UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Algae often reduce aesthetic values and usability of freshwater as they can grow excessively and present in high biomass concentration. A biological approach to control algae growth by using plant-derived substances has received significant attention due to its minimal undesirable effects. To date, numerous herbaceous plants species are known to have antimicrobial properties. Nevertheless, their inhibitory potential against freshwater algae remains widely unexplored. This study attempted to explore algae inhibition potential using extracts from five herbaceous plants including Melastoma malabathricum, Cosmos caudatus, Pistia stratiotes, Etlingera elatior, and Cinnamomum cassia. Potential inhibitory effect of each plant extract on algae growth was determined through the percentage of algae growth reduction as compared to the control. Our results revealed that all, except Cinnamomum cassia, gave positive inhibitory effects on algae growth. The highest algae growth inhibition wasobserved in the treatment with Melastoma malabathricum extract, which inhibited up to 50% algae growth as compared to the untreated control. Meanwhile, treatments with Pistia stratiotes, Cosmos caudatus, and Etlingera elatior showed up to 42.6%, 35.3%, and 22.5% inhibition, respectively. Higher algae inhibition effects by Melastoma malabathricum and Pistia stratiotes extracts could be due to their flavonoids and alkaloids content. As an implication, this study suggests the potential use of widely available local plants such as Melastoma malabathricum and Pistia stratiotes to inhibit algae growth in freshwater ecosystems.
|
References |
[1] E. Reichwaldt, S.C. Sinang, A. Ghadouani, Global warming, climate patterns and toxic cyanobacteria, in: L.M. Botana, M.C. Louzao, N. Vilarino (Eds.), Climate Change and Marine and Freshwater Toxins, Walter de Gruyter GmbH & Co KG, Berlin 2015, pp. 195–238. [2] Y.P. Li, C.Y. Tang, Z.B. Yu, K. Acharya, Correlations between algae and water quality:factors driving eutrophication in Lake Taihu, China, Int. J. Environ. Sci. Technol. 11 (1)(2014) 169–182. [3] X. Chuai, X. Chen, L. Yang, J. Zeng, A. Miao, H. Zhao, Effects of climatic changes and anthropogenic activities on lake eutrophication in different ecoregions, Int. J. Environ. Sci. Technol.9(3) (2012) 503–514. [4] Z. Ke, P. Xie, L. Guo, Ecological restoration and factors regulating phytoplankton community in a hypertrophic shallow lake, Lake Taihu, China, Acta Ecol. Sin (2018)https://doi.org/10.1016/j.chnaes.2018.05.004. [5] I. Chorus, J. Bartram, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, E & FN Spon, London and New York, 1999 416. [6] A. Sukenik, A. Quesada, N. Salmaso, Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning, Biodivers. Conserv. 24 (4) (2015) 889–908. [7] S.C. Sinang, K.B. Poh, S. Shamsudin, A. Sinden, Preliminary assessment of cyanobacteria diversity and toxic potential in ten freshwater lakes in Selangor, Malaysia, Bull. Environ. Contam. Toxicol. 95 (4) (2015) 542–547. [8] I. Chorus, I.R. Falconer, H.J. Salas, J. Bartram, Health risks caused by freshwatercyanobacteria in recreational waters, J. Toxicol. Env. Heal. B. 3 (4) (2000) 323–347. [9] NAHRIM, A Desk Study on the Status of Eutrophication of Lakes in Malaysia, National Hydraulic Research Institute Malaysia, 2009. [10] WHO, Algae and Cyanobacteria in Freshwater: Guidelines for Safe Recreational Water Environments, World Health Organization, Geneva, Switzerland, 2003 136–154. [11] J. Shao, R. Li, J.E. Lepo, J.-D. Gu, Potential for control of harmful cyanobacterial blooms using biologically derived substances: Problems and prospects, J. Environ. Manag. 