UPSI Digital Repository (UDRep)
|
|
|
Abstract : Universiti Pendidikan Sultan Idris |
Microalgae are known as an alternative source of biomass energy to replace fossil fuels. The aim of the present study is to optimise the growth conditions and increase the lipid, carbohydrate and biomass productivity of Tetradesmus obliquus UPSI-JRM02 using response surface methodology with Design Expert software. Four variables (nitrogen concentration, temperature, pH, and light intensity) were optimised to enhance T. obliquus productivity. The highest lipid (33 ± 1.2mg/L/day), carbohydrate (51 ± 1.5 mg/L/day) and biomass (115 ± 1.4 mg/L/day) productivity were produced at a nitrogen concentration of 400 mg/L NO3 at 36 C with pH of 9.8, and light intensity of 23500 lux. The fatty acid methyl ester contains polyunsaturated fatty acid (C18:2, C18:3) and saturated fatty acid (C16:0). These results demonstrate the potential of T. obliquus to produce promising feedstock for biofuel production.
|
References |
[1] Brennan L, Owende P. Biofuels from microalgae: towards meeting advanced fuel standards. Lee JW, editor. Advanced Biofuels and Bioproducts. New York: Springer-Verlag; 2013. doi:10.1007/978-1-4614-3348-4_24 [2] Voloshin R, Rodionova M, Zharmukhamedov S, et al. Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy 2016;41:17257–17273. doi:10.1016/ j.ijhydene.2016.07.084 [3] Scaife MA, Merkx-Jacques A, Woodhall DL, et al. Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews 2015;44:620–642. doi:10.1016/j.rser.2014.12.024 [4] Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews 2010;14:578–597.doi:10.1016/j.rser.2009.10.003 [5] Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. Bioresources and Bioprocessing 2015;2:17. doi:10.1186/s40643-015-0045-9 [6] Ramaraj S, et al. Microalgae as an attractive source for biofuel production. In: Environmental Sustainability Springer, New Delhi. 2015;129–15. [7] Lee O, Seong D, Lee C, et al. Sustainable production of liquid biofuels from renewable microalgae biomass. Journal of Industrial and Engineering Chemistry 2015;29:24–31. doi:10. 1016/j.jiec.2015.04.016 [8] Milano J, Ong H, Masjuki H, et al. Microalgae biofuels as an alternative to fossil fuel for power generation. Renewable and Sustainable Energy Reviews 2016;58:180–197. doi:10.1016/j.rser. 2015.12.150 [9] Nordin N, Yusof N, Samsudin S. Biomass production of Chlorella sp., Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste Biomass Valorization 2016;8:2301–2311. doi:10. 1007/s12649-016-9709-8 [10] Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology 2012;96:631–645. doi:10.1007/s00253-012-4398-0 [11] Markou G, Nerantzis E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnology Advances 2013;31:1532–1542. doi:10.1016/j.biotechadv.2013.07.011 [12] Pancha I, Chokshi K, George B, et al. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology 2014;156:146–154. doi:10.1016/j.biortech.2014.01.025 [13] Gris B, Morosinotto T, Giacometti G, et al. Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light–dark cycles on growth, productivity, and biochemical composition. Applied Biochemistry and Biotechnology 2014;172:2377–2389. doi:10.1007/s12010-013-0679-z [14] Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology 2009;84:281–291. doi:10.1007/s00253-009-1935-6 [15] Mandenius C, Brundin A. Bioprocess optimization using designof-experiments methodology. Biotechnology Progress 2008;24: 1191–1203. doi:10.1002/btpr.67 [16] Chellamboli C, Perumalsamy M. Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system. RSC Advances 2014;4:22129–22140. doi:10.1039/c4ra01179a [17] Yang F, Long L, Sun X, et al. Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Marine Drugs 2014;12:1245–1257. doi:10.3390/ md12031245 [18] Rasdi Z, Abdul Rahman N, Abd-Aziz S, et al. Statistical optimization of biohydrogen production from palm oil mill effluent by natural microflora. The Open Biotechnology Journal 2009;3:79–86. doi:10.2174/1874070700903010079 [19] Nordin N, Yusof N, Samsudin S. Microalgae biomass production and nitrate removal from landfill leachate. In Proceeding of International Conference on Research, Implementation and Education of Mathematics and Sciences 2014. Yogyakarta: Yogyakarta State University. 2014. [20] Singh P, Guldhe A, Kumari S, et al. Investigation of combined effect of nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus KJ671624 using response surface methodology. Biochemical Engineering Journal 2015;94: 22–29. doi:10.1016/j.bej.2014.10.019 [21] Li L, Cui J, Liu Q, et al. Screening and phylogenetic analysis of lipid-rich microalgae. Algal Research 2015;11:381–386. doi:10. 1016/j.algal.2015.02.028 [22] Zhu S, Huang W, Xu J, et al. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresource Technology 2014;152:292–298. doi:10.1016/j.biortech.2013.10.092 [23] Grahovac J, Dodic J, Jokic A, et al. Optimization of ethanol production from thick juice: A response surface methodology approach. Fuel 2012;93:221–228. doi:10.1016/j.fuel.2011.10.019 [24] Cheng D, He Q. Assessment of environmental stresses for enhanced microalgal biofuel production -an overview. Frontiers in Energy Research 2014;2:26–33. doi:10.3389/fenrg. 2014.00026. [25] Chu W. Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. European Journal of Phycology 2017;52:419–437. doi:10.1080/09670262.2017.1379100 [26] Cuellar-Bermudez S, Romero-Ogawa M, Vannela R, et al. Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. AlgalResearch 2015;12:10 16. doi:10.1016/j.algal.2015.07.018 [27] Wu Y, Yu Y, Hu H. Effects of Initial Phosphorus Concentration and Light Intensity on Biomass Yield per Phosphorus and Lipid Accumulation of Scenedesmus sp. LX1. Bioenergy Research2014;7:927–934. doi:10.1007/s12155-014-9411-2 [28] Zhu L, Li Z, Hiltunen E. Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International 2016;2016:1–8. doi:10.1155/2016/8792548. [29] Xin L, Hong-Ying H, Yu-Ping Z. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology 2011;102:3098–3102. doi:10.1016/j.biortech.2010.10.055 [30] Chen C, Zhao X, Yen H, et al. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 2013; 78:1–10. doi:10.1016/j.bej.2013.03.006 [31] Zhu S, Wang Y, Huang W, et al. Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Applied Biochemistry and Biotechnology 2014;174:2435–2445. doi:10.1007/s12010-014-1183-9 [32] Sun X, Cao Y, Xu H, et al. Effect of nitrogen-starvation, lightintensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology 2014;155:204–212. doi:10.1016/j.biortech.2013.12.109 [33] Liu J, Yuan C, Hu G, et al. Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation. Applied Biochemistry and Biotechnology 2012;166:2127–2137. doi:10.1007/s12010-012- 9639-2 [34] Xia L, Song S, Hu C. High temperature enhances lipid accumulation in nitrogen-deprived Scenedesmus obtusus XJ-15. Journal of Applied Phycology 2016;28:831–837. doi:10.1007/s10811-015-0636-z [35] Jia Q, Xiang W, Yang F, et al. Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. Journal of Applied Phycology 2015;28(2):727–736. doi:10.1007/ s10811-015-0610-9. [36] Gouveia L, Oliveira A. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology 2008;36:269–274. doi:10.1007/s10295-008-0495-6 [37] Knothe G. Designer biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008;22: 1358–1364. doi:10.1021/ef700639e [38] Knothe G. Improving biodiesel fuel properties by modifyingfatty ester composition. Energy & Environmental Science 2009; 2:759–766. doi:10.1039/b903941d
|
This material may be protected under Copyright Act which governs the making of photocopies or reproductions of copyrighted materials. You may use the digitized material for private study, scholarship, or research. |