|
UPSI Digital Repository (UDRep)
|
|
|
|
||||||||||||||||||||||||
| Abstract : Perpustakaan Tuanku Bainun |
| Kajian ini bertujuan untuk membangunkan Kit Demonstrasi Penghasilan Gelombang menggunakan platform Arduino serta menilai kebolehgunaannya dalam kalangan guru Fizik Tingkatan Empat. Sampel kajian terdiri daripada empat orang guru Fizik yang dipilih melalui kaedah persampelan bertujuan. Model ADDIE digunakan sebagai reka bentuk kajian, manakala pendekatan kualitatif diterapkan bagi penilaian kebolehgunaan kit. Kesahan muka dan kandungan kit disahkan oleh dua orang pakar dalam bidang pendidikan Fizik. Penilaian kebolehgunaan melibatkan pemerhatian dan temu bual dengan guru Fizik, dan hasil dapatan dianalisis menggunakan kaedah analisis bertema. Kajian ini mendapati Kit Demonstrasi Penghasilan Gelombang menerima maklum balas positif daripada guru Fizik, menunjukkan keberkesanannya dalam memvisualisasikan konsep gelombang. Kit ini bukan sahaja membolehkan pelajar terlibat secara aktif dalam eksperimen, tetapi juga menyediakan data visual (graf) yang menyokong pembelajaran teori dengan aplikasi praktikal. Hasil kajian memberikan implikasi bahawa penggunaan kit ini dapat meningkatkan pemahaman pelajar terhadap konsep Fizik dan menyokong pendekatan pembelajaran berasaskan STEM secara holistik. |
| References |
Bada, & Olusegun, S. (2015). The psychogenisis of Knowledge and its Epistemological Significance. Journal of Research and Method in Education, 5(6).
Banzi, M. (2011). Getting Started with Arduino, 2nd Edition - O’Reilly Media. In 计算机_004_编程.
Barrett, S. F. (2020). Arduino I: Getting Started. In Synthesis Lectures on Digital Circuits andSystems (Vol. 15, Issue 1). https://doi.org/10.2200/S01001ED1V01Y202003DCS058
Bertelli, S., Centioni, R., & Scerbo, F. (2019). Meaningful student involvement. Students as “researchers”: A physics laboratory experience from space to microworld. Journal of Physics: Conference Series, 1286(1). https://doi.org/10.1088/1742-6596/1286/1/012034
Bruner, J. S., & Olson, D. R. (1974). Learning through experience and learning through media’.
Chang, W. (2005). Impact of constructivist teaching on students’ beliefs about teaching and learning in introductory physics. Canadian Journal of Science, Mathematics and Technology Education, 5(1), 95–109. https://doi.org/10.1080/14926150509556646
Cobb, P. (1994). Constructivism in Mathematics and Science Education. Educational Researcher, 23(7). https://doi.org/10.3102/0013189X023007004
Davis, L. L. (1992). Instrument Review: Getting the Most From a Panel of Experts.
Dikko, M. (2016). Establishing construct validity and reliability: Pilot testing of a qualitative interview for research in takaful (Islamic insurance). Qualitative Report, 21(3), 521– 528. https://doi.org/10.46743/2160-3715/2016.2243
Donkoh, S. (2023). Application of triangulation in qualitative research. Journal of Applied Biotechnology & Bioengineering, 10(1), 6–9.https://doi.org/10.15406/jabb.2023.10.00319
Guzmán-Fernández, M., Zambrano de la Torre, M., Ortega-Sigala, J., Guzmán-Valdivia, C.,
Galvan-Tejeda, J. I., Crúz-Domínguez, O., Ortiz-Hernández, A., Fraire-Hernández, M., Sifuentes-Gallardo, C., & Durán-Muñoz, H. A. (2021). Arduino: a Novel Solution to the Problem of High-Cost Experimental Equipment in Higher Education. Experimental Techniques, 45(5), 613–625. https://doi.org/10.1007/s40799-021-00449-1
Hofstein, A. (2017). The Role of Laboratory in Science Teaching and Learning. In Science Education. https://doi.org/10.1007/978-94-6300-749-8_26
Hofstein, A., & Lunetta, V. N. (2004). The Laboratory in Science Education: Foundations forthe Twenty-First Century. In Science Education (Vol. 88, Issue 1, pp. 28–54). https://doi.org/10.1002/sce.10106
Kadir, N. S., & Yaacob, M. I. H. (2022). The Development and Usability of Optics Kit as a Teaching Aid among Physics Trainee Teachers. Journal of Physics: Conference Series,2309(1). https://doi.org/10.1088/1742-6596/2309/1/012040
Kumar Shah, R. (2019). Effective Constructivist Teaching Learning in the Classroom.Shanlax International Journal of Education, 7(4). https://doi.org/10.34293/education.v7i4.600
Lajium, D. (2017). Science Teachersâ€TM Acceptance towards Microcomputer-Based Laboratories. International Journal on E-Learning Practices (IJELP). https://doi.org/10.51200/ijelp.vi.713
Lochmiller, C. R. (2021). Conducting thematic analysis with qualitative data. Qualitative Report, 26(6), 2029–2044. https://doi.org/10.46743/2160-3715/2021.5008
Lund, A. (2001). Measuring Usability with the USE Questionnaire. https://www.researchgate.net/publication/230786746
Margoum, S., Daadaoui, L., & Berrada, K. (2023). Laboratory-Based STEM Education: Micro-computer Based Laboratories and Virtual Laboratories (pp. 197–209). https://doi.org/10.2991/978-2-38476-036-7_19
Merriam, S. B. (1998). Qualitative research and case study applications in education. In Dados (Vol. 2nd).