125 (2013) 149–155. [12] S. McComas, Lake and Pond Management Guidebook, CRC Press, 2003 304. [13] D. Murray, B. Jefferson, P. Jarvis, S. Parsons, Inhibition of three algae species usingchemicals released from Barley Straw, Environ. Technol. 31 (4) (2010) 455–466. [14] H.C.P. Matthijs, D. Jan?ula, P.M. Visser, B. Maršálek, Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation, Aquat. Ecol. 50 (3) (2016) 443–460. [15] A. Ball, M. Williams, D. Vincent, J. Robinson, Algal growth control by a barley straw extract, Bioresour. Technol. 77 (2) (2001) 177–181. [16] M.G. Ghobrial, H.S. Nassr, A.W. Kamil, Bioactivity effect of two macrophyte extractson growth performance of two bloom-forming cyanophytes, Egypt. J. Aquat. Res. 41 (1) (2015) 69–81. [17] M.A. Chia, J.T. Akinsanmi, Y. Tanimu, Z. Ladan, Algicidal effects of aqueous leaf extracts of neem (Azadirachta indica) on Scenedesmus quadricauda (Turp.) de Brébission, Acta Bot. Bras. 30 (1) (2016) 1–8. [18] Q. Xian, H. Chen, H. Zou, D. Yin, Allelopathic activity of volatile substance from submerged macrophytes on Microcystin aeruginosa, Acta Ecol. Sin. 26 (11) (2006) 3549–3554. [19] T. Zhang, L. Liu, X. Yang, S. Zhang, W. Xia, C. Li, Allelopathic control of freshwater phytoplankton by the submerged macrophyte Najas minor All, Acta Ecol. Sin. 34 (6) (2014) 351–355. [20] N. Ntalli, A. Michaelakis, K. Eloh, D.P. Papachristos, L. Wejnerowski, P. Caboni, S.Cerbin, Biocidal effect of (E)-anethole on the cyanobacterium Aphanizomenon gracile Lemmermann, J. Appl. Phycol. 29 (3) (2017) 1297–1305. [21] H.-Q. Wang, L.-Y. Zhang, Q.-F. Cui, Extraction of pomegranate peel tannins and flocculant for Microcystis aeruginosa removal, Int. J. Environ. Sci. Technol. 15 (12) (2018) 2713–2718. [22] H. Zhang, A. Chen, J. Li, D. Liu, J. Shao, Control of Microcystis (Cyanobacteria) usingthe fruit of Macleaya cordata: from laboratory experiment to in situ field test, Phycologia 56 (4) (2017) 382–389. [23] T.N. Pham, H.D. Pham, D.K. Dang, T.T. Duong, T.P.Q. Le, Q.D. Nguyen, D. Nguyen Tien, Anticyanobacterial phenolic constituents from the aerial parts of Eupatorium fortunei Turcz, Nat. Prod. Res. (2018) 1–4. [24] J.D. Yang, L.B. Hu, W. Zhou, Y.F. Yin, J. Chen, Z.Q. Shi, Lysis of Microcystis aeruginosawith extracts from Chinese Medicinal Herbs, Int. J. Mol. Sci. 10 (9) (2009) 4157–4167. [25] S. Chen, T. Zheng, C. Ye, W. Huannixi, Z. Yakefu, Y. Meng, X. Peng, Z. Tian, J. Wang, Y.Ma, Y. Yang, Z. Ma, Z. Zuo, Algicidal properties of extracts from Cinnamomum camphora fresh leaves and their main compounds, Ecotoxicol. Environ. Saf. 163 (2018) 594–603. [26] M. Arifullah, P. Vikram, K.K. Chiruvella, M.M. Shaik, I.H.B.A. Ripain, A review on malaysian plants used for screening of antimicrobial activity, Annu. Res. Rev. Biol. 4 (13) (2014) 2088–2132. [27] S.I. Abdelwahab, F.Q. Zaman, A.A. Mariod, M. Yaacob, A.H.A. Abdelmageed, S. Khamis, Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen, J. Sci. Food Agric. 90 (15) (2010) 2682–2688. [28] J. Abraham, P. Chakraborty, A.M. Chacko, K. Khare, Cytotoxicity and antimicrobial effects of Pistia stratiotes leaves, Int. J. Drug Dev. 6 (4) (2014) 208–217. [29] H. Thatoi, S. Panda, S. Rath, S. Dutta, Antimicrobial activity and ethnomedicinal usesof some medicinal plants from similipal biosphere reserve, Orissa, Asian J. Plant Sci. 7 (3) (2008) 260–267. [30] X. Wu, H. Wu, J. Chen, J. Ye, Effects of allelochemical extracted from water lettuce(Pistia stratiotes Linn.) on the growth, microcystin production and release of Microcystis aeruginosa, Environ. Sci. Pollut. Res. 20 (11) (2013) 8192–8201. [31] H. Hu, Y. Hong, Algal-bloom control by allelopathy of aquatic macrophytes — a review, Front. Environ. Sci. Eng. China 2 (4) (2008) 421–438. [32] S.C. Sinang, The Abundance, Diversity and Toxicity of Cyanobacteria in Malaysia Freshwater Ecosystems (Research Report), Sultan Idris Education University, Malaysia, 2014. [33] E.G. Bellinger, D.C. Sigee, A Key to the more frequently occurring freshwater algae, Freshwater Algae: Identification and Use as Bioindicators, John Wiley & Sons, Ltd, Chichester, UK 2010, pp. 137–244. [34] L.S. Clesceri, A.D. Eaton, A.E. Greenberg, A.P.H. Association, A.W.W. Association, andW.E. Federation, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, The University of California, 1998, p. 1220. [35] S.M. Zachariah, N.M. Kumar, K. Darsana, D. Gopal, N. Thomas, M. Ramkumar, N. George, Phytochemical Screening, Formulation and Evaluation of Dried Galls of Quercus Infectoria Oliv, Int. J. Pharm. Sci. Rev. Res. 26 (1) (2014) 125–130. [37] J. Chen, H. Zhang, Z. Han, J. Ye, Z. Liu, The Influence of Aquatic Macrophytes on Microcystis aeruginosa growth, Ecol. Eng. 42 (2012) 130–133. [38] Z.A. Amin Alnajar, M.A. Abdulla, H.M. Ali, M.A. Alshawsh, A.H.A. Hadi, Acute Toxicity Evaluation, Antibacterial, Antioxidant and Immunomodulatory Effects of Melastoma malabathricum, Molecules 17 (2012) 3547–3559. [39] S.N. Che Omar, J. Ong Abdullah, K.A. Khairoji, S. Chin Chin, M. Hamid, Effects of flower and fruit extracts of Melastoma malabathricum Linn. on Growth of Pathogenic Bacteria: Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium, J. Evid. Based Complement. Altern. Med. 2013 (2013) 11. [40] Shi-Hui Cheng, M.Y. Barakatun-Nisak, J. Anthony, A. Ismail, Potential medicinal benefits of Cosmos caudatus (Ulam Raja): a scoping review, J. Res. Med. Sci. 20 (2015) 1000–1006. [41] A. Ghasemzadeh, H.Z.E. Jaafar, A. Rahmat, S. Ashkani, Secondary metabolites constituents and antioxidant, anticancer and antibacterial activities of Etlingera elatior grown in different locations of Malaysia, BMC Complement. Altern. Med. 15 (1) (2015) 1–10. [42] N.H.M. Rasdi, O.A. Samah, A. Sule, Q.U. Ahmed, Antimicrobial studies of Cosmos caudatus Kunth. (Compositae), J. Med. Plants Res.4(8)(2010) 669–673. [43] J.N. Kabera, E. Semana, A.R. Mussa, X. He, Plant secondary metabolites: Biosynthesis,classification, function and pharmacological properties, J. Pharm. Pharmacol. 2 (2014) 377–392. [44] H. Görner, Z. Miskolczy, M. Megyesi, L. Biczók, Photooxidation of alkaloids: Considerable quantum yield enhancement by Rose Bengal-sensitized singlet molecular oxygen generation, Photochem. Photobiol. 87 (6) (2011) 1315–1320. [45] S. Nakai, Y. Inoue, M. Hosomi, Algal growth inhibition effects and inducement modes by plant-producing phenols, Water Res.35(7)(2001) 1855–1859. [46] R. Yan, H. Ji, Y. Wu, P.G. Kerr, Y. Fang, L. Yang, An Investigation into the kinetics andmechanism of the removal of cyanobacteria by extract of Ephedra equisetina Root,PLoS One 7(8)(2012), e42285. [47] H. Huang, X. Xiao, A. Ghadouani, J. Wu, Z. Nie, C. Peng, X. Xu, J. Shi, Effects of naturalflavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa, Toxins 7 (1) (2015) 66–80. [48] S.M. Hussein Ayoub, Algicidal Properties of Acacia nilotica, Aquat. Bot. 23 (4) (1986) 389–390. [49] J.M. Pillinger, J.A. Cooper, I. Ridge, Role of phenolic compounds in the antialgal activity of barley straw, J. Chem. Ecol. 20 (7) (1994) 1557–1569. [50] S. Nakai, Y. Inoue, M. Hosomi, A. Murakami, Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa, Water Res. 34 (11) (2000) 3026–3032.
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |