UPSI Digital Repository (UDRep)
|
|
|
Full Text : |
Blood group antigen systems are not limited to the ABO blood groups. There is increasing interest in the detection of extended blood group systems on the red cell surface. The conventional method used to determine extended blood group antigens or red cell phenotype is by serological testing, which is based on the detection of visible haemagglutination or the presence of haemolysis. The method relies on the use of monoclonal or polyclonal antibodies designed to detect specific epitopes of the antigens on the red cell surface. However, this technique has many limitations. The replacement of the conventional serologic method is needed in cases where blood group antigen detection by this method is not reliable. This may be due to recent exposure to donor red cell, certain drugs or medications or other diseases that may alter the red cell membrane. The main aim of this study is to determine the red cell blood group genotype by PCR and to compare the results with the conventional serological methods in multiply transfused patients. Sixtythree patients participated in this study. Peripheral blood was collected and blood group phenotype was determined by serological tube method while the genotype was performed using TaqMan Single Nucleotide Polymorphism (SNP) RT-PCR assays for RHEe, RHCc, Kidd and Duffy blood group systems. Discrepancies were found between the phenotype and genotype results for all blood groups tested. Accurate red blood cell antigen profiling is important for patients requiring multiple transfusions. The SNP RT-PCR platform is a reliable alternative to the conventional method. |
References |
1. Adams PT, Davenport RD, Reardon DA, & MS, R. (1992). Detection of circulating donor white blood cells in patients receiving multiple transfusions. Blood, 80, 551-555.
2. Anstee, D. J. (2009). Red cell genotyping and the future of pretransfusion testing. Blood, 114(2), 248-256. doi: 10.1182/blood-2008-11-146860.
3. Avent, N. D., & Reid, M. E. (2000). The Rh blood group system: a review. Blood, 95, 375-387.
4. Carter AS, Bunce M, & Cerundolo L, e. a. (1998). Detection of microchimerism after allogenic blood transfusion using nested polymerase chain reaction amplification with sequence-specific primers (PCR-SSP): A cautionary tale Blood, 92, 683-689.
5. Cartron, J. P., Bailly, P., Van Kim, C. L., Cherif-Zahar, B., Matassi, G., Bertrand, O., & Colin, Y. (1998). Insights into the Structure and Function of Membrane Polypeptides Carrying Blood Group Antigens. Vox Sanguinis, 74(S2), 29-64. doi: 10.1111/j.1423-0410.1998.tb05397.x.
6. Castilho, L., Rios, M., Bianco, C., Pellegrino, J., Alberto, Fernando L., Saad, Sara T. O., & Costa, Fernando F. (2002).
7. DNA-based typing of blood groups for the management of multiply-transfused sickle cell disease patients. Transfusion, 42(2), 232-238. doi: 10.1046/j.1537-2995.2002.00029.x.
8. Castilho, L., Rios, M., Pellegrino, J., Jr., S, T. O. S., & F, F. C. (2002). Blood group genotyping facilitates transfusion of beta-thalassemia patients. J Clin Lab Anal, 16(5), 216-220. doi: 10.1002/jcla.10044.
9. Cheng-Han Huang, & Blumenfeld, O. O. (1995). MNSs Blood Groups and Major Glycophorins. In Jean-Pierre Cartron & P. Rouger. (Eds.), Molecular Basis of Human Blood Group AntigensBlood Cell Biochemistry (pp. 153-188): Springer US. doi: 10.1007/978-1-4757-9537-0_5.
10. Daniels, G. (2005). The molecular genetics of blood group polymorphism. Transplant Immunology, 14(3–4), 143-153. doi: http://dx.doi.org/10.1016/j.trim.2005.03.003.
11. George, E. (2013). HbE B-Thalassaemia in Malaysia: Revisited. J Hematol Thromb Dis, 1, 101.
12. Guelsin, G. A., Sell, A. M., Castilho, L., Masaki, V. L., Melo, F. C., Hashimoto, M. N., . . . Visentainer, J. E. (2010). Benefits of blood group genotyping in multi-transfused patients from the south of Brazil. J Clin Lab Anal, 24(5), 311-316. doi: 10.1002/jcla.20407.