Murphy, L., Eduljee, N. B., & Croteau, K. (2021). Teacher-Centered versus Student-Centered Teaching. Journal of Effective Teaching in Higher Education, 4(1), 18–39. https://doi.org/10.36021/jethe.v4i1.156
Nadiyah, R. S., & Faaizah, S. (2015). The Development of Online Project Based Collaborative Learning Using ADDIE Model. Procedia - Social and Behavioral Sciences, 195, 1803–1812. https://doi.org/10.1016/j.sbspro.2015.06.392
Nielsen, J., Kaufmann, M., Diego, S., Francisco, S., York, N., London, B., & Tokyo, S. (1993). Usability Engineering. http://www.hbuk.co.uk/
Ordu, U. B.-A. (2021). The Role of Teaching and Learning Aids/Methods in a Changing World. Bulgarian Comparative Education Society (BCES), 19.
Pan, T., & Zhu, Y. (2018). Getting Started with Arduino. In Designing Embedded Systems with Arduino (pp. 3–16). Springer Singapore. https://doi.org/10.1007/978-981-10-4418-2_1
Rane, L. V. (2018). Microcomputer Based Laboratory-An effective instructional tool: A review. International Journal of Research and Analytical Reviews. www.ijrar.org
SARI, U., & KIRINDI, T. (2019). Using Arduino in Physics Teaching: Arduino-based Physics Experiment to Study Temperature Dependence of Electrical Resistance. Journal of Computer and Education Research, 7(14), 698–710. https://doi.org/10.18009/jcer.579362
Shava, G. N., Hleza, S., Tlou, F., Shonhiwa, S., & Mathonsi, E. (2021). IJRISS) |Volume V, Issue VII. In International Journal of Research and Innovation in Social Science.www.rsisinternational.org
Shuib, N. H. (2019). PENGGUNAAN PROTOKOL TEMU BUAL DALAM MENGHASILKAN DAPATAN KAJIAN KUALITATIF YANG BERKUALITI: SATU PERKONGSIAN PENGALAMAN.
Somogyi, A., Kelemen, A., & Mingesz, R. (2022). Low-cost high-resolution measurements of periodic motions with Arduino in physics teacher in-service education. Journal of Physics: Conference Series, 2297(1). https://doi.org/10.1088/1742-6596/2297/1/012031
Stefanel, A. (2019). Graph in Physics Education: From Representation to Conceptual Understanding. In Mathematics in Physics Education (pp. 195–231). Springer International Publishing. https://doi.org/10.1007/978-3-030-04627-9_9
Strauss, A., & Corbin, J. (1998). Ch 5, 8, 9,10. In Basics of qualitative research. Techniques and procedures for developing Grounded Theory (2nd edition).
Trumper, R. (2003). The Physics Laboratory-A Historical Overview and Future Perspectives.In Science & Education (Vol. 12).
Yetri, Y., Koderi, K., Amirudin, A., Latifah, S., & Apriliana, M. D. (2019). The Effectiveness of Physics Demonstration Kit: The Effect on the Science Process Skills Through Students’ Critical Thinking. Journal of Physics: Conference Series, 1155(1). https://doi.org/10.1088/1742-6596/1155/1/012061
Zacharia, Z. C. (2015). Examining whether touch sensory feedback is necessary for science learning through experimentation: A literature review of two different lines of research across K-16. In Educational Research Review (Vol. 16, pp. 116–137). Elsevier Ltd. https://doi.org/10.1016/j.edurev.2015.10.001
Zakaria, N. H., Phang, F. A., & Pusppanathan, J. (2019). Physics on the go: A mobile computer-based physics laboratory for learning forces and motion. International Journal of Emerging Technologies in Learning, 14(24), 167–183.https://doi.org/10.3991/ijet.v14i24.12063
|
| This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |