UPSI Digital Repository (UDRep)
Start | FAQ | About
Menu Icon

QR Code Link :

Type :Thesis
Subject :QD Chemistry
Main Author :Mior Mohd Hasri Abdul Aziz
Title :A facile surfactant-assisted synthesis of graphene oxide/zinc oxide catalyst for the degradation of methylene blue dye
Hits :24
Place of Production :Tanjong Malim
Publisher :Fakulti Sains dan Matematik
Year of Publication :2024
Corporate Name :Perpustakaan Tuanku Bainun
PDF Guest :Click to view PDF file
PDF Full Text :You have no permission to view this item.

Abstract : Perpustakaan Tuanku Bainun
This research aimed to study the role and the stabilization mechanism of hybrid photocatalyst comprising surfactant-exfoliated graphene oxide (sEGO) with zinc oxide (ZnO) for methylene blue (MB) removal. Graphite sheet was exfoliated to produce sEGO by employing synthesized triple chain anionic surfactant, sodium 1,4- bis(neopentyloxy)-3-(neopentylcarbonyl)-1,4-dioxobutane-2-sulfonate (TC14) and compared with commercially available sodium dodecyl sulphate (SDS). The structure, interfacial and colloidal stability of surfactant were studied using proton nuclear magnetic resonance (1H NMR) spectroscopy, air-water (a/w) surface tension and zeta potential measurement. The morphology of photocatalyst were characterized using Field emission scanning electron microscopy (FESEM), Raman spectroscopy, Highresolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The performance of photocatalyst for MB removal were measured through ultraviolet-visible (UV-vis) spectroscopy. The aggregation behaviour of sEGO in the presence of ZnO photocatalyst were analyzed using smallangle neutron scattering (SANS). Results showed that introduction of the triple-chain TC14 surfactant for sEGO with ZnO as photocatalyst demonstrated outstanding MB removal efficiency at 98.53%. SANS analysis revealed that employing TC14 surfactant enhances sEGO properties by having high surface area and rich oxygen functional group as photocatalyst compared to commercial SDS surfactant. In conclusion, the chain branching modification in surfactant chemical structure optimize sEGO properties with ZnO as efficient photocatalyst for MB removal. As implications, modification of surfactant in sEGO with ZnO as photocatalyst opens up new alternative approach for wastewater treatment.

References

Abbas, Q., Shinde, P. A., Abdelkareem, M. A., Alami, A. H., Mirzaeian, M., Yadav, A., & Olabi, A. G. (2022). Graphene Synthesis Techniques and Environmental Applications. Materials, 15(21). https://doi.org/10.3390/ma15217804 

 

 

Abdiyev, K., Azat, S., Kuldeyev, E., Ybyraiymkul, D., Kabdrakhmanova, S., Berndtsson, R., … Sultakhan, S. (2023). Review of Slow Sand Filtration for Raw Water Treatment with Potential Application in Less-Developed Countries. Water (Switzerland), 15(11). https://doi.org/10.3390/w15112007 

 

 

Abebe, B., Murthy, H. C. A., & Amare, E. (2020). Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environmental Nanotechnology, Monitoring and Management, 14, 100336. https://doi.org/10.1016/j.enmm.2020.100336 

 

 

Adhikari, S., Sarkar, D., & Madras, G. (2015). Highly efficient WO3-ZnO mixed oxides for photocatalysis. RSC Advances, 5(16), 11895–11904. https://doi.org/10.1039/c4ra13210f 

 

 

Agmo Hernández, V. (2023). An overview of surface forces and the DLVO theory. ChemTexts, 9(4), 1–16. https://doi.org/10.1007/s40828-023-00182-9 

 

 

Ahmad, M., Ahmed, E., Hong, Z. L., Khalid, N. R., Ahmed, W., & Elhissi, A. (2013). Graphene-Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. Journal of Alloys and Compounds, 577, 717–727. https://doi.org/10.1016/j.jallcom.2013.06.137 

 

 

Alabaster, G., Johnston, R., Thevenon, F., & Shantz, A. (2021). Progress on wastewater treatment: Global status and acceleration need for SDG indicator 6.3.1. United Nations Human Settlements Programme (UN-Habitat) and World Health Organization (WHO) 2021. 

 

 

Alanyalioglu, M., Segura, J. J., Oró-Sol, J., & Casañ-Pastor, N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon, 50(1), 142–152. https://doi.org/10.1016/j.carbon.2011.07.064 

 

 

Ali, A., Uzair, S., & Farooq, U. (2017). Interaction of cationic, anionic and nonionic surfactants with cresol red dye in aqueous solutions: Conductometric, Tensiometric and Spectroscopic studies. Tenside Surfactants Detergents, 54(4), 342–352. 

 

 

Alkaim, A. F., Aljeboree, A. M., Alrazaq, N. A., S.J., B., Hussein, F. H., & Lilo,  and A. J. (2014). Effect of pH on Adsorption and Photocatalytic Degradation Efficiency of Different Catalysts on Removal of Methylene Blue. Asian Journal of Chemistry, 26(12), 70–73. 

 

 

Alkaykh, S., Mbarek, A., & Ali-Shattle, E. E. (2020). Photocatalytic degradation of methylene blue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon, 6(4), e03663. https://doi.org/10.1016/j.heliyon.2020.e03663 

 

 

Allen, J. M., Vincent, T. C., & Richard, K. B. (2010). Honeycomb carbon : A Review of Graphene What is graphene ? Chemical Reviews, 110, 132–145. 

 

 

Alwash, A., Adil, H., Hussain, Z., & Yousif, E. (2018). Potential of carbon nanotubes in enhancing photocatalyst activity. (Vol. 1). L Upine Publishers. 

 

 

Ameta, R., Solanki, M. S., Benjamin, S., & Ameta, S. C. (2018). Photocatalysis. In advanced oxidation processes for wastewater treatment. Emerging Green Chemical Technology, 135–175. https://doi.org/10.1016/B978-0-12-810499-6.00006-1 

 

 

An, X., Simmons, T., Shah, R., Wolfe, C., Lewis, K. M., Washington, M., … Kar, S. (2010). Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Letters, 10(11), 4295–4301. https://doi.org/10.1021/nl903557p 

 

 

Andrews, L. J. (1954). Aromatic molecular complexes of the electron donor-acceptor type. Chemical Reviews., 54(5), 713-776. 

 

 

Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. Arabian Journal of Chemistry, 12(8), 4897–4919. https://doi.org/10.1016/j.arabjc.2016.10.004 

 

 

Ankamwar, B. G., Kamble, V. B., Annsi, J. I., Sarma, L. S., & Mahajan, C. M. (2017). Solar photocatalytic degradation of methylene blue by ZnO nanoparticles. Journal of Nanoscience and Nanotechnology, 17(2), 1185–1192. https://doi.org/10.1166/jnn.2017.12579 

 

 

Ardyani, T., Mohamed, A., Bakar, S. A., Sagisaka, M., Umetsu, Y., Mamat, M. H., … Eastoe, J. (2019). Surfactants with aromatic headgroups for optimizing properties of graphene/natural rubber latex composites (NRL): Surfactants with aromatic amine polar heads. Journal of Colloid and Interface Science, 545, 184–194. https://doi.org/10.1016/j.jcis.2019.03.012 

 

 

Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: Synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/10.1016/S1369-7021(12)70044-5 

 

 

Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A. A., Amin, M. O., & Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25673-5 

 

 

Azmina, M. S., Nor, R. M., Rafaie, H. A., Razak, N. S. A., Sani, S. F. A., & Osman, Z. (2017). Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Applied Nanoscience (Switzerland), 7(8), 885–892. https://doi.org/10.1007/s13204-017-0626-3 

 

 

Banerjee, S., Benjwal, P., Singh, M., & Kar, K. K. (2018). Graphene oxide (rGO)-metal oxide (TiO2 /Fe3O4) based nanocomposites for the removal of methylene blue. Applied Surface Science, 439, 560–568. https://doi.org/10.1016/j.apsusc.2018.01.085 

 

 

Baskoro, F., Wong, C. B., Kumar, S. R., Chang, C. W., Chen, C. H., Chen, D. W., & Lue, S. J. (2018). Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions. Journal of Membrane Science, 554, 253–263. https://doi.org/10.1016/j.memsci.2018.03.006 

 

 

Basturk, E., & Karatas, M. (2015). Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. Journal of Photochemistry and Photobiology A: Chemistry, 299, 67–72. https://doi.org/10.1016/j.jphotochem.2014.11.003 

 

 

Basu, J., Basu, J. K., & Bhattacharyya, T. K. (2010). The evolution of graphene-based electronic devices. International Journal of Smart and Nano Materials, 1(3), 201–223. https://doi.org/10.1080/19475411.2010.510856 

 

 

Berradi, M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O., Bachiri, A. El, & Harfi, A. El. (2019). Textile finishing dyes and their impact on aquatic environs. Heliyon, 5(11). https://doi.org/10.1016/j.heliyon.2019.e02711 

 

 

Bhandari, C. M., & Rowe, D. M. (1998). Thermal Conduction in Semiconductor. John Wiley & Sons, New York. 

 

 

Bhatia, D., Sharma, N. R., Singh, J., & Kanwar, R. S. (2017). Biological methods for textile dye removal from wastewater: A review. Critical Reviews in Environmental Science and Technology, 47(19), 1836–1876. https://doi.org/10.1080/10643389.2017.1393263 

 

 

Bhatia, S., & Verma, N. (2017). Photocatalytic activity of ZnO nanoparticles with optimization of defects. Materials Research Bulletin, 95, 468–476. https://doi.org/10.1016/j.materresbull.2017.08.019 

 

 

Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017 

 

 

Björk, J., Hanke, F., Palma, C. A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of aromatic and anti-aromatic systems on graphene through p-p Stacking. Journal of Physical Chemistry Letters, 1(23), 3407–3412. https://doi.org/10.1021/jz101360k 

 

 

Blus, K., & Bemska, J. (2010). Effect of nonionic surfactants on the dying process of cellulose fibres with C.I. Reactive blue 217. AUTEX Research Journal, 10(3), 64–68. Retrieved from http://www.autexrj.org/No3-2010/0342.pdf 

 

 

Boehm, H. P., Clauss, A., Fischer, G. O., & Hofmann, U. Z. (1962). Thin carbon leaves. Zeitschrift Für Naturforschung, 17b(3), 150–153. 

 

 

Böer, K. W., & Pohl, U. W. (2023). Bands and Bandgaps in Solids. https://doi.org/10.1007/978-3-031-18286-0_8 

 

 

Bracko, S., & Špan, J. (2001). Anionic dye- Cationic surfactant interactions in water- Etha nol mixed solvent. Dyes and Pigments, 50(1), 77–84. https://doi.org/10.1016/S0143-7208(01)00025-0 

 

 

Brodie, B. C. (1859). On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 249–259. 

 

 

Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E. A., … Vincitore, A. (2013). Surface tension model for surfactant solutions at the critical micelle concentration. Journal of Colloid and Interface Science, 393(1), 151–160. https://doi.org/10.1016/j.jcis.2012.10.020 

 

 

Bykkam, S., & Rao, K. (2013). Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebsiella and Staphylococus. Int. J. Adv. Biotechnol. …, 4(1), 142–146. Retrieved from http://www.bipublication.com/files/IJABR-V4I1-2013-20.pdf 

 

 

Byrappa, K., Dayananda, A. S., Sajan, C. P., Basavalingu, B., Shayan, M. B., Soga, K., & Yoshimura, M. (2008). Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journal of Materials Science, 43(7), 2348–2355. https://doi.org/10.1007/s10853-007-1989-8 

 

 

Cassiano, T. de S. A., de Sousa, L. E., Ribeiro Junior, L. A., Silva, G. M. e., & de Oliveira Neto, P. H. (2022). Charge transport in cove-type graphene nanoribbons: The role of quasiparticles. Synthetic Metals, 287, 117056. https://doi.org/10.1016/j.synthmet.2022.117056 

 

 

Chaves, A., Azadani, J. G., Alsalman, H., da Costa, D. R., Frisenda, R., Chaves, A. J., … Low, T. (2020). Bandgap engineering of two-dimensional semiconductor materials. Npj 2D Materials and Applications, 4(1). https://doi.org/10.1038/s41699-020-00162-4 

 

 

Chen, P. C., Miao, W. C., Ahmed, T., Pan, Y. Y., Lin, C. L., Chen, S. C., … Lien, D. H. (2022). Defect Inspection Techniques in SiC. Nanoscale Research Letters, 17(1). https://doi.org/10.1186/s11671-022-03672-w 

 

 

Chen, X., Wu, Z., Liu, D., & Gao, Z. (2017). Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes. Nanoscale Research Letters, 12(1), 4–13. https://doi.org/10.1186/s11671-017-1904-4 

 

 

Chen, Y. F., Tan, Y. J., Li, J., Hao, Y. B., Shi, Y. D., & Wang, M. (2018). Graphene oxide-assisted dispersion of multi-walled carbon nanotubes in biodegradable Poly(e-caprolactone) for mechanical and electrically conductive enhancement. Polymer Testing, 65(December 2017), 387–397. https://doi.org/10.1016/j.polymertesting.2017.12.019 

 

 

Choi, W., & Lee, J. (2011). Graphene: Synthesis and Applications. CRC Press. 

 

 

Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19(23), 3680–3695. https://doi.org/10.1002/adfm.200901640 

 

 

Collins, A. M. (2012). Nanotechnology Cookbook: Practical, Reliable, and Jargon-Free Experimental Procedures (1st ed.). Oxford: Elsevier. 

 

 

Coraux, J., N’Diaye, A. T., Engler, M., Busse, C., Wall, D., Buckanie, N., … Michely, T. (2009). Growth of graphene on Ir(111). New Journal of Physics, 11. https://doi.org/10.1088/1367-2630/11/2/023006 

 

 

Cristadoro, A., Ai, M., Räder, H. J., Rabe, J. P., & Müllen, K. (2008). Electrical field-induced alignment of nonpolar hexabenzocoronene molecules into columnar structures on highly oriented pyrolitic graphite investigated by STM and SFM. Journal of Physical Chemistry C, 112(14), 5563–5566. https://doi.org/10.1021/jp711707w 

 

 

Czajka, A., Hazell, G., & Eastoe, J. (2015). Surfactants at the Design Limit. Langmuir, 31(30), 8205–8217. https://doi.org/10.1021/acs.langmuir.5b00336 

 

 

Dalt, S. Da, Alves, A. K., & Bergmann, C. P. (2016). Preparation and performance of TiO2-ZnO/CNT hetero-nanostructures applied to photodegradation of organic dye. Materials Research, 19(6), 1372–1375. https://doi.org/10.1590/1980-5373-MR-2016-0036 

 

 

Dariani, R. S., Esmaeili, A., Mortezaali, A., & Dehghanpour, S. (2016). Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik, 127(18), 7143–7154. https://doi.org/10.1016/j.ijleo.2016.04.026 

 

 

Davis, A. P., & Huang, C. P. (1990). The removal of substituted phenols by a photocatalytic oxidation process with cadmium sulfide. Water Research, 24(5), 543–550. https://doi.org/10.1016/0043-1354(90)90185-9 

 

 

De Marco, M., Menzel, R., Bawaked, S. M., Mokhtar, M., Obaid, A. Y., Basahel, S. N., & Shaffer, M. S. P. (2017). Hybrid effects in graphene oxide/carbon nanotube-supported layered double hydroxides: enhancing the CO2 sorption properties. Carbon, 123, 616–627. https://doi.org/10.1016/j.carbon.2017.07.094 

 

 

Derjaguin, B., & Landau, L. (1941). The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim, 14, 633–652. 

 

 

Dezhampanah, H., & Firouzi, R. (2012). Thermodynamic investigation of the interaction between anionic dye and cationic surfactant in aqueous solution. International Journal of Research in Physical Chemistry, 2(4), 45–48. Retrieved from https://www.yumpu.com/s/JpQ2n3Qt4U1neqx4 

 

 

Domínguez, H. (2007). Self-aggregation of the SDS surfactant at a solid-liquid interface. Journal of Physical Chemistry B, 111(16), 4054–4059. https://doi.org/10.1021/jp067768b 

 

 

Dong, Y., Guo, S., Mao, H., Xu, C., Xie, Y., Cheng, C., … Sun, J. (2019). The growth of graphene on Ni–Cu alloy thin films at a low temperature and its carbon diffusion mechanism. Nanomaterials, 9(11), 1–11. https://doi.org/10.3390/nano9111633 

 

 

Dou, P., Tan, F., Wang, W., Sarreshteh, A., Qiao, X., Qiu, X., & Chen, J. (2015). One-step microwave-assisted synthesis of Ag/ZnO/graphene nanocomposites with enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 302, 17–22. https://doi.org/10.1016/j.jphotochem.2014.12.012 

 

 

Dragoman, D., & Dragoman, M. (2024). Analogies for Dirac fermions physics in graphene. Solid-State Electronics, 211, 108818. https://doi.org/10.1016/j.sse.2023.108818 

 

 

Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G., & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters, 10(3), 751–758. https://doi.org/10.1021/nl904286r 

 

 

Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228–240. https://doi.org/10.1039/b917103g 

 

 

Dreyer, D. R., Todd, A. D., & Bielawski, C. W. (2014). Harnessing the chemistry of graphene oxide. Chemical Society Reviews, 43(15), 5288–5301. https://doi.org/10.1039/c4cs00060a 

 

 

Dutta, R. K., & Bhat, S. N. (1996). Interaction of phenazinium dyes and methyl orange with micelles of various charge types. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 106(2–3), 127–134. https://doi.org/10.1016/0927-7757(95)03374-2 

 

 

Eastoe, J. (2003). Surfactant Chemistry. Wuhan, China: Wuhan University Press. 

 

 

Eidsvåg, H., Bentouba, S., Vajeeston, P., Yohi, S., & Velauthapillai, D. (2021). Tio2 as a photocatalyst for water splitting—an experimental and theoretical review. Molecules, 26(6), 1–30. https://doi.org/10.3390/molecules26061687 

 

 

Evans, D. F., & Wennerstrom, H. (1994). The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet (2nd Edition). New York: Wiley-VCH Weinheim. 

 

 

Fatiatun. (2018). Fabrication of graphene oxide/zinc oxide nanocomposite through spraying method for solar cell application. Universiti Pendidikan Sultan Idris, Malaysia. 

 

 

Fei, B. L., Zhong, J. K., Deng, N. P., Wang, J. H., Liu, Q. B., Li, Y. G., & Mei, X. (2018). A novel 3D heteropoly blue type photo-Fenton-like catalyst and its ability to remove dye pollution. Chemosphere, 197, 241–250. https://doi.org/10.1016/j.chemosphere.2018.01.053 

 

 

Feigin, L. A., & Svergun, D. I. (1987). Structure analysis by small-angle X-ray and neutron scattering. (Springer., Ed.). New York. 

 

 

Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., … Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97(18), 1–4. https://doi.org/10.1103/PhysRevLett.97.187401 

 

 

Ferrari, Andrea C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143(1–2), 47–57. https://doi.org/10.1016/j.ssc.2007.03.052 

 

 

Florio, G. M., Werblowsky, T. L., Müller, T., Berne, B. J., & Flynn, G. W. (2005). Self-assembly of small polycyclic aromatic hydrocarbons on graphite: A combined scanning tunneling microscopy and theoretical approach. Journal of Physical Chemistry B, 109(10), 4520–4532. https://doi.org/10.1021/jp046458v 

 

 

Forbeaux, I., Themlin, J., & Debever, J. (1998). Heteroepitaxial graphite on Interface formation through conduction-band electronic structure. Physical Review B - Condensed Matter and Materials Physics, 58(24), 16396–16406. https://doi.org/10.1103/PhysRevB.58.16396 

 

 

Frank, S. N., & Bard, A. J. (1977). Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. Journal of the American Chemical Society, 99(1), 303–304. 

 

 

Gacka, E., Majchrzycki, L., Marciniak, B., & Lewandowska-Andralojc, A. (2021). Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-95464-y 

 

 

Galbraith, J. W., Giles, C. H., Halliday, A. G., Hassan, A. S. A., McAllister, D. C., Macaulay, N., & Macmillan, N. W. (1958). Adsorption at inorganic surfaces. III. The mechanism of adsorption of organic solutes, including dyes, by graphite. Journal of Applied Chemistry., 8(7), 416-424. 

 

 

Gaya, U. I. (2014). Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. 

 

 

Geim, A. K., & MacDonald, A. H. (2007). Graphene: Exploring carbon flatland. Physics Today, 60(8), 35–41. https://doi.org/10.1063/1.2774096 

 

 

Ghaderi, A., Abbasi, S., & Farahbod, F. (2015). Synthesis of SnO2 and ZnO Nanoparticles and SnO2-ZnO Hybrid for the Photocatalytic Oxidation of Methyl Orange. Iranian Journal of Chemical Engineering, 12(3), 96–105. 

 

 

Ghulam, A. N., Dos Santos, O. A. L., Hazeem, L., Backx, B. P., Bououdina, M., & Bellucci, S. (2022). Graphene Oxide (GO) Materials—Applications and Toxicity on Living Organisms and Environment. Journal of Functional Biomaterials, 13(2). https://doi.org/10.3390/jfb13020077 

 

 

Girão, E. C., Macmillan, A., & Meunier, V. (2023). Classification of sp2-bonded carbon allotropes in two dimensions. Carbon, 203, 611–619. https://doi.org/10.1016/j.carbon.2022.12.001 

 

 

Glanzer, S., & Sax, A. F. (2013). Carbon nanotubes dressed by aromatic molecules. Molecular Physics, 111(16–17), 2427–2438. https://doi.org/10.1080/00268976.2013.831499 

 

 

González, J. A., Villanueva, M. E., Piehl, L. L., & Copello, G. J. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: Adsorption and desorption study. Chemical Engineering Journal, 280, 41–48. https://doi.org/10.1016/j.cej.2015.05.112 

 

 

Goodwin, J. (2009). Colloids and Interfaces with Surfactants and Polymers. West Sussex: John Wiley & Sons. 

 

 

Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., & Kaneko, K. (2007). Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Letters, 7(3), 583–587. https://doi.org/10.1021/nl0622597 

 

 

Grabke, H. J., Paulitschke, W., Tauber, G., & Viefhaus, H. (1977). Equilibrium surface segregation of dissolved nonmetal atoms on iron(100) faces. Surface Science, 63(C), 377–389. https://doi.org/10.1016/0039-6028(77)90353-3 

 

 

Granite, M., Radulescu, A., & Cohen, Y. (2012). Small-angle neutron scattering from aqueous dispersions of single-walled carbon nanotubes with pluronic F127 and poly(vinylpyrrolidone). Langmuir, 28(30), 11025–11031. https://doi.org/10.1021/la302307m 

 

 

Grant, L. M., Tiberg, F., & Ducker, W. A. (1998). Nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. The Journal of Physical Chemistry B., 102(22), 4288-4294. 

 

 

Grimme, S. (2008). Do special noncovalent p-p stacking interactions really exist? Angewandte Chemie - International Edition, 47(18), 3430–3434. https://doi.org/10.1002/anie.200705157 

 

 

Guo, L., Yang, S., Yang, C., Yu, P., Wang, J., Ge, W., & Wong, G. K. L. (2000). Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chemistry of Materials, 12(8), 2268–2274. https://doi.org/10.1021/cm9907817 

 

 

Haan, T. Y., Rosnan, N. ‘Adilah, & Mohammad, A. W. (2018). Synthesis and Characterization of ZnO-decorated GO Nanocomposite Material with Different ZnO Loading through Sol-gel Method. Jurnal Kejuruteraan, 30(2), 249–255. https://doi.org/10.17576/jkukm-2018-30(2)-15 

 

 

Habibi, M. H., Hassanzadeh, A., & Mahdavi, S. (2005). The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions. Journal of Photochemistry and Photobiology A: Chemistry, 172(1), 89–96. https://doi.org/10.1016/j.jphotochem.2004.11.009 

 

 

Hamilton, J. C., & Blakely, J. M. (1980). Carbon segregation to single crystal surfaces of Pt, Pd and CO. Surface Science, 91(1), 199–217. https://doi.org/10.1016/0039-6028(80)90080-1 

 

 

Hao, Y., Wang, Y., Wang, L., Ni, Z., Wang, Z., Wang, R., … Thong, J. T. L. (2010). Probing layer number and stacking order of few-layer graphene by Raman Spectroscopy. Small, 6(2), 195–200. https://doi.org/10.1002/smll.200901173 

 

 

Hartery, S., MacInnis, J., & Chang, R. Y. W. (2022). Effect of Sodium Dodecyl Benzene Sulfonate on the Production of Cloud Condensation Nuclei from Breaking Waves. ACS Earth and Space Chemistry, 6(12), 2944–2954. https://doi.org/10.1021/acsearthspacechem.2c00230 

 

 

Hassaan, M. A., El, M. A., & Marwa, N. (2023). Principles of Photocatalysts and Their Different Applications : A Review. In Topics in Current Chemistry (Vol. 381). https://doi.org/10.1007/s41061-023-00444-7 

 

 

Hassaan, M. A., & Nemr, A. El. (2017). Advanced Oxidation Processes (AOPs) for Wastewater Treatment Advanced Oxidation Processes of Some Organic Pollutants in Fresh and Sea Water. American Journal of Environmental Science and Engineering, 1(3), 64–67. https://doi.org/10.11648/j.ajese.20170103.11 

 

 

Hernández-Carrillo, M. A., Torres-Ricárdez, R., García-Mendoza, M. F., Ramírez-Morales, E., Rojas-Blanco, L., Díaz-Flores, L. L., … Pérez-Hernández, G. (2020). Eu-modified ZnO nanoparticles for applications in photocatalysis. Catalysis Today, 349, 191–197. https://doi.org/10.1016/j.cattod.2018.04.060 

 

 

Hezma, A. M., Rajeh, A., & Mannaa, M. A. (2019). An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 581, 123821. https://doi.org/10.1016/j.colsurfa.2019.123821 

 

 

Hofmann, U., & Holst, R. (1939). Über die Säurenatur und die Methylierung von Graphitoxyd. (28), 754–771. 

 

 

Holkar, C. R., Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A critical review on textile wastewater treatments: Possible approaches. Journal of Environmental Management, 182, 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090 

 

 

Hollamby, M. J. (2013). Practical applications of small-angle neutron scattering. Physical Chemistry Chemical Physics, 15(26), 10566–10579. https://doi.org/10.1039/c3cp50293g 

 

 

Hollamby, M. J., Trickett, K., Mohamed, A., Cummings, S., Tabor, R. F., Myakonkaya, O., … Eastoe, J. (2009). Tri-chain hydrocarbon surfactants as designed micellar modifiers for supercritical CO2. Angewandte Chemie - International Edition, 48(27), 4993–4995. https://doi.org/10.1002/anie.200901543 

 

 

Holland, N. B., Ruegsegger, M., & Marchant, R. E. (1998). Alkyl group dependence of the surface-induced assembly of nonionic disaccharide surfactants. Langmuir., 14(10), 2790-2795. 

 

 

Hosseini, F., Kasaeian, A., Pourfayaz, F., Sheikhpour, M., & Wen, D. (2018). Novel ZnO-Ag/MWCNT nanocomposite for the photocatalytic degradation of phenol. Materials Science in Semiconductor Processing, 83(April), 175–185. https://doi.org/10.1016/j.mssp.2018.04.042 

 

 

Hosseinkhani, O., Hamzehlouy, A., Dan, S., Sanchouli, N., Tavakkoli, M., & Hashemipour, H. (2023). Graphene oxide/ZnO nanocomposites for efficient removal of heavy metal and organic contaminants from water. Journal of Engineering Research. 

 

 

Hu, Y., Su, M., Xie, X., Sun, C., & Kou, J. (2019). Few-layer graphene oxide with high yield via efficient surfactant-assisted exfoliation of mildly-oxidized graphite. Applied Surface Science, 494, 1100–1108. https://doi.org/10.1016/j.apsusc.2019.07.111 

 

 

Huang, M., & Ruoff, R. (2020). Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. Accounts of Chemical Research, 53. https://doi.org/10.1021/acs.accounts.9b00643 

 

 

Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339. https://doi.org/10.1021/ja01539a017 

 

 

Hunter, C. A., & Sanders, J. K. M. (1990). The Nature of p-p Interactions. Journal of the American Chemical Society, 112(14), 5525–5534. https://doi.org/10.1021/ja00170a016 

 

 

Hunter, R. J. (1981). Zeta Potential in Colloid Science: Principles and Applications (Vol. 2) (A. Press, Ed.). London: Oxford University Press. 

 

 

Idumah, C. I., & Obele, C. M. (2021). Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces, 22, 100879. https://doi.org/10.1016/j.surfin.2020.100879 

 

 

Iervolino, G., Zammit, I., Vaiano, V., & Rizzo, L. (2020). Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. In Topics in Current Chemistry (Vol. 378). https://doi.org/10.1007/s41061-019-0272-1 

 

 

Israelachvili, J. (2011). Intermolecular and Surface Forces: Revised Third Edition. Boston: Academic Press. 

 

 

Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525–1568. https://doi.org/10.1039/F29767201525 

 

 

Israelachvili, J., & Pashley, R. (1982). The hydrophobic interaction is long range, decaying exponentially with distance. Nature, 300(5890), 341–342. 