13. Higgins, J. M., & Sloan, S. R. (2008). Stochastic modeling of human RBC alloimmunization: evidence for a distinct population of immunologic responders. Blood, 112(6), 2546-2553. doi: 10.1182/blood-2008-03-146415.
14. Huang, C. H. (1997). Molecular insights into the Rh protein family and associated antigens. Curr Opin Hematol, 4(2), 94- 103.
15. Klein, H. G., & Anstee, D. J. (2006). Mollison's blood transfusion in clinical medicine.
16. Lee TH, Paglieroni T, & Ohto H, e. a. (1999). Survival of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term microchimerism in severe trauma patients. Blood, 93, 3127-3139.
17. Lee, T. H., Donegan, E., Slichter, S., & Busch, M. P. (1995). Transient increase in circulating donor leukocytes after allogeneic transfusions in immunocompetent recipients compatible with donor cell proliferation. Blood, 85(5), 1207- 1214.
18. Moulds, J. J. (2011). An overview of the classic serological methods: Limitations and benefited of serology and DNA testing. In Paul M. Ness, Steve R. Sloan & J. M. Moulds (Eds.), BeadChip Molecular Immunohematology (pp. 1-7): Springer New York. doi: 10.1007/978-1-4419-7512-6_1.
19. Moulds, J. M. (2010). Future of molecular testing for red blood cell antigens. Clin Lab Med, 30(2), 419-429. doi: 10.1016/j.cll.2010.02.004.
20. Reid ME, Rios M, Powell D, Charles-Pierre D, & V, M. (2000). DNA from blood samples can be used to genotype patients who have recently received a transfusion. Transfusion, 40, 1-6.
21. Reid, M. E., & Yazdanbakhsh, K. (1998). Molecular insights into blood groups and implications for blood transfusion. Curr Opin Hematol, 5(2), 93-102.
22. Ribeiro, K. R., Guarnieri, M. H., Da Costa, D. C., Costa, F. F., Pellegrino Jr, J., & Castilho, L. (2009). DNA array analysis for red blood cell antigens facilitates the transfusion support with antigen-matched blood in patients with sickle cell disease. Vox Sanguinis, 97(2), 147-152. doi: 10.1111/j.1423-0410.2009.01185.x.
23. Rios, M., Cash, K., Strupp, A., Uehlinger, J., & Reid, M. (1999). DNA from urine sediment or buccal cells can be used for blood group molecular genotyping. Immunohematology, 15(2), 61-65.
24. Rožman, P., Dovč, T., & Gassner, C. (2000). Differentiation of autologous ABO, RHD, RHCE, KEL, JK, and FY blood group genotypes by analysis of peripheral blood samples of patients who have recently received multiple transfusions. Transfusion, 40(8), 936-942. doi: 10.1046/j.1537-2995.2000.40080936.x.
25. Singer, S. T., Wu, V., Mignacca, R., Kuypers, F. A., Morel, P., & Vichinsky, E. P. (2000). Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood, 96(10), 3369-3373.
26. Tournamille, C., Colin, Y., Cartron, J. P., & Le Van Kim, C. (1995). Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. [10.1038/ng0695-224]. Nat Genet, 10(2), 224-228.
27. Transfusion, I. S. O. B. (2014). Retrieved from http://www.isbtweb.org.
28. Vichinsky, E. P. (2001). Current issues with blood transfusions in sickle cell disease. Semin Hematol, 38(1 Suppl 1), 14- 22.
29. Wenk, R. E., & Chiafari, P. A. (1997). DNA typing of recipient blood after massive transfusion. Transfusion, 37(11-12), 1108-1110. doi: 10.1046/j.1537-2995.1997.37111298088037.x.
30. Westhoff, C. M. (2006). Molecular testing for transfusion medicine. Curr Opin Hematol, 13, 471-475. |
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |