ini bertujuan untuk membina model matematik menggunakan pendekatan kalut terhadap aras sungai. Permodelan matematik aras air sungai adalah penting bagi memberi isyarat awal jika berlaku kekurangan air di Selangor yang mempunyai kepadatan penduduk tinggi di Malaysia. Selain itu, peramalan air sungai juga penting dalam meningkatkan pengurusan sumber air di Selangor. Kajian ini dijalankan bagi mengesan kehadiran telatah kalut dan meramal data aras air sungai di Selangor dengan menggunakan pendekatan kalut. Kajian ini merangkumi tiga objektif iaitu (i) mengesan kehadiran telatah kalut bagi aras air sungai (ii) meramal aras air sungai menggunakan pendekatan kalut dan (iii) menambahbaik kaedah peramalan penghampiran purata setempat (KPPS) bagi peramalan data siri masa aras air sungai. Kawasan kajian merupakan sungai yang mengalir ke empangan di Selangor dan diperincikan kepada dua iaitu Sungai Klang dan Sungai Langat. Data yang digunakan di dalam kajian ini melibatkan dua skala masa iaitu harian dan mingguan. Hasil kajian bagi objektif pertama menunjukkan telatah kalut dapat dikesan melalui kaedah ujian 0-1, kaedah Cao dan kaedah plot ruang fasa. Hasil dapatan objektif kedua menunjukkan data siri masa aras air sungai yang dikaji memberikan peramalan yang amat cemerlang dengan nilai pekali kolerasi 0.990 menggunakan KPPS dengan kombinasi parameter _=1 dan d_songsang berbanding kaedah lain dalam kajian ini. Manakala, objektif ketiga berjaya dicapai apabila kaedah penambahbaikan peramalan penghampiran purata setempat _ (KPPS__penambahbaikan) dapat memberikan hasil peramalan yang lebih cemerlang berbanding KPPS bagi sebahagian kombinasi parameter. Kesimpulannya, data siri masa aras air Sungai Klang dan Sungai Langat berjaya diramal menggunakan pendekatan kalut. Implikasinya, kajian ini diharap mampu menyumbangkan maklumat aras air sungai kepada pihak berkepentingan bagi membuat persiapan awal jika berlaku isu kekurangan air serta dapat mengoptimumkan pengurusan sumber air di Selangor. |
| References |
Abarbanel, H. D. I. (1996). Analysis of Observed Chaotic Data. New York: Springer New York.
Abd Hamid, N. Z. (2015). Pemodelan Siri Masa Kepekatan Bahan Pencemar Udara O3, PM10 dan Jerebu Menerusi Pendekatan Kalut. Universiti Kebangsaan Malaysia (UKM).
Abd Hamid, N. Z., & Noorani, M. S. M. (2017). New Improved Chaotic Approach Model Application on Forecasting Ozone Concentration Time Series. Sains Malaysiana, 46(8), 1333–1339.
Abdul Rahman, H. (2020). Selangor Perlukan Teknologi Urus, Manfaat Sumber Air. Berita Harian Online. Diperoleh daripada https://www.bharian.com.my/kolumnis/2020/10/744360/selangor-perlukan-teknologi-urus-manfaat-sumber-air
Acharya, R., Pal, J., Das, D., & Chaudhuri, S. (2019). Long-Range Forecast of Indian Summer Monsoon Rainfall Using an Artificial Neural Network Model. Meteorological Applications, 26(3), met.1766.
Adenan, N. H. (2015). Analisis Dan Peramalan Data Siri Masa Aliran Sungai Dengan Menggunakan Pendekatan Kalut. Universiti Kebangsaan Malaysia (UKM).
Adenan, N. H., Abd Hamid, N. Z., Mohamed, Z., & Noorani, M. S. M. (2017). A Pilot Study of River Flow Prediction in Urban Area Based on Phase Space Reconstruction. AIP Conference Proceedings, 1870.
Adenan, N. H., Karim, N. S. A., Mashuri, A., Abd Hamid, N. Z., Adenan, M. S., Armansyah, & Siregar, I. (2021). Traffic Flow Prediction in Urban Area Using Inverse Approach of Chaos Theory. Civil Engineering and Architecture, 9(4), 1277–1282.
Adenan, N. H., & Noorani, M. S. (2015). Peramalan Data Siri Masa Aliran Sungai di Dataran Banjir dengan Menggunakan Pendekatan Kalut. Sains Malaysiana, 44(3), 463–471.
Adenan, N. H., & Noorani, M. S. (2016). Multiple Time-Scales Nonlinear Prediction of River Flow Using Chaos Approach. Jurnal Teknologi, 78(7), 1–7.