 

 

Jain, S. N., & Gogate, P. R. (2017). Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. Journal of Environmental Chemical Engineering, 5(4), 3384–3394. https://doi.org/10.1016/j.jece.2017.06.047 

 

 

Jaiswal, R., Modak, M., & Devi, S. (2024). Electrochemical Exfoliation of Graphene and Its Derivatives. https://doi.org/10.1007/978-981-97-2128-3_1 

 

 

Jamaluddin, N. A., Mohamed, A., Abu Bakar, S., Ardyani, T., Sagisaka, M., Suhara, S., … Eastoe, J. (2020). Highly branched triple-chain surfactant-mediated electrochemical exfoliation of graphite to obtain graphene oxide: colloidal behaviour and application in water treatment. Physical Chemistry Chemical Physics, 22(22), 12732–12744. https://doi.org/10.1039/d0cp01243b 

 

 

Jiang, D. E., Sumpter, B. G., & Dai, S. (2006). How do aryl groups attach to a graphene sheet? Journal of Physical Chemistry B., 110(47), 23628-23632. 

 

 

Johar, M. A., Afzal, R. A., Alazba, A. A., & Manzoor, U. (2015). Photocatalysis and Bandgap Engineering Using ZnO Nanocomposites. Advances in Materials Science and Engineering, 2015. https://doi.org/10.1155/2015/934587 

 

 

Johnson, D. W., Dobson, B. P., & Coleman, K. S. (2015). A manufacturing perspective on graphene dispersions. Current Opinion in Colloid and Interface Science, 20(5–6), 367–382. https://doi.org/10.1016/j.cocis.2015.11.004 

 

 

Jos, F., Lebr, A., Bernal, E., Flores, A., Cristian, L., Maestre, Á., … Manuel, L. (2021). Potentiometric Study of Carbon Nanotube / Surfactant Interactions by Ion-Selective Electrodes . Driving Forces in the Adsorption and Dispersion Processes. International Journal of Molecular Sciences, 22, 826. 

 

 

Kabe, R., Feng, X., Adachi, C., & Müllen, K. (2014). Exfoliation of graphite into graphene in polar solvents mediated by amphiphilic hexa-peri-hexabenzocoronene. Chemistry - An Asian Journal, 9(11), 3125–3129. https://doi.org/10.1002/asia.201402535 

 

 

Kang, J. H., Kim, T., Choi, J., Park, J., Kim, Y. S., Chang, M. S., … Park, C. R. (2016). Hidden Second Oxidation Step of Hummers Method. Chemistry of Materials, 28(3), 756–764. https://doi.org/10.1021/acs.chemmater.5b03700 

 

 

Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22–26. https://doi.org/10.4236/ns.2012.41004 

 

 

Karthik, V., Saravanan, K., Bharathi, P., Dharanya, V., & Meiaraj, C. (2014). An overview of treatments for the removal of textile dyes. Journal of Chemical and Pharmaceutical Sciences, 7(4), 301–307. 

 

 

Karukstis, K. K., Litz, J. P., Garber, M. B., Angell, L. M., & Korir, G. K. (2010). A spectral approach to determine location and orientation of azo dyes within surfactant aggregates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 75(4), 1354–1361. https://doi.org/10.1016/j.saa.2009.12.087 

 

 

Karukstis, K. K., Savin, D. A., Loftus, C. T., & D’Angelo, N. D. (1998). Spectroscopic studies of the interaction of methyl orange with cationic alkyltrimethylammonium bromide surfactants. Journal of Colloid and Interface Science, 203(1), 157–163. https://doi.org/10.1006/jcis.1998.5494 

 

 

Kastrisianaki-Guyton, E. S., Chen, L., Rogers, S. E., Cosgrove, T., & Van Duijneveldt, J. S. (2015). Adsorption of F127 onto Single-Walled Carbon Nanotubes Characterized Using Small-Angle Neutron Scattering. Langmuir, 31(10), 3262–3268. https://doi.org/10.1021/acs.langmuir.5b00375 

 

 

Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering, 6(4), 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060 

 

 

Kaur, M., Singh, G., Damarla, K., Singh, G., Wang, H., Wang, J., … Kang, T. S. (2019). Aqueous systems of a surface active ionic liquid having an aromatic anion: Phase behavior, exfoliation of graphene flakes and its hydrogelation. Physical Chemistry Chemical Physics, 22(1), 169–178. https://doi.org/10.1039/c9cp04449c 

 

 

Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega. https://doi.org/10.1021/acsomega.4c00887 

 

 

Khan, Y., Sadia, H., Zeeshan, S., Shah, A., Khan, M. N., Shah, A. A., … Khan, M. I. (2022). Nanoparticles , and Their Applications in Various Fields of Nanotechnology : A Review. Catalysts, 12(11), 1386. 

 

 

Khataee, A. R., & Kasiri, M. B. (2010). Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. Journal of Molecular Catalysis A: Chemical, 328(1–2), 8–26. https://doi.org/10.1016/j.molcata.2010.05.023 

 

 

Kim, K., He, J., Ganeshan, B., & Liu, J. (2018). Disorder enhanced thermal conductivity anisotropy in two-dimensional materials and van der Waals heterostructures. Journal of Applied Physics, 124(5). https://doi.org/10.1063/1.5031147 

 

 

Kim, K. M., Kim, T. H., Kim, H. M., Kim, H. J., Gwak, G. H., Paek, S. M., & Oh, J. M. (2012). Colloidal behaviors of ZnO nanoparticles in various aqueous media. Toxicology and Environmental Health Sciences, 4(2), 121–131. https://doi.org/10.1007/s13530-012-0126-5 

 

 

Klevens, H. B. (1953). Structure and aggregation in dilate solution of surface active agents. Journal of the American Oil Chemists Society., 30(2), 74-80. 

 

 

Koay, H. W., Ruslinda, A. R., Hashwan, S. S. B., Fatin, M. F., Thivina, V., Tony, V. C. S., … Hashim, U. (2016). Surface morphology of reduced graphene oxide-carbon nanotubes hybrid film for bio-sensing applications. IEEE International Conference on Semiconductor Electronics, Proceedings, ICSE, 2016-Septe, 320–323. https://doi.org/10.1109/SMELEC.2016.7573656 

 

 

Kolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833 

 

 

Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 49(1), 1–14. https://doi.org/10.1016/j.apcatb.2003.11.010 

 

 

Kronberg, B., Holmberg, K., & Lindman, B. (2014). Surface Chemistry of Surfactants and Polymers. John Wiley & Sons. 

 

 

Kulvelis, Y., Rabchinskii, M., Dideikin, A., Trofimuk, A., Shvidchenko, A., Kirilenko, D., … Kuklin, A. (2021). Small-Angle Neutron Scattering Study of Graphene-Nanodiamond Composites for Biosensor and Electronic Applications. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 15, 896–898. https://doi.org/10.1134/S1027451021050062 

 

 

Kumar, J., Kapoor, P., & Ahluwalia, P. K. (2015). Na3Bi: A Robust Material Offering Dirac Electrons for Device Applications. Journal of Electronic Materials, 44(10), 3215–3219. https://doi.org/10.1007/s11664-015-3802-9 

 

 

Kuzmenko, A. B., Van Heumen, E., Carbone, F., & Van Der Marel, D. (2008). Universal optical conductance of graphite. Physical Review Letters, 100(11), 2–5. https://doi.org/10.1103/PhysRevLett.100.117401 

 

 

La, L. B. T., Nguyen, H., Tran, L. C., Su, X., Meng, Q., Kuan, H.-C., & Ma, J. (2024). Exfoliation and dispersion of graphene nanoplatelets for epoxy nanocomposites. Advanced Nanocomposites, 1(1), 39–51. https://doi.org/10.1016/j.adna.2023.10.001 

 

 

Lafi, R., & Hafiane, A. (2016). Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). Journal of the Taiwan Institute of Chemical Engineers, 58, 424–433. https://doi.org/10.1016/j.jtice.2015.06.035 

 

 

Lechner, C., & Sax, A. F. (2014). Adhesive forces between aromatic molecules and graphene. Journal of Physical Chemistry C, 118(36), 20970–20981. https://doi.org/10.1021/jp505894p 

 

 

Li, J., Mushtaq, N., Arshad, N., Shah, M. A. K. Y., Irshad, M. S., Yan, R., … Lu, Y. (2022). Proton-Ion Conductivity in Hexagonal Wurtzite-Nanostructured ZnO Particles When Exposed to a Reducing Atmosphere. Crystals, 12(11), 1–13. https://doi.org/10.3390/cryst12111519 

 

 

Lin, D., & Xing, B. (2008). Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity and substitution of hydroxyl groups. Environmental Science and Technology, 42(19), 7254–7259. https://doi.org/10.1021/es801297u 

 

 

Lin, S., Shih, C. J., Sresht, V., Govind Rajan, A., Strano, M. S., & Blankschtein, D. (2017). Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 244, 36–53. https://doi.org/10.1016/j.cis.2016.07.007 

 

 

Lin, S., Shih, C. J., Strano, M. S., & Blankschtein, D. (2011). Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. Journal of the American Chemical Society, 133(32), 12810–12823. https://doi.org/10.1021/ja2048013 

 

 

Lin, Y., Hong, R., Chen, H., Zhang, D., & Xu, J. (2020). Green Synthesis of ZnO-GO Composites for the Photocatalytic Degradation of Methylene Blue. Journal of Nanomaterials, 2020. https://doi.org/10.1155/2020/4147357 

 

 

Liu, J., Chen, S., Liu, Y., & Zhao, B. (2022). Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26(6), 101560. https://doi.org/10.1016/j.jscs.2022.101560 

 

 

Liu, Xiu, Shi, L., Jiang, W., Zhang, J., & Huang, L. (2018). aking full advantage of KMnO4 in simplified Hummers method: A green and one pot process for the fabrication of alpha MnO2 nanorods on graphene oxide. Chemical Engineering Science, 192, 414–421. https://doi.org/10.1016/j.ces.2018.07.044 

 

 

Liu, Xuesheng, Li, X., Liu, X., He, S., Jin, J., & Meng, H. (2020). Green preparation of Ag-ZnO-rGO nanoparticles for efficient adsorption and photodegradation activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 584(September 2019), 124011. https://doi.org/10.1016/j.colsurfa.2019.124011 

 

 

Liu, Y. (2017). Application of graphene oxide in water treatment. IOP Conference Series: Earth and Environmental Science, 94(1). https://doi.org/10.1088/1755-1315/94/1/012060 

 

 

Lombardo, D., Calandra, P., Pasqua, L., & Magazù, S. (2020). Self-assembly of organic nanomaterials and biomaterials: The bottom-up approach for functional nanostructures formation and advanced applications. Materials, 13(5), 1–43. https://doi.org/10.3390/ma13051048 

 

 

Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., … Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131(10), 3611–3620. https://doi.org/10.1021/ja807449u 

 

 

Machida, Y., Matsumoto, N., Isono, T., & Behnia, K. (2020). Phonon hydrodynamics and ultrahigh–room-temperature thermal conductivity in thin graphite. Science, 367, 309–312. https://doi.org/10.1126/science.aaz8043 

 

 

Magne, T. M., de Oliveira Vieira, T., Alencar, L. M. R., Junior, F. F. M., Gemini-Piperni, S., Carneiro, S. V., … Santos-Oliveira, R. (2021). Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. In Journal of Nanostructure in Chemistry (Vol. 12). https://doi.org/10.1007/s40097-021-00444-3 

 

 

Mahmoodi, N. M. (2013). Photocatalytic degradation of dyes using carbon nanotube and titania nanoparticle. Water, Air, and Soil Pollution, 224(7). https://doi.org/10.1007/s11270-013-1612-3 

 

 

Mallakpour, S., & Rashidimoghadam, S. (2018). Carbon nanotubes for dyes removal. In Composite Nanoadsorbents. https://doi.org/10.1016/B978-0-12-814132-8.00010-1 

 

 

Manne, S., Cleveland, J. P., Gaub, H. E., Stucky, G. D., & Hansma, P. K. (1994). Direct Visualization of Surfactant Hemimicelles by Force Microscopy of the Electrical Double Layer. Langmuir, 10(12), 4409–4413. https://doi.org/10.1021/la00024a003 

 

 

Martinez, C. R., & Iverson, B. L. (2012). Rethinking the term “pi-stacking.” Chemical Science, 3(7), 2191–2201. https://doi.org/10.1039/c2sc20045g 

 

 

Martins, P. M., Ferreira, C. G., Silva, A. R., Magalhães, B., Alves, M. M., Pereira, L., … Lanceros-Méndez, S. (2018). TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study. Composites Part B: Engineering, 145, 39–46. https://doi.org/10.1016/j.compositesb.2018.03.015 

 

 

Maucec, D., Šuligoj, A., Ristic, A., Dražic, G., Pintar, A., & Tušar, N. N. (2018). Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catalysis Today, 310(February), 32–41. https://doi.org/10.1016/j.cattod.2017.05.061 

 

 

Mcallister, M. J., Li, J., Adamson, D. H., Schniepp, H. C., Abdala, A. a, Liu, J., … Aksay, I. a. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 19(18), 4396–4404. https://doi.org/10.1021/cm0630800 

 

 

McCoy, T. M., De Campo, L., Sokolova, A. V., Grillo, I., Izgorodina, E. I., & Tabor, R. F. (2018). Bulk properties of aqueous graphene oxide and reduced graphene oxide with surfactants and polymers: Adsorption and stability. Physical Chemistry Chemical Physics, 20(24), 16801–16816. https://doi.org/10.1039/c8cp02738b 

 

 

Md Disa, N., Abu Bakar, S., Alfarisa, S., Mohamed, A., Md Isa, I., Kamari, A., … Rusop Mahmood, M. (2015). The Synthesis of Graphene Oxide via Electrochemical Exfoliation Method. Advanced Materials Research, 1109(June), 55–59. https://doi.org/10.4028/www.scientific.net/amr.1109.55 

 

 

Méndez-Lozano, N., Pérez-Reynoso, F., & González-Gutiérrez, C. (2022). Eco-Friendly Approach for Graphene Oxide Synthesis by Modified Hummers Method. Materials, 15(20). https://doi.org/10.3390/ma15207228 

 

 

Meyer, E. E., Rosenberg, K. J., & Israelachvili, J. (2006). Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 103(43), 15739–15746. https://doi.org/10.1073/pnas.0606422103 

 

 

Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446(7131), 60–63. https://doi.org/10.1038/nature05545 

 

 

Milner, E. M., Skipper, N. T., Howard, C. A., Shaffer, M. S. P., Buckley, D. J., Rahnejat, K. A., … Schweins, R. (2012). Structure and morphology of charged graphene platelets in solution by small-angle neutron scattering. Journal of the American Chemical Society, 134(20), 8302–8305. https://doi.org/10.1021/ja211869u 

 

 

Misselyn-Bauduin, A. M., Thibaut, A., Grandjean, J., Broze, G., & Jerome, R. (2000). Mixed micelles of anionic-nonionic and anionic-zwitterionic surfactants analyzed by pulsed field gradient NMR. Langmuir, 16(10), 4430–4435. https://doi.org/10.1021/la991020l 

 

 

Mohamed, A., Anas, A. K., Abu Bakar, S., Aziz, A. A., Sagisaka, M., Brown, P., … Isa, I. M. (2014). Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites. Colloid and Polymer Science, 292(11), 3013–3023. https://doi.org/10.1007/s00396-014-3354-1 

 

 

Mohamed, A., Ardyani, T., Bakar, S. A., Brown, P., Hollamby, M., Sagisaka, M., & Eastoe, J. (2016). Graphene-philic surfactants for nanocomposites in latex technology. Advances in Colloid and Interface Science, 230, 54–69. https://doi.org/10.1016/j.cis.2016.01.003 

 

 

Mohamed, A., Ardyani, T., Bakar, S. A., Sagisaka, M., Umetsu, Y., Hussin, M. R. M., … Eastoe, J. (2018). Preparation of conductive cellulose paper through electrochemical exfoliation of graphite: The role of anionic surfactant ionic liquids as exfoliating and stabilizing agents. Carbohydrate Polymers, 201, 48–59. https://doi.org/10.1016/j.carbpol.2018.08.040 

 

 

Mohamed, A., Trickett, K., Chin, S. Y., Cummings, S., Sagisaka, M., Hudson, L., … Eastoe, J. (2010). Universal surfactant for water, oils, and CO2. Langmuir, 26(17), 13861–13866. https://doi.org/10.1021/la102303q 

 

 

Mohamed, M. M., Ghanem, M. A., Khairy, M., Naguib, E., & Alotaibi, N. H. (2019). Zinc oxide incorporated carbon nanotubes or graphene oxide nanohybrids for enhanced sonophotocatalytic degradation of methylene blue dye. Applied Surface Science, 487, 539–549. https://doi.org/10.1016/j.apsusc.2019.05.135 

 

 

Mohd Adnan, M. A., Julkapli, N. M., & Abd Hamid, S. B. (2016). Review on ZnO hybrid photocatalyst: Impact on photocatalytic activities of water pollutant degradation. Reviews in Inorganic Chemistry, 36(2), 77–104. https://doi.org/10.1515/revic-2015-0015 

 

 

Mohebali, S., Bastani, D., & Shayesteh, H. (2019). Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens). Journal of Molecular Structure, 1176, 181–193. https://doi.org/10.1016/j.molstruc.2018.08.068 

 

 

Mojsov, K., Andronikov, D., Janevski, A., Kuzelov, A., & Gaber, S. (2016). The application of enzymes for the removal of dyes from textile effluents. Advanced Technologies, 5(1), 81–86. https://doi.org/10.5937/savteh1601081m 

 

 

Molcanov, K., & Kojic-Prodic, B. (2019). Towards understanding p-stacking interactions between non-Aromatic rings. IUCrJ, 6(Pe 2015), 156–166. https://doi.org/10.1107/S2052252519000186 

 

 

Moosa, A. A., & Abed, M. S. (2021). Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 45(3), 493–519. https://doi.org/10.3906/kim-2101-19 

 

 

Mousavi, S. F., Davar, F., & Loghman-Estarki, M. R. (2016). Controllable synthesis of ZnO nanoflowers by the modified sol–gel method. Journal of Materials Science: Materials in Electronics, 27(12), 12985–12995. https://doi.org/10.1007/s10854-016-5437-x 

 

 

Mubeen, K., Safeen, K., Irshad, A., Safeen, A., Ghani, T., Shah, W. H., … Shah, A. (2023). ZnO/CuSe composite-mediated bandgap modulation for enhanced photocatalytic performance against methyl blue dye. Scientific Reports, 13(1), 1–13. https://doi.org/10.1038/s41598-023-46780-y 

 

 

Muqoyyanah. (2018). Fabrication of graphene oxide/titanium dioxide hybrid material for solar cell and membrane application. Universiti Pendidikan Sultan Idris, Malaysia. 

 

 

Myers, D. (1999). Surfaces, Interfaces, and Colloids (2nd Edition). New York: Wiley-VCH New York. 

 

 

Myers, D. (2005). Surfactant Science and Technology (Third Edition). John Wiley & Sons, Inc. 

 

 

Nakajima, T., Mabuchi, A., & Hagiwara, R. (1988). A new structure model of graphite oxide. Carbon, 26(3), 357–361. https://doi.org/10.1016/0008-6223(88)90227-8 

 

 

Nakajima, Tsuyoshi, & Matsuo, Y. (1994). Formation process and structure of graphite oxide. Carbon, 32(3), 469–475. https://doi.org/10.1016/0008-6223(94)90168-6 

 

 

Nalumaga, H. (2017). A Study on the Properties of ZnO/TiO2 Nanocomposite Prepared via the Sol-gel Technique. Kangwon National University, Korea. 

 

 

Narayan, R., Lim, J., Jeon, T., Li, D. J., & Kim, S. O. (2017). Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents. Carbon, 119, 555–568. https://doi.org/10.1016/j.carbon.2017.04.071 

 

 

Nasrollahzadeh, M., Atarod, M., Sajjadi, M., Sajadi, S. M., & Issaabadi, Z. (2019). Plant-Mediated Green Synthesis of Nanostructures: Mechanisms, Characterization, and Applications. In Interface Science and Technology (1st ed., Vol. 28). https://doi.org/10.1016/B978-0-12-813586-0.00006-7 

 

 

Navarro, A., & Sanz, F. (2001). Chemical interaction between nonionic surfactants and an acid dye. Journal of Colloid and Interface Science, 237(1), 1–5. https://doi.org/10.1006/jcis.2001.7428 

 

 

Nave, S., Paul, A., Eastoe, J., Pitt, A. R., & Heenan, R. K. (2005). What is so special about aerosol-OT? Part IV. Phenyl-tipped surfactants. Langmuir, 21(22), 10021–10027. https://doi.org/10.1021/la050767a 

 

 

Nemoto, Y., & Funahashi, H. (1977). The Interaction between a Nonionic Surfactant and Acid Dyes Studied by Measurements of Cloud Point. Journal of Colloid and Interface Science, 80(2), 542–547. 

 

 

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., … Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200. https://doi.org/10.1038/nature04233 

 

 

Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, … Firsov, A. A. (2004). Electric Field Effect in Atomically Thin Carbon Films. 306(5696), 666–669. 

 

 

Oei, B. C., Ibrahim, S., Wang, S., & Ang, H. M. (2009). Surfactant modified barley straw for removal of acid and reactive dyes from aqueous solution. Bioresource Technology, 100(18), 4292–4295. https://doi.org/10.1016/j.biortech.2009.03.063 

 

 

Ohla, K., & Grabke, H. J. (1982). On the “coke” growth in carburizing and sulfidizing atmospheres upon High temperature corrosion of iron and nickel base alloys. Materials and Corrosion, 33(6), 341–346. https://doi.org/10.1002/maco.19820330604 

 

 

Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16(September), 100678. https://doi.org/10.1016/j.rineng.2022.100678 

 

 

Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascón, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560–10564. https://doi.org/10.1021/la801744a 

 

 

Parihar, V., Raja, M., & Paulose, R. (2018). A brief review of structural, electrical and electrochemical properties of zinc oxide nanoparticles. Reviews on Advanced Materials Science, 53(2), 119–130. https://doi.org/10.1515/rams-2018-0009 

 

 

Parviz, D., Das, S., Ahmed, H. S. T., Irin, F., Bhattacharia, S., & Green, M. J. (2012). Dispersions of non-covalently functionalized graphene with minimal stabilizer. ACS Nano, 6(10), 8857–8867. https://doi.org/10.1021/nn302784m 

 

 

Patrick, H. N., Warr, G. G., Manne, S., & Aksay, I. A. (1997). Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir., 13(16), 4349-4356. 

 

 

Pei, S., Wei, Q., Huang, K., Cheng, H. M., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), 1–9. https://doi.org/10.1038/s41467-017-02479-z 

 

 

Pendolino, F., & Armata, N. (2017). Graphene Oxide in Environmental Remediation Process. https://doi.org/10.1007/978-3-319-60429-9 

 

 

Perinelli, D. R., Cespi, M., Lorusso, N., Palmieri, G. F., Bonacucina, G., & Blasi, P. (2020). Surfactant Self-Assembling and Critical Micelle Concentration: One Approach Fits All? Langmuir, 36(21), 5745–5753. https://doi.org/10.1021/acs.langmuir.0c00420 

 

 

Perumal, S., Atchudan, R., & Cheong, I. W. (2021). Recent studies on dispersion of graphene–polymer composites. Polymers, 13(14), 1–27. https://doi.org/10.3390/polym13142375 

 

 

Petersen, N., Girard, M., Riedinger, A., & Valsson, O. (2022). The Crucial Role of Solvation Forces in the Steric Stabilization of Nanoplatelets. Nano Letters, 22(24), 9847–9853. https://doi.org/10.1021/acs.nanolett.2c02848 

 

 

Piaskowski, K., Swiderska-Dabrowska, R., & Zarzycki, P. K. (2018). Dye removal from water and wastewater using various physical, chemical, and biological processes. Journal of AOAC International, 101(5), 1371–1384. https://doi.org/10.5740/jaoacint.18-0051 

 

 

Poorebrahimi, S., & Norouzbeigi, R. (2015). A facile solution-immersion process for the fabrication of superhydrophobic gibbsite films with a binary micro-nano structure: Effective factors optimization via Taguchi method. Applied Surface Science, 356, 157–166. 

 

 

Poorsargol, M., Alimohammadian, M., Sohrabi, B., & Dehestani, M. (2018). Dispersion of Graphene using Surfactant Mixtures: Experimental and Molecular Dynamics Simulation Studies. Applied Surface Science, 464. https://doi.org/10.1016/j.apsusc.2018.09.042 

 

 

Pramanick, D., & Mukherjee, D. (1993). Molecular interaction of methylene blue with triton X-100 in reverse micellar media. Journal of Colloid And Interface Science, Vol. 157, pp. 131–134. https://doi.org/10.1006/jcis.1993.1166 

 

 

Puspasari, V., Ridhova, A., Hermawan, A., Amal, M. I., & Khan, M. M. (2022). ZnO-based antimicrobial coatings for biomedical applications. Bioprocess and Biosystems Engineering, 45(9), 1421–1445. https://doi.org/10.1007/s00449-022-02733-9 

 

 

Qadri, H., & Bhat, R. A. (2020). Fresh Water Pollution Dynamics and Remediation. Fresh Water Pollution Dynamics and Remediation, 1–13. https://doi.org/10.1007/978-981-13-8277-2 

 

 

Rabe, J. P., & Buchholz, S. (1991). Commensurability and mobility in two-dimensional molecular patterns on graphite. Science, 253(5018), 424–427. https://doi.org/10.1126/science.253.5018.424 

 

 

Radovic, L. R., & Bockrath, B. (2005). On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials. Journal of the American Chemical Society, 127(16), 5917–5927. https://doi.org/10.1021/ja050124h 

 

 

Raghavan, N., Thangavel, S., & Venugopal, G. (2015). Enhanced photocatalytic degradation of methylene blue by reduced graphene-oxide/titanium dioxide/zinc oxide ternary nanocomposites. Materials Science in Semiconductor Processing, 30, 321–329. https://doi.org/10.1016/j.mssp.2014.09.019 

 

 

Raha, S., & Ahmaruzzaman, M. (2022). ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/d1na00880c 

 

 

Raizada, P., Sudhaik, A., & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies, 2(3), 509–525. https://doi.org/10.1016/j.mset.2019.04.007 

 

 

Rajter, R. F., French, R. H., Ching, W. Y., Carter, W. C., & Chiang, Y. M. (2007). Calculating van der Waals-London dispersion spectra and Hamaker coefficients of carbon nanotubes in water from ab initio optical properties. Journal of Applied Physics, 101(5), 1–6. https://doi.org/10.1063/1.2709576 

 

 

Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Applied Nanoscience (Switzerland), 7(5), 253–259. https://doi.org/10.1007/s13204-017-0565-z 

 

 

Ramalingam, P., Pusuluri, S. T., Periasamy, S., Veerabahu, R., & Kulandaivel, J. (2013). Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Advances, 3(7), 2369–2378. https://doi.org/10.1039/c2ra22343k 

 

 

Ramesha, G. K., Vijaya Kumara, A., Muralidhara, H. B., & Sampath, S. (2011). Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. Journal of Colloid and Interface Science, 361(1), 270–277. https://doi.org/10.1016/j.jcis.2011.05.050 

 

 

Ramimoghadam, D., Hussein, M. Z. Bin, & Taufiq-Yap, Y. H. (2012). The effect of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) on the properties of ZnO synthesized by hydrothermal method. International Journal of Molecular Sciences, 13(10), 13275–13293. https://doi.org/10.3390/ijms131013275 

 

 

Rashid Al-Mamun, M., Shofikul Islam, M., Rasel Hossain, M., Kader, S., Shahinoor Islam, M., & Zaved Hossain Khan, M. (2021). A novel and highly efficient Ag and GO co-synthesized ZnO nano photocatalyst for methylene blue dye degradation under UV irradiation. Environmental Nanotechnology, Monitoring and Management, 16(January), 100495. https://doi.org/10.1016/j.enmm.2021.100495 

 

 

Rashid, T. U., Kabir, S. M. F., Biswas, M. C., & Bhuiyan, M. A. R. (2020). Sustainable Wastewater Treatment via Dye-Surfactant Interaction: A Critical Review. Industrial and Engineering Chemistry Research, 59(21), 9719–9745. https://doi.org/10.1021/acs.iecr.0c00676 

 

 

Ravichandran, K., Uma, R., Sriram, S., & Balamurgan, D. (2017). Fabrication of ZnO:Ag/GO composite thin films for enhanced photocatalytic activity. Ceramics International, 43(13), 10041–10051. https://doi.org/10.1016/j.ceramint.2017.05.020 

 

 

Reczek, J. J., & Iverson, B. L. (2006). Using aromatic donor-acceptor interactions to affect macromolecular assembly. Macromolecules., 39(17), 5601-5603. 

 

 

Reczek, Joseph J., Villazor, K. R., Lynch, V., Swager, T. M., & Iverson, B. L. (2006). Tunable columnar mesophases utilizing C2 symmetric aromatic donor-acceptor complexes. Journal of the American Chemical Society, 128(24), 7995–8002. https://doi.org/10.1021/ja061649s 

 

 

Reeves, R. L., Kaiser, R. S., & Mark, H. W. (1973). The nature of species giving spectral changes in an azo dye on interaction with cationic surfactants below the critical micelle concentration. Journal of Colloid And Interface Science, 45(2), 396–405. https://doi.org/10.1016/0021-9797(73)90277-4 

 

 

Rodwihok, C., Choopun, S., Ruankham, P., Gardchareon, A., Phadungdhitidhada, S., & Wongratanaphisan, D. (2019). UV sensing properties of ZnO nanowires/nanorods. Applied Surface Science, 477, 159–165. https://doi.org/10.1016/j.apsusc.2017.11.056 

 

 

Rosen, M. J., & Kunjappu, J. T. (2004). Surfactants and Interfacial Phenomena (3rd ed.). New Jersey: John Wiley & Sons. 

 

 

Ruess., G. (1947). Uber das Graphitoxyhydroxyd (Graphitoxyd). Monatshefte Für Chemie, 76, 381–417. 

 

 

Sachin, K. M., Karpe, S. A., Singh, M., & Bhattarai, A. (2019). Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures. Royal Society Open Science, 6(3). https://doi.org/10.1098/rsos.181979 

 

 

Saleh, T. A. (2013). The Role of Carbon Nanotubes in Enhancement of Photocatalysis. Syntheses and Applications of Carbon Nanotubes and Their Composites. https://doi.org/10.5772/51050 

 

 

Saravanan, R., Gracia, F., & Stephen, A. (2017). Basic Principles, Mechanism, and Challenges of Photocatalysis. 203–249. https://doi.org/10.1007/978-3-319-62446-4_8 

 

 

Scholz, W., & Boehm, H. P. (1969). Betrachtungen zur Struktur des Graphitoxids. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 236(369(3-6)), 327–340. 

 

 

Schüpfer, D. B., Badaczewski, F., Peilstöcker, J., Guerra-Castro, J. M., Shim, H., Firoozabadi, S., … Klar, P. J. (2021). Monitoring the thermally induced transition from sp3-hybridized into sp2-hybridized carbons. Carbon, 172, 214–227. https://doi.org/10.1016/j.carbon.2020.09.063 

 

 

Seema, S. (2015). Development of novel polystyrene supported TiO2 photocatalysis for dye wastewater treatment. Jaypee University of Engineering and Technology, Guna, India. 

 

 

Shaban, S., Kang, J., & Kim, J. (2020). Surfactants: Recent advances and their applications. Composites Communications, 22, 100537. https://doi.org/10.1016/j.coco.2020.100537 

 

 

Sham, A. Y. W., & Notley, S. M. (2018). Adsorption of organic dyes from aqueous solutions using surfactant exfoliated graphene. Journal of Environmental Chemical Engineering, 6(1), 495–504. https://doi.org/10.1016/j.jece.2017.12.028 

 

 

Shih, C. J., Paulus, G. L. C., Wang, Q. H., Jin, Z., Blankschtein, D., & Strano, M. S. (2012). Understanding surfactant/graphene interactions using a graphene field effect transistor: Relating molecular structure to hysteresis and carrier mobility. Langmuir, 28(22), 8579–8586. https://doi.org/10.1021/la3008816 

 

 

Shiri, M. S. Z., Henderson, W., & Mucalo, M. R. (2019). A Review of The Lesser-Studied Microemulsion-Based Synthesis Methodologies Used for Preparing Nanoparticle Systems of The Noble Metals, Os, Re, Ir and Rh. Materials, 12, 1–8. 

 

 

Shivaji, K., Sridharan, K., Kirubakaran, D. D., Velusamy, J., Emadian, S. S., Krishnamurthy, S., … Pitchaimuthu, S. (2023). Biofunctionalized CdS Quantum Dots: A Case Study on Nanomaterial Toxicity in the Photocatalytic Wastewater Treatment Process. ACS Omega, 8(22), 19413–19424. https://doi.org/10.1021/acsomega.3c00496 

 

 

Shiyanova, K. A., Gudkov, M. V., Rabchinskii, M. K., Sokura, L. A., Stolyarova, D. Y., Baidakova, M. V., … Melnikov, V. P. (2021). Graphene oxide chemistry management via the use of KMnO4/K2Cr2O7 oxidizing agents. Nanomaterials, 11(4). https://doi.org/10.3390/nano11040915 

 

 

Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano Letters, 8(6), 1679–1682. https://doi.org/10.1021/nl080604h 

 

 

Silvera-Batista, C. A., & Ziegler, K. J. (2011). Swelling the hydrophobic core of surfactant-suspended single-walled carbon nanotubes: A SANS study. Langmuir, 27(18), 11372–11380. https://doi.org/10.1021/la202117p 

 

 

Simoncic, B., & Kert, M. (2002). A study of anionic dye-cationic surfactant interactions in mixtures of cationic and nonionic surfactants. Dyes and Pigments, 54(3), 221–237. https://doi.org/10.1016/S0143-7208(02)00046-3 

 

 

Simoncic, B., & Špan, J. (1998). A study of dye-surfactant interactions. Part 1. Effect of chemical structure of acid dyes and surfactants on the complex formation. Dyes and Pigments, 36(1), 1–14. https://doi.org/10.1016/S0143-7208(97)00001-6 

 

 

Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56(8), 1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003 

 

 

Singhal, S., Dixit, S., & Shukla, A. K. (2018). Self-assembly of the Ag deposited ZnO/carbon nanospheres: A resourceful photocatalyst for efficient photocatalytic degradation of methylene blue dye in water. Advanced Powder Technology, 29(12), 3483–3492. https://doi.org/10.1016/j.apt.2018.09.031 

 

 

Skoog, D. A., Holler, E. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis (Vol. 6). Canada: Thomson Brooks/Cole. 

 

 

Smith, R. J., Lotya, M., & Coleman, J. N. (2010). The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New Journal of Physics, 12. https://doi.org/10.1088/1367-2630/12/12/125008 

 

 

Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127–2150. https://doi.org/10.1016/j.carbon.2010.01.058 

 

 

Srinivas, G., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2006). Molecular dynamics simulations of surfactant self-organization at a solid-liquid interface. Journal of the American Chemical Society, 128(3), 848–853. https://doi.org/10.1021/ja054846k 

 

 

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286. https://doi.org/10.1038/nature04969 

 

 

Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., … Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7), 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034 

 

 

Staudenmaier, L. (1898). Method for the preparation of the graphite acid. European Journal of Inorganic Chemistry, 31(2), 1481–1487. 

 

 

Straumal, B., Mazilkin, A., Protasova, S., Myatiev, A., Straumal, P., Goering, E., & Baretzky, B. (2011). Influence of texture on the ferromagnetic properties of nanograined ZnO films. Physica Status Solidi (B) Basic Research, 248(7), 1581–1586. https://doi.org/10.1002/pssb.201001182 

 

 

Subhash Latthe, S., Basavraj Gurav, A., Shridhar Maruti, C., & Shrikant Vhatkar, R. (2012). Recent Progress in Preparation of Superhydrophobic Surfaces: A Review. Journal of Surface Engineered Materials and Advanced Technology, 02(02), 76–94. https://doi.org/10.4236/jsemat.2012.22014 

 

 

Subrahmanyam, K. S., Ghosh, A., Gomathi, A., Govindaraj, A., & Rao, C. N. R. (2011). Covalent and Noncovalent Functionalization and Solubilization of Graphene. Nanoscience and Nanotechnology Letters, 1(1), 28–31. https://doi.org/10.1166/nnl.2009.1014 

 

 

Sudbeck, E. A., Dubin, P. L., Curran, M. E., & Skelton, J. (1991). Dye solubilization in polyelectrolyte-micelle complexes. Journal of Colloid And Interface Science, 142(2), 512–517. https://doi.org/10.1016/0021-9797(91)90081-I 

 

 

Sun, H., & Yang, X. (2014). Molecular simulation of self-assembly structure and interfacial interaction for SDBS adsorption on graphene. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 82–89. https://doi.org/10.1016/j.colsurfa.2014.08.013 

 

 

Sun, N., Ma, J., Wang, C., Xue, J., Qiang, L., & Tang, J. (2018). A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlattices and Microstructures, 121, 1–8. https://doi.org/10.1016/j.spmi.2018.07.017 

 

 

Sun, Y., Zhang, W., Li, Q., Liu, H., & Wang, X. (2023). Preparations and applications of zinc oxide-based photocatalytic materials. Advanced Sensor and Energy Materials, 2(3), 2773-045X. https://doi.org/https://doi.org/10.1016/j.asems.2023.100069 

 

 

Suriani, A. B., Muqoyyanah, Mohamed, A., Othman, M. H. D., Mamat, M. H., Hashim, N., … Khalil, H. P. S. A. (2018). Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics, 29(13), 10723–10743. https://doi.org/10.1007/s10854-018-9139-4 

 

 

Suriani, A. B., Nurhafizah, M. D., Mohamed, A., Masrom, A. K., Sahajwalla, V., & Joshi, R. K. (2016). Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant. Materials and Design, 99, 174–181. https://doi.org/10.1016/j.matdes.2016.03.067 

 

 

Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., & Dékány, I. (2006). Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chemistry of Materials, 18(11), 2740–2749. https://doi.org/10.1021/cm060258+ 

 

 

Szczyglewska, P., Feliczak-Guzik, A., & Nowak, I. (2023). Nanotechnology–General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules, 28(13). https://doi.org/10.3390/molecules28134932 

 

 

Tadros, T. (2006). Applied Surfactants - Principles and Applications. Weinheim: Wiley VCH. 

 

 

Tang, K., Qi, W., Wei, Y., Ru, G., & Liu, W. (2022). High-Throughput Calculation of Interlayer van der Waals Forces Validated with Experimental Measurements. Research, 2022. https://doi.org/10.34133/2022/9765121 

 

 

Tapasztó, O., Tapasztó, L., Markó, M., Kern, F., Gadow, R., & Balázsi, C. (2011). Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chemical Physics Letters, 511(4–6), 340–343. https://doi.org/10.1016/j.cplett.2011.06.047 

 

 

Tehrani-Bagha, A. R., & Holmberg, K. (2013). Solubilization of hydrophobic dyes in surfactant solutions. Materials, 6(2), 580–608. https://doi.org/10.3390/ma6020580 

 

 

Thang, N. H., Chien, T. B., & Cuong, D. X. (2023). Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels, 9(7), 1–38. https://doi.org/10.3390/gels9070523 

 

 

Tkachenko, N. H., Yaremko, Z. M., Bellmann, C., & Soltys, M. M. (2006). The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. Journal of Colloid and Interface Science, 299(2), 686–695. https://doi.org/10.1016/j.jcis.2006.03.008 

 

 

Tkaczyk-Wlizlo, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222 

 

 

Tummala, N. R., Grady, B. P., & Striolo, A. (2010). Lateral confinement effects on the structural properties of surfactant aggregates: SDS on graphene. Physical Chemistry Chemical Physics, 12(40), 13137–13143. https://doi.org/10.1039/c0cp00600a 

 

 

Tummala, N. R., & Striolo, A. (2009). Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 80(2), 1–10. https://doi.org/10.1103/PhysRevE.80.021408 

 

 

Uribe López, M. C., Alvarez Lemus, M. A., Hidalgo, M. C., López González, R., Quintana Owen, P., Oros-Ruiz, S., … Acosta, J. (2019). Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/1015876 

 

 

Usui, H. (2007). Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution. Journal of Physical Chemistry C, 111(26), 9060–9065. https://doi.org/10.1021/jp071388o 

 

 

Vatanparast, H., Shahabi, F., Bahramian, A., Javadi, A., & Miller, R. (2018). The role of electrostatic repulsion on increasing surface activity of anionic surfactants in the presence of hydrophilic silica nanoparticles. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-25493-7 

 

 

Vejpravová, J. (2021). Mixed sp2-sp3 nanocarbon materials: A status quo review. Nanomaterials, 11(10). https://doi.org/10.3390/nano11102469 

 

 

Verwey, E. J. W., & Overbeek, J. T. G. (1948). Theory of the Stability of Lyophobic Colloids. New York: Elsevier Publishing Company. 

 

 

Wallace, P. R. (1974). The Band Theory of Graphite. Physical Review Journal, 71(9), 622. 

 

 

Wang, G., Wang, B., Park, J., Wang, Y., Sun, B., & Yao, J. (2009). Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47(14), 3242–3246. https://doi.org/10.1016/j.carbon.2009.07.040 

 

 

Wang, J., Chen, Z., & Chen, B. (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science and Technology, 48(9), 4817–4825. https://doi.org/10.1021/es405227u 

 

 

Wang, W., Huang, G., An, C., Xin, X., Zhang, Y., & Liu, X. (2017). Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies. Applied Surface Science, 405, 119–128. https://doi.org/10.1016/j.apsusc.2017.01.311 

 

 

Wang, X., Lin, Y., Wang, L., Yang, D., & Lan, H. (2021). The effects of temperature shock on the treatment of high-concentration organic wastewater by an Fe0/GO-anaerobic system. RSC Advances, 11(39), 24086–24094. https://doi.org/10.1039/d1ra04773f 

 

 

Waters, M. L. (2002). Aromatic interactions in model systems. Current Opinion in Chemical Biology, 6(6), 736–741. https://doi.org/10.1016/S1367-5931(02)00359-9 

 

 

Wong, S., Tumari, H. H., Ngadi, N., Mohamed, N. B., Hassan, O., Mat, R., & Saidina Amin, N. A. (2019). Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL). Journal of Cleaner Production, 206, 394–406. https://doi.org/10.1016/j.jclepro.2018.09.201 

 

 

Xu, C., Wang, X., & Zhu, J. (2008). Graphene - Metal particle nanocomposites. Journal of Physical Chemistry C, 112(50), 19841–19845. https://doi.org/10.1021/jp807989b 

 

 

Xue, B., & Zou, Y. (2018). High photocatalytic activity of ZnO–graphene composite. Journal of Colloid and Interface Science, 529(April), 306–313. https://doi.org/10.1016/j.jcis.2018.04.040 

 

 

Xue, Z., Zhao, S., Zhao, Z., Li, P., & Gao, J. (2016). Thermodynamics of dye adsorption on electrochemically exfoliated graphene. Journal of Materials Science, 51(10), 4928–4941. https://doi.org/10.1007/s10853-016-9798-6 

 

 

Yang, G., Li, L., Lee, W. B., & Ng, M. C. (2018). Structure of graphene and its disorders: a review. Science and Technology of Advanced Materials, 19(1), 613–648. https://doi.org/10.1080/14686996.2018.1494493 

 

 

Yang, Y., Wang, Q., Liu, Z., Liu, W., Wen, Y., Jin, L., … Ou, B. (2018). Investigation of Graphene Oxide and Graphene Oxide Quantum Dots Dispersions in Organic Solvents. 120(Ifeesm 2017), 1611–1616. https://doi.org/10.2991/ifeesm-17.2018.292 

 

 

Yaqoob, A. A., Noor, N. H. B. M., Serrà, A., & Ibrahim, M. N. M. (2020). Advances and challenges in developing efficient graphene oxide-based zno photocatalysts for dye photo-oxidation. Nanomaterials, 10(5). https://doi.org/10.3390/nano10050932 

 

 

Yashni, G., Al-Gheethi, A., Mohamed, R., & Al-Sahari, M. (2021). Reusability performance of green zinc oxide nanoparticles for photocatalysis of bathroom greywater. Water Practice and Technology, 16(2), 364–376. https://doi.org/10.2166/wpt.2020.118 

 

 

Yasin, G., Arif, M., Nizam, M. N., Shakeel, M., Khan, M. A., Khan, W. Q., … Zuo, Y. (2018). Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition. RSC Advances, 8(36), 20039–20047. https://doi.org/10.1039/c7ra13651j 

 

 

Yin, S., Wang, C., Qiu, X., Xu, B., & Bai, C. (2001). Theoretical study of the effects of intermolecular interactions in self-assembled long-chain alkanes adsorbed on graphite surface. Surface and Interface Analysis., 32(1), 248–252. 

 

 

Yoonessi, M., & Gaier, J. R. (2010). Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano, 4(12), 7211–7220. https://doi.org/10.1021/nn1019626 

 

 

Yu, P., Lowe, S. E., Simon, G. P., & Zhong, Y. L. (2015). Electrochemical exfoliation of graphite and production of functional graphene. Current Opinion in Colloid and Interface Science, 20(5–6), 329–338. https://doi.org/10.1016/j.cocis.2015.10.007 

 

 

Yurekli, K., Mitchell, C. A., & Krishnamoorti, R. (2004). Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. Journal of the American Chemical Society, 126(32), 9902–9903. https://doi.org/10.1021/ja047451u 

 

 

Yusaf, T., Mahamude, A. S. F., Farhana, K., Harun, W. S. W., Kadirgama, K., Ramasamy, D., … Dhahad, H. A. (2022). A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912336 

 

 

Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M., & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), 713–725. https://doi.org/10.1016/j.jmrt.2018.06.002 

 

 

Zavahir, S., Elmakki, T., Ismail, N., Gulied, M., Park, H., & Han, D. S. (2023). Degradation of Organic Methyl Orange (MO) Dye Using a Photocatalyzed Non-Ferrous Fenton Reaction. Nanomaterials, 13(4), 1–18. https://doi.org/10.3390/nano13040639 

 

 

Zhang, Fanglei, Li, S., Zhang, Q., Liu, J., Zeng, S., Liu, M., & Sun, D. (2019). Adsorption of different types of surfactants on graphene oxide. Journal of Molecular Liquids, 276, 338–346. https://doi.org/10.1016/j.molliq.2018.12.009 

 

 

Zhang, Fubao, Wang, X., Liu, H., Liu, C., Wan, Y., Long, Y., & Cai, Z. (2019). Recent advances and applications of semiconductor photocatalytic technology. Applied Sciences (Switzerland), 9(12). https://doi.org/10.3390/app9122489 

 

 

Zhang, L., Zhang, Z., He, C., Dai, L., Liu, J., & Wang, L. (2014). Rationally designed surfactants for few-layered graphene exfoliation: Ionic groups attached to electron-deficient p-conjugated unit through alkyl spacers. ACS Nano, 8(7), 6663–6670. https://doi.org/10.1021/nn502289w 

 

 

Zhang, Y., Huang, G., An, C., Xin, X., Liu, X., Raman, M., … Doble, M. (2017). Transport of anionic azo dyes from aqueous solution to gemini surfactant-modified wheat bran: Synchrotron infrared, molecular interaction and adsorption studies. Science of the Total Environment, 595, 723–732. https://doi.org/10.1016/j.scitotenv.2017.04.031 

 

 

Zhao, Q., Li, Y., Chai, X., Zhang, L., Xu, L., Huang, J., … Tian, S. (2019). Interaction of nano carbon particles and anthracene with pulmonary surfactant: The potential hazards of inhaled nanoparticles. Chemosphere, 215, 746–752. https://doi.org/10.1016/j.chemosphere.2018.10.016 

 

 

Zhao, S., Zhao, Z., Yang, Z., Ke, L. L., Kitipornchai, S., & Yang, J. (2020). Functionally graded graphene reinforced composite structures: A review. Engineering Structures, 210(February). https://doi.org/10.1016/j.engstruct.2020.110339 

 

 

Znidi, F., Morsy, M., & Uddin, M. N. (2024). Recent advances of graphene-based materials in planar perovskite solar cells. Next Nanotechnology, 5, 100061. https://doi.org/10.1016/j.nxnano.2024.100061 

 

 

Zuo, R., Du, G., Zhang, W., Liu, L., Liu, Y., Mei, L., & Li, Z. (2014). Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/170148 

 

 


This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials.
You may use the digitized material for private study, scholarship, or research.

Back to search page

Installed and configured by Bahagian Automasi, Perpustakaan Tuanku Bainun, Universiti Pendidikan Sultan Idris
If you have enquiries, kindly contact us at pustakasys@upsi.edu.my or 016-3630263. Office hours only.