Adewumi, A., Kagamba, J., & Alochukwul, A. (2016). Application of Chaos Theory in the Prediction of Motorised Traffic Flows on Urban Networks. Mathematical Problems in Engineering, 1–15.
Alami, M. T., Ghorbani, M. A., & Malekani, L. (2013). Chaotic Analysis and Prediction of River Flows. Journal of Hydraulic Structures, 1(1), 51–61.
Albostan, A., & Önöz, B. (2015). Implementation of Chaotic Analysis on River Discharge Time Series. Energy and Power Engineering, 7(3), 81–92.
Ang, K. H. (2015). Kualiti sumber air di Malaysia: Satu analisis. Malaysia Journal of Society and Space, 11(6), 98–108.
Bahari, M., & Abd Hamid, N. Z. (2019). Analisis dan Peramalan Siri Masa Suhu Menggunakan Pendekatan Kalut. Jurnal Pengukuran Kualiti Dan Analisis, 15(1), 43–52.
Baydaroglu, Ö., Koçak, K., & Duran, K. (2018). River Flow Prediction Using Hybrid Models of Support Vector Regression with The Wavelet Transform, Singular Spectrum Analysis and Chaotic Approach. Meteorology and Atmospheric Physics, 130(3), 349–359.
Berita Harian Online. (2015, April 7). Hidup Terjejas Tanpa Air. 1–5. Dimuat turun daripada https://www.bharian.com.my/bhplus-old/2015/04/46069/infografik-hidup-terjejas-tanpa-air
Berita Harian Online. (2021). Populasi Malaysia 32 .75 juta pada suku pertama. Diperoleh daripada https://www.bharian.com.my/berita/nasional/2021/05/821329/populasi-malaysia-3275-juta-pada-suku-pertama-2021#:~:text=PUTRAJAYA%3A%20Jumlah%20penduduk%20Malaysia%20dianggarkan,bagi%20tempoh%20sama%20setahun%20lalu.
Cao, L. (1997). Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series. Physica D: Nonlinear Phenomena, 110(1–2), 43–50.
Chennai, T., Padma, K., Selvaraj, R. S., & Boaz, B. M. (2013). Use of Chaotic and Time Series Analysis on Surface Ozone Study at the Tropical Region. Universal Journal of Environmental Research and Technology, 3(6), 650–659.
Dai, J., & Chen, S. (2019). The Application of ARIMA Model in Forecasting Population Data. Journal of Physics: Conference Series, 1324(1).
Edwards, D., & Hamson, M. (1989). Guide to Mathematical Modelling. Macmillan Education LT.
Farmer, W. H. (2016). Ordinary Kriging as a Tool to Estimate Historical Daily Streamflow Records. Hydrology and Earth System Sciences, 20(7), 2721–2735.
Fu, Q., Liu, Y., Li, T., Liu, D., & Cui, S. (2017). Analysis of Irrigation Water Use Efficiency Based on the Chaos Features of a Rainfall Time Series. Water Resources Management, 31(6), 1961–1973.
Gerrity, J. P., Gyakum, J. R., Anthes, R. A., Bosart, L. F., & O’Lenic, E. A. (2020). Weather Forecasting and Prediction. Access Science.
Ghorbani, M. A., Daneshfaraz, R., Arvanagi, H., Pourzangbar, A., Saghebian, S. ., & Kar, S. . (2012). Local Prediction in River Discharge Time Series. Journal of Civil Engineering and Urbanism, 2(2), 51–55.
Ghorbani, M. A., Khatibi, R., Danandeh Mehr, A., & Asadi, H. (2018). Chaos-Based Multigene Genetic Programming: A New Hybrid Strategy for River Flow Forecasting. Journal of Hydrology, 562, 455–467.
Gottwald, G. A., & Melbourne, I. (2004). A New Test for Chaos in Deterministic Systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2042), 603–611.
Gottwald, G. A., & Melbourne, I. (2009). On the Implementation of the 0–1 Test for Chaos. 8(1), 129–145.
Gottwald, G. A., & Melbourne, I. (2014). A Test for a Conjecture on the Nature of Attractors for Smooth Dynamical Systems. Chaos, 24(2).
Gurjar, M., Naik, P., Mujumdar, G., & Vaidya, T. (2018). Stock Market Prediction Using ANN. International Research Journal of Engineering and Technology, 5(3), 2758–2761.
Hardy, K. (2005). Linear Algebra for Engineers and Scientists using Matlab. Pearson Education, Inc.
Islam, M. N., & Sivakumar, B. (2002). Characterization and Prediction of Runoff Dynamics: A Nonlinear Dynamical View. Advances in Water Resources, 25(2), 179–190.
Jabatan Pengairan dan Saliran. (2016). Laporan Tahunan JPS 2016. Diperoleh daripada https://www.water.gov.my/jps/resources/AnnualReport/Laporan_Tahunan_JPS_2016.pdf
Jabatan Pengairan Dan Saliran Malaysia. (2022). Laman Web Rasmi Public Infobanjir. Kementerian Sumber Asli, Alam Sekitar Dan Perubahan Iklim, 1–10. Diperoleh daripada https://publicinfobanjir.water.gov.my/
Jabatan Pengairan dan Saliran Petaling. (2010). Profil Daerah Petaling. In BMC public health (Vol. 10). Diperoleh daripada http://apps.water.gov.my/jpskomuniti/lst_laporan.cfm
Jabatan Perancangan Bandar dan Desa Negeri Selangor. (2015). Draf Rancangan Struktur Negeri Selangor 2035. Diperoleh daripada http://jpbdselangor.gov.my/en/download/report/rancangan-struktur-negeri-rsn-1/draf-rancangan-struktur-negeri-selangor-2035.html%0A
Jabatan Perancangan Bandar dan Desa Selangor. (2010). Laporan Projek Pemuliharaan dan Pembangunan Sungai. Diperoleh daripada https://www.jpbdselangor.gov.my/en/download/laporan-1/projek-pemuliharaan-dan-pembangunan-sungai-1.html
Jayawardena, A. W., & Lai, F. (1994). Analysis and Prediction of Chaos in Rainfall and Stream Flow Time Series. Journal of Hydrology, 153(1–4), 23–52.
Jusoh, K. C., & Abd Hamid, N. Z. (2020). Meramal Bacaan Maksimum Harian Nitrogen Dioksida Menerusi Pendekatan Kalut. Journal of Quality Measurement and Analysis, 16(1), 79–89.
Kamus Dewan (2017). Kuala Lumpur. Dewan Bahasa dan Pustaka.
Kantz, H., & Schreiber, T. (2004). Nonlinear Time Series Analysis.
Kaplan, D., Glass, L., & Berger, S. A. (1996). Understanding Nonlinear Dynamics. In Physics Today (Vol. 49, Issue 2).
Karri, R. R., Badwe, A., Wang, X., El Serafy, G., Sumihar, J., Babovic, V., & Gerritsen, H. (2013). Application of Data Assimilation for Improving Forecast of Water Levels and Residual Currents in Singapore Regional Waters. Ocean Dynamics, 63(1), 43–61.
Khatibi, R., Ghorbani, M. A., Aalami, M. T., Kocak, K., Makarynskyy, O., Makarynska, D., & Aalinezhad, M. (2011). Dynamics of Hourly Sea Level at Hillarys Boat Harbour, Western Australia: A Chaos Theory Perspective. Ocean Dynamics, 61(11), 1797–1807.
Khatibi, R., Sivakumar, B., Ghorbani, M. A., Kisi, O., Koçak, K., & Farsadi Zadeh, D. (2012). Investigating Chaos in River Stage and Discharge Time Series. Journal of Hydrology, 414–415, 108–117.
Khokhlov, V., Glushkov, A., Loboda, N., Serbov, N., & Zhurbenko, K. (2008). Signatures of Low-Dimensional Chaos in Hourly Water Level Measurements at Coastal Site of Mariupol, Ukraine. Stochastic Environmental Research and Risk Assessment, 22(6), 777–787.
Kumar, D., Vatsala, K., Pattanashetty, S., & Sandhya, S. (2019). Comparison of Rainfall Forecasting Using Artificial Neural Network and Chaos Theory. In Lecture Notes in Electrical Engineering, 545, 413–422.
Li, T., & Yorke, J. A. (1975). Period Three Implies Chaos. 82(10), 985–992.
Liebert, W., & Schuster, H. G. (1989). Proper Choice of the Time Delay for the Analysis of Chaotic Time Series. Physics Letters A, 142(2–3), 107–111.
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130–141.
Mamat, N., Mohamad Hamzah, F., & Jaafar, O. (2021). Hybrid Support Vector Regression Model and K-Fold Cross Validation for Water Quality Index Prediction in Langat River, Malaysia.
Mashuri, A. (2020). Peramalan Data Siri Masa Aras Air Sungai di Kawasan Berkepentingan Malaysia Menggunakan Pendekatan Kalut. Universiti Pendidikan Sultan Idris (UPSI).
Mashuri, A., Adenan, N. H., & Abd Hamid, N. Z. (2019). Determining the Chaotic Dynamics of Hydrological Data in Flood-Prone Area. Civil Engineering and Architecture, 7(6), 71–76.
Matlab. (2009). Matlab and Statistics Toolbox Release 2009b. In The Math Works, Inc. Natick, Massachusetts, United States.
Merkwirth, C., Parlitz, U., Wedekind, I., Engster, D., & Lauterborn, W. (2009). OpenTStool User Manual. 2, 1–109.
Mesbahzadeh, M. (2016). Applying the 0-1 Test on the Analysis of Climate and Weather Data Using Chaos Theory. Journal of Fundamental and Applied Sciences, 8(2), 1188–1195.
Meyer, B. B. J. F. (1985). Prose Analysis : Purposes , Procedures and Problems.
Mihailovic, D. T., Nikolic-Ðoric, E., Arsenic, I., Malinovic-Milicevic, S., Singh, V. P., Stošic, T., & Stošic, B. (2019). Analysis of Daily Streamflow Complexity by Kolmogorov Measures and Lyapunov exponent. Physica A: Statistical Mechanics and Its Applications, 525, 290–303.
Mohd Ali, N., Abd Hamid, N. Z., & Ishak, S. (2022). The Prediction of Malaysian Borneo Tide Water Level Using a Chaotic Approach. Data Analytics and Applied Mathematics (DAAM), 3(1), 13–19.
Niazkar, H. R., & Niazkar, M. (2020). Application of Artificial Neural Networks to Predict the COVID-19 Outbreak. Global Health Research and Policy, 5(1).
Ofori-Ntow Jnr, E., Ziggah, Y. Y., Rodrigues, M. J., & Relvas, S. (2022). A Hybrid Chaotic-Based Discrete Wavelet Transform and Aquila Optimisation Tuned-Artificial Neural Network Approach for Wind Speed Prediction. Results in Engineering, 14(March), 100399.
Pandey, A., & Srinivas, V. V. (2015). Use of Data Driven Techniques for Short Lead Time Streamflow Forecasting in Mahanadi Basin. Aquatic Procedia, 4, 972–978.
Peitgen, H.-O., Jürgens, H., & Saupe, D. (2004). Chaos and Fractals. In Chaos and Fractals. https://doi.org/10.1007/b97624
Peng, D., Xin, F., Zhang, L., Gao, Z., Zhang, W., Wang, Y., Chen, X., & Wang, Y. (2017). Nonlinear Time-Series Analysis of Optical Signals to Identify Multiphase Flow Behavior in Microchannels. AIChE Journal, 63(6), 2378–2385.
Perangkaan Wanita, Keluarga dan Masyarakat Malaysia 2016. (2016). In Kementerian ……..Pembangunan Wanita, Keluarga dan Masyarakat.
Phoon, K. K., Islam, M. N., Liaw, C. Y., & Liong, S. Y. (2002). Practical Inverse Approach for Forecasting Nonlinear Hydrological Time Series. Journal of Hydrologic Engineering, 7(2), 116–128.
Portal Kerajaan Negeri Selangor. (2019). Sejarah Negeri Selangor. Pejabat Setiausaha Kerajaan Negeri Selangor. https://www.selangor.gov.my/index.php/pages/view/124
Regonda, S. K., Rajagopalan, B., Lall, U., Clark, M., & Moon, Y. I. (2005). Local Polynomial Method for Ensemble Forecast of Time Series. Nonlinear Processes in Geophysics, 12(3), 397–406.
Rezaei, H., Garebaghi, P., Temeliyeh, Z. K., & Mirabbasi-najafabadi, R. (2022). Monthly Flow Analysis of Sefidrood River using Chaos Theory. Water and Soil Management and Modeling, 2(1), 27-41.
Ruslan, A. B., & Abd Hamid, N. Z. (2019). Application of Improved Chaotic Method in Determining Number of k-nearest Neighbor for CO Data Series. International Journal of Engineering and Advanced Technology, 8(6S3), 10–14.
Sabri, S. A., & Othman, N. (2014). Matematik dan Disseminasi Ilmu. Matematik Dan Disseminasi Ilmu : Tinjauan Persepsi Pelajar Pengurusan, 220–225.
Sapini, M. L., Adam, N. S., Ibrahim, N., Rosmen, N., & Yusof, N. M. (2017). The Presence of Chaos in Rainfall by using 0-1 Test and Correlation Dimension. AIP Conference Proceedings, 1905.
Sapini, M. L., Aris, M. N. M., Robangi, A. A., Zulkanain, N. N., & Yusof, N. M. (2019). The Existence of Chaos in Stock Market Price: An Investigation using BDS Test and Close Returns Test. AIP Conference Proceedings, 2138.
Sapini, M. L., Rahim, N. Z. B. A., & Noorani, M. S. M. (2015). The Behaviour of PM10 and Ozone in Malaysia Through Non-linear Dynamical Systems. AIP Conference Proceedings, 1682.
Schober, P., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia and Analgesia, 126(5), 1763–1768.
Shiri, J., Shamshirband, S., Kisi, O., Karimi, S., Bateni, S. M., Hosseini Nezhad, S. H., & Hashemi, A. (2016). Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach. Water Resources Management, 30(14), 5217–5229.
Shu, Z., Jesson, M., & Sterling, M. (2021). Nonlinear Dynamic Analysis of Daily Rainfall Variability Across the UK from 1989 to 2018. Journal of Hydrology, 603, 126849.
Siek, M. (2011). Predicting storm surges: Chaos, Computational Intelligence, Data ……..Assimilation, Ensembles. CRC Press.
Sivakumar, B. (2001). Rainfall Dynamics at Different Temporal Scales: A Chaotic Perspective. Hydrology and Earth System Sciences, 5(4), 645–651.
Sivakumar, B. (2002). A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology, 258(1–4), 149–162. https://doi.org/10.1016/S0022-1694(01)00573-X
Sprott, J. C. (2003). Chaos and Time-series Analysis. Oxford University Press.
Su, L. yun. (2010). Prediction of Multivariate Chaotic Time Series with Local Polynomial Fitting. Computers and Mathematics with Applications, 59(2), 737–744.
Suruhanjaya Perkhdmatan Air Negara Malaysia. (2016). Fenomena El-Nino dan Kemarau. Buletin SPAN, 2, 1–20.
Takens, F. (1981). Detecting Strange Attractor in Turbulence. In Lectures Note in Mathematics. Springer-Verlag.
Truong, V. H., Ly, Q. V., Le, V. C., Vu, T. B., Le, T. T. T., Tran, T. T., & Goethals, P. (2021). Machine Learning-based Method for Forecasting Water Levels in Irrigation and Drainage Systems. Environmental Technology and Innovation, 23, 101762.
Vaheddoost, B., Aksoy, H., & Abghari, H. (2016). Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran. Water Resources Management, 30(13), 4951–4967.
Velickov, S. (2004). Nonlinear Dynamics and Chaos. A.A.Balkema Publishers.
Wan Mohd Zaim, W. N. A., & Abd Hamid, N. Z. (2017). Peramalan Bahan Pencemar Ozon (O3) di Universiti Pendidikan Sultan Idris, Tanjung Malim Perak, Malaysia Mengikut Monsun dengan Menggunakan Pendekatan Kalut. Sains Malaysiana, 46(12), 2523–2528.
Wan Mohd Zaim, W. N. A (2018). Peramalan Siri Masa Ozon Mengikut Monsun di Kawasan Pendidikan Tinggi Malaysia Melalui Pendekatan Kalut. Universiti Pendidikan Sultan Idris (UPSI).
Wang, X., & Babovic, V. (2014). Enhancing Water Level Prediction Through Model Residual Correction Based on Chaos Theory and Kriging. International Journal for Numerical Methods in Fluids, 75(1), 42–62.
Xavier, A. L., & Sergio, J. (2017). Groundwater Monitoring of a Hidric Shortage Crisis in Brazil Based on LS-SVM Forecasts for the City of S ˜ ao Paulo. March.
Yousefi, P., Courtice, G., Naser, G., & Mohammadi, H. (2020). Nonlinear Dynamic Modeling of Urban Water Consumption using Chaotic Approach (Case study: City of Kelowna). Water (Switzerland), 12(3), 753.
Yusof, N. M., Sapini, M. L., Az’hari, L. I., Roslee, N. A. H., Rahmat, S. N. A., & Salleh, S. H. M. (2022). Chaos Theory of 0-1 Test and Logistic Map in New Confirmed COVID-19 Cases. Science and Technology Indonesia, 7(2), 179–185.
Zhan, Z., Zhao, Y., Pang, S., Zhong, X., Wu, C., & Ding, Z. (2017). Temperature Change between Neighboring Days and Mortality in United States: A Nationwide study. Science of the Total Environment, 584–585, 1152–1161.
|
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |